JPH05154909A - Biaxially stretched polyimide film and manufacture thereof - Google Patents

Biaxially stretched polyimide film and manufacture thereof

Info

Publication number
JPH05154909A
JPH05154909A JP32291491A JP32291491A JPH05154909A JP H05154909 A JPH05154909 A JP H05154909A JP 32291491 A JP32291491 A JP 32291491A JP 32291491 A JP32291491 A JP 32291491A JP H05154909 A JPH05154909 A JP H05154909A
Authority
JP
Japan
Prior art keywords
film
temperature
biaxially stretched
stretched film
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32291491A
Other languages
Japanese (ja)
Inventor
Yasuko Honchi
靖子 本地
Masumi Saruwatari
益巳 猿渡
Yasuhiko Ota
靖彦 太田
Kazunari Okada
一成 岡田
Hitoshi Katsuyama
仁之 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP32291491A priority Critical patent/JPH05154909A/en
Publication of JPH05154909A publication Critical patent/JPH05154909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain a product, which has no uneven thickness, nonuniform stretching or the like and has favorable balance between longitudinal and lateral physical properties, by a method wherein unstretched film made of thermoplastic polyimide having specified structure is uniaxially stretched and, after being quenched to the specified temperature, biaxially stretched and heat-treated. CONSTITUTION:Unstretched film made of thermoplastic polyimide having the repeating constitutional unit represented by the separately shown chemical formula is successively biaxially stretched. In this case, firstly, the unstretched film is uniaxially stretched by the draw ratio of 150-400% at 240-300 deg.C. At the same time, the obtained uniaxially stretched film is quenched to the temperature ranging from 0 deg.C to the temperature, which is lower than the glass transition temperature of the uniaxially stretched film by 10 deg.C. Next, the quenched film is stretched normal to the stretching direction by the draw ratio of 150-500% at the temperature ranging from the temperature, which is higher than the glass transition temperature of the uniaxially stretched film by 5 deg.C, to the temperature, which is higher than the crystallization starting temperature of the uniaxially stretched film by 5 deg.C. In succession, the obtained biaxially stretched film is heat-treated at the temperature ranging from 250 deg.C to the melting point of the biaxially stretched film. Thus, the film is uniformly stretched as a whole in both the longitudinal and lateral directions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定の構造を有する熱
可塑性ポリイミドフィルムからなる二軸延伸フィルムお
よびその製造方法に関する。更に詳しくは、特定の構造
を有する熱可塑性ポリイミドからなる未延伸フィルムを
一軸延伸した直後に特定の温度に急冷し、次いで、特定
の条件で二軸延伸して得られる縦横の物性バランスに優
れた二軸延伸フィルムおよびその製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biaxially stretched film made of a thermoplastic polyimide film having a specific structure and a method for producing the film. More specifically, an unstretched film made of a thermoplastic polyimide having a specific structure is rapidly cooled to a specific temperature immediately after being uniaxially stretched, and then biaxially stretched under specific conditions to obtain an excellent balance of physical properties in length and width. TECHNICAL FIELD The present invention relates to a biaxially stretched film and a method for producing the same.

【0002】[0002]

【従来の技術】耐熱性ポリイミドフィルムは、工業的に
広く用いられている。特に、電気、電子分野等の用途に
おいては、縦横両方向の物性が均等であることが望ま
れ、また、延伸フィルムの全ての部分における物性が均
等であることが望まれている。
2. Description of the Related Art Heat-resistant polyimide films are widely used industrially. In particular, in applications such as electric and electronic fields, it is desired that the physical properties in both the vertical and horizontal directions are uniform, and that the physical properties in all parts of the stretched film are uniform.

【0003】例えば、特開平3−205423号公報に
は、延伸可能な熱可塑性耐熱フィルムとして特定の構造
を有するポリイミドからなる未延伸フィルムを逐次二軸
延伸する方法が開示されている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 3-205423 discloses a method of sequentially biaxially stretching an unstretched film made of polyimide having a specific structure as a stretchable thermoplastic heat resistant film.

