JP2003020349A - Polyamide film and its production method - Google Patents

Polyamide film and its production method

Info

Publication number
JP2003020349A
JP2003020349A JP2001208710A JP2001208710A JP2003020349A JP 2003020349 A JP2003020349 A JP 2003020349A JP 2001208710 A JP2001208710 A JP 2001208710A JP 2001208710 A JP2001208710 A JP 2001208710A JP 2003020349 A JP2003020349 A JP 2003020349A
Authority
JP
Japan
Prior art keywords
film
polyamide
temperature
stretching
polyamide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001208710A
Other languages
Japanese (ja)
Other versions
JP4889164B2 (en
Inventor
Kenichi Yamagishi
健一 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2001208710A priority Critical patent/JP4889164B2/en
Publication of JP2003020349A publication Critical patent/JP2003020349A/en
Application granted granted Critical
Publication of JP4889164B2 publication Critical patent/JP4889164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyamide film which exhibits a low moisture-absorption elongation in a high-humidity atmosphere and is excellent in clarity; and a production method for the film. SOLUTION: A resin composition comprising 99.9-99.0 mass% polyamide resin and 0.1-1.0 mass% layered silicate homogeneously dispersed therein is melt-formed into an unstretched film, which is subjected to successive or simultaneous biaxial stretching; thus is prepared a polyamide film of which the moisture-absorption elongation in the transverse direction after the change of atmospheric humidity at 20 deg.C from 40%RH to 80%RH is 1.3% or lower and which has a haze of 5.0% or lower and a plane orientation coefficient of 0.05 or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリアミドフィル
ム及びその製造方法に関するものである。特に、高湿度
雰囲気下での吸湿伸び率が低く、透明性や機械的強力に
優れたポリアミドフィルムおよびその製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a polyamide film and a method for producing the same. In particular, the present invention relates to a polyamide film having a low hygroscopic elongation in a high humidity atmosphere, excellent transparency and mechanical strength, and a method for producing the same.

【0002】[0002]

【従来の技術】二軸延伸ポリアミドフィルムは、機械的
特性、光学的特性、熱的特性、ガスバリヤー性をはじめ
として、耐衝撃性、耐磨耗性、耐ピンホール性などに優
れていることから、食品などの包装材料用フィルムとし
て広く利用されている。ポリアミドフィルムは単体フィ
ルムで使用されることはほとんどなく、通常は、印刷や
ラミネート加工が施されて使用される。
2. Description of the Related Art Biaxially stretched polyamide films are excellent in impact resistance, abrasion resistance, pinhole resistance, etc., including mechanical properties, optical properties, thermal properties and gas barrier properties. Therefore, it is widely used as a film for packaging materials such as foods. The polyamide film is rarely used as a single film, and is usually used after being printed or laminated.

【0003】ところで、ポリアミドフィルムは、ポリア
ミド樹脂の分子構造上、吸湿性が高いため、吸湿による
寸法変化、いわゆる「吸湿伸び」が発生しやすく、フィ
ルムの加工においては、特に横方向(TD方向)の吸湿
伸びが発生しやすい。このような吸湿伸びが発生する
と、製品の表層に吸湿シワが多く入って表層部が使い物
にならなくなるため、巻長さを長めにする、いわゆる
「入り目」を多くとる必要が生じ、コスト高となる。ま
た、製品に多段印刷を施す場合には、吸湿による寸法変
化が大きいと、印刷した図柄がずれる「印刷ピッチず
れ」と呼ばれる現象が生じやすいという問題がある。
By the way, since the polyamide film has a high hygroscopic property due to the molecular structure of the polyamide resin, a dimensional change due to moisture absorption, so-called "hygroscopic elongation" is likely to occur, and in the processing of the film, especially in the lateral direction (TD direction). The hygroscopic elongation of is likely to occur. When such hygroscopic elongation occurs, many hygroscopic wrinkles are contained in the surface layer of the product and the surface layer becomes unusable.Therefore, it is necessary to lengthen the winding length, that is, to increase the so-called "entrance", which results in high cost. Becomes Further, when multi-step printing is performed on a product, if the dimensional change due to moisture absorption is large, there is a problem that a phenomenon called "print pitch shift" in which printed patterns are displaced is likely to occur.

【0004】また、このような印刷フィルムには、通
常、製袋などのためにラミネート加工が施されるが、印
刷直後にラミネート加工を施すことは作業都合上ほとん
ど行われず、印刷後しばらく放置した後、ラミネート加
工を施すことが一般的である。そのため、放置中に過度
の吸湿伸びが発生して、ドライラミネートの場合には、
接着剤をグラビアロール等で塗布する際に、所望する幅
を塗布できなくなるなどのトラブルが生じる。
Further, such a printing film is usually laminated for bag making and the like, but it is rarely done immediately after printing for convenience of work, and it is left for a while after printing. After that, a laminating process is generally performed. Therefore, excessive hygroscopic elongation occurs during leaving, and in the case of dry lamination,
When the adhesive is applied with a gravure roll or the like, a problem occurs such that a desired width cannot be applied.

【0005】吸湿伸びを制御する方法として、例えば、
特開平8−197619号公報には、無定形の未延伸ポ
リアミドフィルムを逐次二軸延伸する際に、2段分割に
てMD(縦)延伸したあとTD(横)延伸し、かつその
温度を制御して延伸応力を低下させ、吸湿による図柄歪
みを低減する方法が提案されている。しかし、この方法
では、逐次二軸延伸した後に行われる熱処理する際にリ
ラックス率が大きくなり、やはり最終的には、吸湿伸び
が大きくなるという問題がある。
As a method for controlling the moisture absorption elongation, for example,
Japanese Unexamined Patent Publication No. 8-197619 discloses that when an amorphous unstretched polyamide film is sequentially biaxially stretched, it is MD (longitudinal) stretched in two steps and then TD (transverse) stretched, and its temperature is controlled. Then, a method of reducing the drawing stress and reducing the pattern distortion due to moisture absorption has been proposed. However, this method has a problem that the relaxation rate becomes large during the heat treatment performed after the successive biaxial stretching, and finally the hygroscopic elongation also becomes large.

【0006】また、特開平4−173229号には、未
延伸ポリアミドフィルムをTD延伸及びMD延伸したあ
と、TDリラックスと熱固定およびMDリラックスと熱
固定を行い、続いて水蒸気下で熱固