【0004】しかし、該方法は、特定の構造を有する熱
可塑性ポリイミドからなる未延伸フィルムを逐次二軸延
伸して、耐熱性、機械的特性および寸法安定性に優れた
二軸延伸フィルムを得る方法には適しているが、縦横の
物性バランスが均等な二軸延伸フィルムを得る方法とし
ては、必ずしも満足できる方法とはいえない。
However, in this method, an unstretched film made of a thermoplastic polyimide having a specific structure is sequentially biaxially stretched to obtain a biaxially stretched film having excellent heat resistance, mechanical properties and dimensional stability. However, it is not always a satisfactory method for obtaining a biaxially stretched film having a uniform physical property balance in the length and width.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
式〔1〕で表される繰り返し構造単位を有するポリイミ
ドからなる、厚みムラ、延伸ムラ等のない、縦横両方向
全体に均一に延伸され、縦横の物性バランが良好な二軸
延伸ポリイミドフィルムおよびその製造方法を提供する
ことにある。
An object of the present invention is to be uniformly stretched in both longitudinal and lateral directions, which is composed of a polyimide having a repeating structural unit represented by the above formula [1] and has no unevenness in thickness or stretching. The object is to provide a biaxially stretched polyimide film having good longitudinal and lateral physical properties and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を達成するために鋭意検討した結果、特定の構造を有す
る熱可塑性ポリイミドからなる未延伸フィルムを一軸延
伸した後、得られた一軸延伸フィルムを特定の温度に急
冷し、次いで、特定の温度において二軸目の延伸を行な
い、さらに、熱処理することにより得られる二軸延伸ポ
リイミドフィルムが、上記課題を解決し得る特性を有す
ることを見出し、本発明に到った。
Means for Solving the Problems The inventors of the present invention have conducted diligent studies to achieve the above-mentioned objects, and as a result, uniaxially stretched an unstretched film made of a thermoplastic polyimide having a specific structure, and then obtained the uniaxially obtained film. The stretched film is rapidly cooled to a specific temperature, then biaxially stretched at a specific temperature, and further, a biaxially stretched polyimide film obtained by heat treatment has a property capable of solving the above problems. Heading, the present invention was reached.

【0007】すなわち、本発明は、式(1)〔化2〕 That is, the present invention is based on the formula (1)

【0008】[0008]

【化2】で表される繰り返し構造単位を有する熱可塑性
ポリイミドからなる未延伸フィルムを逐次二軸延伸する
に際し、該未延伸フィルムを240〜300℃において
一方向に1.5〜4倍延伸し、得られた一軸延伸フィル
ムを0〜(該一軸延伸フィルムのガラス転移点温度−1
00)℃の温度に急冷し、次いで、(該一軸延伸フィル
ムのガラス転移温度+5)〜(該一軸延伸フィルムの結
晶化開始温度+5)℃の温度において該延伸方向と直角
方向に1.5〜4倍延伸し、さらに、得られた二軸延伸
フィルムを250〜(該二軸延伸フィルムの融点)℃の
温度において熱処理することを特徴とする二軸延伸ポリ
イミドフィルムの製造方法である。
When biaxially stretching an unstretched film made of a thermoplastic polyimide having a repeating structural unit represented by the following formula, the unstretched film is stretched in one direction at a temperature of 240 to 300 ° C. by 1.5 to 4 times. , 0 to (the glass transition temperature of the uniaxially stretched film-1
00) ° C., and then (glass transition temperature of the uniaxially stretched film +5) to (crystallization start temperature of the uniaxially stretched film +5) at a temperature of 1.5 ° C. in the direction perpendicular to the stretching direction. It is a method for producing a biaxially stretched polyimide film, which comprises stretching 4 times and further heat treating the obtained biaxially stretched film at a temperature of 250 to (melting point of the biaxially stretched film) ° C.

【0009】本発明の第二の発明は、上記の方法によっ
て製造された二軸延伸ポリイミドフィルムであって、下
記(イ)および(ロ)の特性を有する二軸延伸ポリイミ
ドフィルムである。 (イ)ASTM D−882に規定された方法により、
23℃において測定された破断強度、破断伸および弾性
率の縦横の差異が5%以内である二軸延伸ポリイミドフ
ィルム。 (ロ)JIS C−2318に規定された方法により、
260℃において2時間加熱した時の収縮率の縦横の差
異が5%以内である二軸延伸ポリイミドフィルム。
A second aspect of the present invention is a biaxially stretched polyimide film produced by the above method, which has the following characteristics (a) and (b). (B) By the method specified in ASTM D-882,
A biaxially stretched polyimide film having longitudinal and lateral differences of breaking strength, breaking elongation and elastic modulus measured at 23 ° C of 5% or less. (B) By the method specified in JIS C-2318,
A biaxially stretched polyimide film having a longitudinal and lateral difference in shrinkage of 5% or less when heated at 260 ° C. for 2 hours.

【0010】本発明の特徴は、一軸延伸フィルムを急冷
することにより該延伸雰囲気下で結晶化が進むのを極力
抑ると共に、一軸延伸フィルムの結晶化を極力抑え得る
温度範囲で二軸延伸を行なうことにある。かかる方法を
採用することにより、縦横の物性バランスの良好な二軸
延伸フィルムを製造することができる。
The feature of the present invention is that by rapidly cooling the uniaxially stretched film, the crystallization is suppressed as much as possible in the stretching atmosphere, and the uniaxially stretched film is biaxially stretched within a temperature range in which the crystallization can be suppressed as much as possible. To do. By adopting such a method, it is possible to produce a biaxially stretched film having a good balance of physical properties in length and width.

【0011】未延伸フィルムを特定の温度で延伸するこ
とにより、得られる一軸延伸フィルムの性質が変化し、
該延伸フィルムの結晶化開始温度が未延伸フィルムの結
晶化開始温度より低温側にシフトし、結晶化し易くなる
ためである。結晶化が進んだ一軸延伸フィルムを二軸延
伸した場合には、均一な延伸が困難となる。そのため、
得られる二延伸フィルムには、厚みムラ及び結晶、非晶
域の偏在等による延伸ムラが生じるものと推定される。
By stretching an unstretched film at a specific temperature, the properties of the uniaxially stretched film obtained change,
This is because the crystallization start temperature of the stretched film shifts to a lower temperature side than the crystallization start temperature of the unstretched film, which facilitates crystallization. When a uniaxially stretched film with advanced crystallization is biaxially stretched, uniform stretching becomes difficult. for that reason,
It is presumed that the obtained two-stretched film has unevenness in thickness and unevenness in stretching due to uneven distribution of crystals and amorphous regions.

【0012】本発明において、一軸延伸フィルムまたは
二軸延伸フィルムのガラス転移温度、結晶化開始温度お
よび融点は、示差熱分析計(DuPont社製、DuP
ont−1090,サーマルアナライザー)を用いて、
昇温速度4℃/min.で測定した。結晶化開始温度と
は、示差熱分析において結晶化による発熱の開始が検知
された温度である。すなわち、示差熱分析におる吸発熱
曲線が、結晶化開始により発熱ピークとして立ち上がり
始める時点の温度である。
In the present invention, the glass transition temperature, the crystallization start temperature and the melting point of the uniaxially stretched film or the biaxially stretched film are determined by a differential thermal analyzer (DuPont, DuP).
ont-1090, thermal analyzer)
Temperature rising rate 4 ° C / min. It was measured at. The crystallization start temperature is the temperature at which the onset of heat generation due to crystallization is detected in the differential thermal analysis. That is, this is the temperature at which the endothermic and exothermic curve in the differential thermal analysis starts rising as an exothermic peak due to the start of crystallization.

【0013】本発明に用いられるポリイミドは、前記式
〔1〕で表される繰り返し構造単位を有する熱可塑性ポ
リイミドである。この熱可塑性ポリイミドはピロメリッ
ト酸二無水物と4,4’−ビス(3−アミノフェノキ
シ)ビフェニルとの重合反応にり得られる式(2)〔化
3〕
The polyimide used in the present invention is a thermoplastic polyimide having a repeating structural unit represented by the above formula [1]. This thermoplastic polyimide has the formula (2) [Chemical Formula 3] obtained by the polymerization reaction of pyromellitic dianhydride and 4,4′-bis (3-aminophenoxy) biphenyl.

【0014】[0014]

【化3】 で表されるポリアミド酸をイミド化することによって得
ることができる。
[Chemical 3] It can be obtained by imidizing the polyamic acid represented by

【0015】本発明に用いられるポリイミドは、酸二無
水物としてピロメリット酸二無水物を用いるが、5モル
%未満であれば他の酸二無水物を混合して用いてもよ
い。同様に、ジアミンとして4,4’−ビス(3−アミ
ノフェノキシ)ビフェニルを用いるが、5モル%未満で
あれば他のジアミンを混合して用いてもよい。
As the polyimide used in the present invention, pyromellitic dianhydride is used as the acid dianhydride, but other acid dianhydrides may be mixed and used as long as it is less than 5 mol%. Similarly, 4,4′-bis (3-aminophenoxy) biphenyl is used as the diamine, but other diamines may be mixed and used as long as it is less than 5 mol%.

【0016】ピロメリット酸二無水物以外の酸無水物、
または、4,4’−ビス(3−アミノフェノキシ)ビフ
ェニル以外のジアミンを5モル%以上用いて得られるポ
リイミドは、結晶性が低下し非晶鎖部分が増加するの
で、延伸によって分子配向させても、熱処理による固定
が不充分となり、寸法安定性が低下するので好ましくな
い。
Acid anhydrides other than pyromellitic dianhydride,
Alternatively, a polyimide obtained by using a diamine other than 4,4′-bis (3-aminophenoxy) biphenyl in an amount of 5 mol% or more has a decreased crystallinity and an increased amorphous chain portion, and therefore, is oriented by molecular orientation by stretching. However, fixing by heat treatment becomes insufficient, and dimensional stability decreases, which is not preferable.

【0017】本発明の二軸延伸ポリイミドフィルムは、
上記の反応により得られた熱可塑性ポリイミドを原料と
して用い、先ず、通常行なわれる溶融成形法により非晶
性のフイルムを製造し、これを冷却キャストして未延伸
フィルムを得る。
The biaxially stretched polyimide film of the present invention is
Using the thermoplastic polyimide obtained by the above reaction as a raw material, first, an amorphous film is produced by a usual melt molding method, and this is cooled and cast to obtain an unstretched film.

【0018】本発明の二軸延伸ポリイミドフィルムの延
伸方法は、逐次二軸延伸方法である。未延伸フィルムを
特定の温度において一方向に自由幅または固定幅で特定
倍率で延伸し、得られた一軸延伸フィルムを冷却ロール
等に密着させて特定の温度に急冷する。
The method for stretching the biaxially stretched polyimide film of the present invention is a sequential biaxial stretching method. The unstretched film is stretched in one direction at a specific ratio with a free width or a fixed width, and the obtained uniaxially stretched film is brought into close contact with a cooling roll or the like and rapidly cooled to a specific temperature.

【0019】次いで、特定の温度において該延伸方向と
直角をなす方向に特定倍率で延伸し、二軸延伸フィルム
とする。更に、得られた二軸延伸フィルムを特定の温度
において熱処理して結晶化せしめて逐次二軸延伸フィル
ムを得る。
Then, at a specific temperature, the film is stretched at a specific ratio in a direction perpendicular to the stretching direction to obtain a biaxially stretched film. Further, the obtained biaxially stretched film is heat-treated at a specific temperature to be crystallized to successively obtain a biaxially stretched film.

【0020】一軸目の延伸の後、得られた一軸延伸フィ
ルムを急冷する温度は、0℃〜(該一軸延伸フィルムの
ガラス転移点温度(Tg)−100)℃の温度範囲、好
ましくは室温〜50℃の温度範囲であり、また、一軸延
伸フィルムを冷却ロールに密着させるまでの時間は10
秒以下であることが望ましい。冷却温度が(該一軸延伸
フィルムのガラス転移点温度(Tg)−100)℃を越
えると、一軸延伸フィルムの結晶化が促進され、二軸目
の延伸を均一延伸とし難くなり、二軸目の延伸倍率の調
整が難しくなり、縦横の物性バランスの良好な二軸延伸
フィルムが得られないので好ましくない。また、0℃未
満であると冷却ロールに接近している延伸ロール等の温
度を低下させることがあり、一軸延伸フィルムが白化す
る等して好ましくない。
After the uniaxial stretching, the temperature at which the obtained uniaxially stretched film is rapidly cooled is in the temperature range of 0 ° C to (glass transition temperature (Tg) -100 of the uniaxially stretched film), preferably room temperature to The temperature range is 50 ° C., and the time until the uniaxially stretched film is brought into close contact with the cooling roll is 10
It is desirable to be less than a second. When the cooling temperature exceeds (the glass transition temperature (Tg) -100 of the uniaxially stretched film) ° C., crystallization of the uniaxially stretched film is promoted, and it becomes difficult to uniformly stretch the biaxially stretched film. It is not preferable because it becomes difficult to adjust the stretching ratio and a biaxially stretched film having a good balance of physical properties in length and width cannot be obtained. Further, if the temperature is lower than 0 ° C., the temperature of the stretching roll or the like close to the cooling roll may be lowered, and the uniaxially stretched film may be whitened, which is not preferable.

【0021】一軸延伸フィルムを冷却ロールに密着させ
るまでの所用時間は、10秒未満が良く、10秒を越え
ると結晶化が促進されることになるので好ましくない。
冷却ロールとは、一軸延伸フィルムを走行させ、かつ、
冷却する公知のロールであり、一軸延伸フィルムが接触
する表面温度及び表面形状ができるだけ均一なロールが
好ましい。該冷却ロールの周速度は、1〜40m/mi
n.の範囲にあることが好ましい。尚、冷却ロールを用
いて冷却する代わりに冷風を用いて冷却してもよい。ま
たは、それらを併用して冷却してもよい。また、バッチ
式延伸機を用いる場合は、ドライアイス等を用いて急冷
することもできる。
The time required until the uniaxially stretched film is brought into close contact with the cooling roll is preferably less than 10 seconds, and if it exceeds 10 seconds, crystallization is promoted, which is not preferable.
With a cooling roll, a uniaxially stretched film is run, and
It is a known roll for cooling, and a roll whose surface temperature and surface shape with which the uniaxially stretched film comes into contact is as uniform as possible is preferable. The peripheral speed of the cooling roll is 1 to 40 m / mi.
n. It is preferably in the range of. Note that instead of using the cooling roll, cooling may be performed using cold air. Alternatively, they may be used together for cooling. Further, when using a batch type stretching machine, it is also possible to quench using dry ice or the like.

【0022】逐次二軸延伸を行なう具体的条件は、一軸
目の延伸温度が、240〜300℃、好ましくは250
℃〜290℃の温度範囲であり、一方向に1.5〜4.
0倍に延伸する。
Specific conditions for carrying out the successive biaxial stretching are that the stretching temperature of the first axis is 240 to 300 ° C., preferably 250.
C. to 290.degree. C., in one direction 1.5 to 4.
Stretch to 0 times.

【0023】二軸目の延伸は、(一軸延伸フィルムのガ
ラス転移温度+5)℃〜(一軸延伸フィルムの結晶化開
始温度+5)℃の温度において、好ましくは260〜2
80℃の温度範囲において、一軸目の延伸方向と直角方
向に1.5〜5倍に延伸する。(一軸延伸フィルムのガ
ラス転移温度+5)℃未満で延伸すると非常に大きな応
力がかかり、白化及び破れの原因となり、(一軸延伸フ
ィルムの結晶化開始温度+5)℃を越えるとフィルム内
に微結晶ができ、延伸ムラの原因となるので好ましくな
い。この時、一軸目および二軸目における予熱時間は3
0秒〜10分とする。30秒未満であるとフィルム全体
が延伸温度に達せず、フィルムが白化する等の原因とな
り、また、10分を越えると微結晶が発生し、延伸ムラ
の原因となるので好ましくない。延伸速度は1〜10
0,000%/minの範囲が好ましい。
The biaxial stretching is carried out at a temperature of (glass transition temperature of uniaxially stretched film + 5) ° C. to (crystallization start temperature of uniaxially stretched film + 5) ° C., preferably 260 to 2
In the temperature range of 80 ° C., stretching is performed 1.5 to 5 times in the direction perpendicular to the stretching direction of the first axis. Stretching at less than (glass transition temperature of uniaxially-stretched film +5) ° C causes extremely large stress, which causes whitening and breakage. When it exceeds (crystallization initiation temperature of uniaxially-stretched film +5) ° C, fine crystals are formed in the film. However, it is not preferable because it can cause stretching unevenness. At this time, the preheating time on the first and second axes is 3
0 seconds to 10 minutes. If the time is less than 30 seconds, the entire film will not reach the stretching temperature and the film will be whitened, and if it exceeds 10 minutes, fine crystals will be generated, which will cause uneven stretching, which is not preferable. Stretching speed is 1-10
The range of 0000% / min is preferable.

【0024】延伸する手段としては、一対以上のロール
群を用いて延伸する方法、テンターを用いて延伸する方
法、ロールを用いた圧延による延伸方法等の従来公知の
方法を用いることができる。
As a means for stretching, conventionally known methods such as a method of stretching using a pair of rolls, a method of stretching with a tenter, and a method of stretching by rolling with rolls can be used.

【0025】また、二軸目の延伸の後、得られた二軸延
伸フィルムを250℃〜二軸延伸フィルムの融点、好ま
しくは270〜370℃の温度範囲において、1〜50
00秒間熱処理して結晶化せしめることにより、得られ
た逐次二軸延伸フィルムの機械的性質および寸法安定性
を向上させることができる。
Further, after the biaxial stretching, the obtained biaxially stretched film has a temperature of 250 ° C. to the melting point of the biaxially stretched film, preferably 270 to 370 ° C. in the temperature range of 1 to 50.
By heat-treating for 00 seconds for crystallization, the mechanical properties and dimensional stability of the obtained biaxially stretched film can be improved.

【0026】本発明におけるフィルムの厚さは用途によ
り異なり、特に限定しないが、通常0.1μm以上、5
mm未満である。
The thickness of the film in the present invention varies depending on the application and is not particularly limited, but is usually 0.1 μm or more, 5
It is less than mm.

【0027】以下、実施例により本発明を更に詳しく説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0028】[0028]

【実施例】実施例において記述したポリイミドの特性値
の測定法を以下に示す。
EXAMPLES The method for measuring the characteristic values of the polyimide described in the examples is shown below.

【0029】(1)ガラス転移温度 示差熱分析計(DuPont社製、DuPont−10
90,サーマルアナライザー)を用いて、4℃/mi
n.の昇温速度で測定した。
(1) Glass transition temperature Differential thermal analyzer (DuPont-10 manufactured by DuPont)
90, thermal analyzer), 4 ° C / mi
n. It was measured at a temperature rising rate of.

【0030】(2)引張試験 ASTM D−882に準じて、23℃において、試料
のX方向( 溶融成形法のフィルムの流れ方向) 、Y方向
( フィルム面内のX方向と直角方向)について、それぞ
れ引張試験を行い、破断強度,破断伸度および初期弾性
率を測定した。
(2) Tensile test According to ASTM D-882, at 23 ° C., the X direction of the sample (the flow direction of the film in the melt molding method), the Y direction
Tensile tests were carried out (in the direction perpendicular to the X direction in the film plane), and the breaking strength, breaking elongation and initial elastic modulus were measured.

【0031】(3)加熱収縮率 JIS C−2318に準じ、260℃において、2時
間加熱後の収縮率を測定した。
(3) Heat Shrinkage According to JIS C-2318, the shrinkage after heating at 260 ° C. for 2 hours was measured.

【0032】(4)ハンダ耐熱性 試料を260℃のハンダ浴の表面に30秒間浮遊させ、
変形が無ければ○、少し変形したものは△、変形したも
のは×と表示した。
(4) Solder heat resistance The sample was floated on the surface of a solder bath at 260 ° C. for 30 seconds,
If there is no deformation, it is indicated as O, slightly deformed as Δ, and deformed as X.

【0033】未延伸フイルムの製造例 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4,4’−ビス(3−アミノフェノキシ)ビフ
ェニル368.4g(1モル)とN,N−ジメチルアセ
トアミド2,500gを装入し、窒素雰囲気下に、ピロ
メリット酸二無水物213.7g(0.98モル)を溶
液温度の上昇に注意しながら分割して加え、さらに、無
水フタル酸5.92g(0.04モル)を加えて室温で
約20時間かきまぜ、次いで、30.3g(0.3モ
ル)のトリエチルアミンおよび304.6g(0.3モ
ル)の無水酢酸を約30分かけて添加し、その後、30
分かき混ぜた。
Production Example of Unstretched Film In a reaction vessel equipped with a stirrer, a reflux condenser and a nitrogen introducing tube, 368.4 g (1 mol) of 4,4′-bis (3-aminophenoxy) biphenyl and N, N were added. -Introducing 2,500 g of dimethylacetamide, adding 213.7 g (0.98 mol) of pyromellitic dianhydride in portions under nitrogen atmosphere while paying attention to the rise of the solution temperature, and further adding phthalic anhydride. Add 5.92 g (0.04 mol) and stir at room temperature for about 20 hours, then add 30.3 g (0.3 mol) triethylamine and 304.6 g (0.3 mol) acetic anhydride over about 30 minutes. And then add 30
Stirred.

【0034】この溶液に2500gのメタノールを挿入
し、30℃においてポリイミド粉を濾別した。得られた
ポリイミド粉をメタノールおよびアセトンで洗浄した
後、窒素雰囲気下に、300℃で8時間乾燥して、52
8g(収率96%)のポリイミド粉を得た。
2500 g of methanol was inserted into this solution, and the polyimide powder was filtered off at 30 ° C. After washing the obtained polyimide powder with methanol and acetone, it was dried at 300 ° C. for 8 hours in a nitrogen atmosphere,
8 g (96% yield) of polyimide powder was obtained.

【0035】得られたポリイミド粉を180℃で24時
間乾燥し、25mmベント式押出機により、410℃で
溶融し、直径2mmのノズルより押出し、自然冷却によ
り径約1.8mmのストランドを得た。これを長手方向
に約3mmに切断しペレットを得た。
The obtained polyimide powder was dried at 180 ° C. for 24 hours, melted at 410 ° C. by a 25 mm vent type extruder, extruded from a nozzle having a diameter of 2 mm, and naturally cooled to obtain a strand having a diameter of about 1.8 mm. .. This was cut into about 3 mm in the longitudinal direction to obtain pellets.

【0036】このペレットを180℃で24時間乾燥
し、25mm押出機に供給し、410℃で加熱溶融し、
幅150mmのスリットダイ(隙間1.0mm)から押
出し、220℃のロールで引き取り厚さ約100μmの
フィルムを得た。
The pellets were dried at 180 ° C. for 24 hours, fed to a 25 mm extruder, heated and melted at 410 ° C.,
It was extruded from a slit die having a width of 150 mm (gap of 1.0 mm) and taken out by a roll at 220 ° C. to obtain a film having a thickness of about 100 μm.

【0037】実施例1〜2 未延伸フイルム(大きさ20cm角)の両端をストレッ
チャー (岩本製作所製、高温型バッチ式延伸機)に固定
して装着し、〔表1〕に示す条件下でX方向(溶融押出
法のフィルムの流れ方向とする)に所定倍率に延伸した
後、フイルムを装着した状態で、ドライアイスを用いて
フィルムを直ちに30℃に急冷した。一旦、フィルムを
外して10cm角に切り出し、両方向を固定して〔表
1〕に示す条件下でY方向(フィルム面内のX方向と直
角方向)に所定倍率で延伸を行った。さらに、該フィル
ムを装着した状態で310℃で10分間熱処理した。
Examples 1 and 2 Both ends of an unstretched film (20 cm square size) were fixed and mounted on a stretcher (high temperature batch stretching machine manufactured by Iwamoto Seisakusho) under the conditions shown in [Table 1]. The film was stretched to a predetermined ratio in the X direction (which is the flow direction of the film in the melt extrusion method), and then the film was immediately cooled to 30 ° C. using dry ice with the film attached. The film was once removed, cut into 10 cm square pieces, fixed in both directions, and stretched at a predetermined ratio in the Y direction (the direction perpendicular to the X direction in the film plane) under the conditions shown in [Table 1]. Further, heat treatment was performed at 310 ° C. for 10 minutes with the film attached.

【0038】尚、延伸に先立ち、予め未延伸フィルムに
1cm間隔で縦横に直線をしき、二軸目の延伸が終了し
た時点で、該直線の間隔を測定して、実質延伸倍率を確
認した。その結果、得られた二軸延伸フィルムは全体的
に均一に延伸されており、しかも縦横の延伸倍率バラン
スは良好であった。
Prior to the stretching, straight lines were formed on the unstretched film in the longitudinal and transverse directions at intervals of 1 cm, and when the biaxial stretching was completed, the distance between the straight lines was measured to confirm the substantial stretching ratio. As a result, the obtained biaxially stretched film was stretched uniformly as a whole, and the stretching ratio in the vertical and horizontal directions was good.

【0039】得られた逐次二軸延伸フィルムの物性を前
記方法により評価した。その結果、破断強度、破断伸
度、弾性率および加熱収縮率は、後述する比較例のそれ
らに比べいずれも優れていた。さらに、それらの特性の
縦横の差異は殆ど認められず、縦横の物性バランスの良
好な二軸延伸フィルムであると認められた。得られた結
果を〔表1〕に示す。
The physical properties of the obtained sequential biaxially stretched film were evaluated by the methods described above. As a result, the breaking strength, the breaking elongation, the elastic modulus, and the heat shrinkage ratio were all superior to those of Comparative Examples described later. Further, there was almost no difference in the vertical and horizontal characteristics, and it was confirmed that the film was a biaxially stretched film having a good balance of physical properties in the vertical and horizontal directions. The obtained results are shown in [Table 1].

【0040】[0040]

【表1】 [Table 1]

【0041】比較例1〜3 実施例1において、X方向に延伸して得られた一軸延伸
フィルムを急冷しなかった以外、〔表1〕に示す条件に
したがって実施例1と同様にして二軸延伸フィルムを得
た。
Comparative Examples 1 to 3 Biaxially produced in the same manner as in Example 1 according to the conditions shown in Table 1 except that the uniaxially stretched film obtained by stretching in the X direction was not quenched. A stretched film was obtained.

【0042】比較例1では、二軸目の延伸の際フィルム
が破れた。比較例2および3で得られた二軸延伸フィル
ムは、縦横の物性に大きな差異が認められた。得られた
結果を〔表1〕に示す。
In Comparative Example 1, the film was broken during the biaxial stretching. The biaxially stretched films obtained in Comparative Examples 2 and 3 were found to have a large difference in physical properties in length and width. The obtained results are shown in [Table 1].

【0043】[0043]

【発明の効果】本発明の方法により得られる二軸延伸ポ
リイミドフィルムは、縦横均一に延伸されたフィルムで
あり、破断強度、破断伸度、弾性率および加熱収縮率等
の特性値の縦横の差異が殆どなく、縦横の物性のバラン
スが極めて良好である。さらに、耐熱性、耐薬品性、機
械的性質および寸法安定性にも優れるため、電線被覆
材、モーターまたはトランス等のライナー用絶縁材、フ
レキシブルプリント回路基板、コンデンサー資材等の電
気、電子工業用部品、または、記録媒体ベースフィルム
等の精密部品の資材として有用である。
The biaxially stretched polyimide film obtained by the method of the present invention is a film stretched uniformly in the machine and transverse directions, and the longitudinal and transverse differences in the characteristic values such as breaking strength, breaking elongation, elastic modulus and heat shrinkage ratio. There is almost no difference, and the balance of physical properties in the vertical and horizontal directions is extremely good. Furthermore, since it has excellent heat resistance, chemical resistance, mechanical properties and dimensional stability, it is used for electrical and electronic industries such as wire coating materials, insulation materials for liners such as motors and transformers, flexible printed circuit boards, capacitor materials, etc. Alternatively, it is useful as a material for precision parts such as a recording medium base film.

フロントページの続き (72)発明者 岡田 一成 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 勝山 仁之 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内Front Page Continuation (72) Inventor Issei Okada 2-1-1, Tango-dori, Minami-ku, Nagoya-shi, Aichi Mitsui Toatsu Chemicals, Inc. (72) Inventor Yoshiyuki Katsuyama 2-1-1, Tango-dori, Minami-ku, Aichi Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 式(1)〔化1〕 【化1】 で表される繰り返し構造単位を有する熱可塑性ポリイミ
ドからなる未延伸フィルムを逐次二軸延伸するに際し、
該未延伸フィルムを240〜300℃において一方向に
1.5〜4倍延伸し、得られた一軸延伸フィルムを0〜
(該一軸延伸フィルムのガラス転移点温度−100)℃
の温度に急冷し、次いで、(該一軸延伸フィルムのガラ
ス転移温度+5)〜(該一軸延伸フィルムの結晶化開始
温度+5)℃の温度において該延伸方向と直角方向に
1.5〜5倍延伸し、さらに、得られた二軸延伸フィル
ムを250〜(該二軸延伸フィルムの融点)℃の温度に
おいて熱処理することを特徴とする二軸延伸ポリイミド
フィルムの製造方法。
1. Formula (1) [Chemical Formula 1] When sequentially biaxially stretching an unstretched film made of a thermoplastic polyimide having a repeating structural unit represented by,
The unstretched film was stretched at a temperature of 240 to 300 ° C. in one direction by 1.5 to 4 times, and the obtained uniaxially stretched film was 0 to
(Glass transition temperature of the uniaxially stretched film −100) ° C.
And then drawn at a temperature of (glass transition temperature of the uniaxially stretched film +5) to (crystallization start temperature of the uniaxially stretched film +5) ° C. in the direction perpendicular to the stretching direction by 1.5 to 5 times. Then, the obtained biaxially stretched film is further heat-treated at a temperature of 250 to (melting point of the biaxially stretched film) ° C., a method for producing a biaxially stretched polyimide film.
【請求項2】 請求項1記載の製造方法により製造され
た二軸延伸ポリイミドフィルムであって、下記(イ)お
よび(ロ)の特性を有する二軸延伸ポリイミドフィル
ム。 (イ)ASTM D−882に規定された方法により、
23℃において測定された破断強度、破断伸度および弾
性率の縦横の差異が5%以内である二軸延伸ポリイミド
フィルム。 (ロ)JIS C−2318に規定された方法により、
260℃において2時間加熱した時の収縮率の縦横の差
異が5%以内である二軸延伸ポリイミドフィルム。
2. A biaxially stretched polyimide film produced by the production method according to claim 1, which has the following characteristics (a) and (b). (B) By the method specified in ASTM D-882,
A biaxially stretched polyimide film having a breaking strength, a breaking elongation, and an elastic modulus measured at 23 ° C, which are within 5% in length and width. (B) By the method specified in JIS C-2318,
A biaxially stretched polyimide film having a longitudinal and lateral difference in shrinkage of 5% or less when heated at 260 ° C. for 2 hours.
JP32291491A 1991-12-06 1991-12-06 Biaxially stretched polyimide film and manufacture thereof Pending JPH05154909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32291491A JPH05154909A (en) 1991-12-06 1991-12-06 Biaxially stretched polyimide film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32291491A JPH05154909A (en) 1991-12-06 1991-12-06 Biaxially stretched polyimide film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05154909A true JPH05154909A (en) 1993-06-22

Family

ID=18149038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32291491A Pending JPH05154909A (en) 1991-12-06 1991-12-06 Biaxially stretched polyimide film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05154909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU695866B2 (en) * 1996-06-10 1998-08-27 Howmedica Osteonics Corp. High strength internal bone fixation devices and process for forming same
JP2001106984A (en) * 1999-10-01 2001-04-17 Nitto Denko Corp Adhesive film or sheet for detection of local displacement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU695866B2 (en) * 1996-06-10 1998-08-27 Howmedica Osteonics Corp. High strength internal bone fixation devices and process for forming same
JP2001106984A (en) * 1999-10-01 2001-04-17 Nitto Denko Corp Adhesive film or sheet for detection of local displacement

Similar Documents

Publication Publication Date Title
US5260407A (en) Polyimide film and preparation process of the film
CN1332999C (en) Polyimide film and process for producing the same
US4470944A (en) Process for producing an aromatic polyimide film
CN100343313C (en) Method of making liquid crystal polymer films
JP5819459B2 (en) Polyimide film
JPS61264028A (en) Polyimide film having high dimensional stability and production thereof
JP2003165850A (en) Polyimide film and method for producing the same
JP5280889B2 (en) Method for producing aromatic polyamide
JPH11323127A (en) Polyimide mixture and production of polyimide mixture film
CA2406723C (en) Polyimide film and production process thereof
JP2011131591A (en) Polyimide film
JP2000085007A (en) Biaxially oriented polyimide film and its production
JPH05169526A (en) Thermal treatment of thermoplastic polyimide stretched film
JPH0565535B2 (en)
WO1991009900A1 (en) Polyimide molding
JPH05154909A (en) Biaxially stretched polyimide film and manufacture thereof
US5069848A (en) Extrusion process of polyimide and polyimide pellet used for the process
JP3947994B2 (en) Polyimide film, its production method and use
JP5754692B2 (en) Method for producing polyimide film
JP2003145561A (en) Method for producing polyimide film
JP2003073473A (en) Polyimide film, production method therefor and use thereof
JP2903704B2 (en) Manufacturing method of aromatic polyimide film
US5237044A (en) Polyimide sheet and preparation process of the sheet
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
CN115667379A (en) Resin film and method for producing resin film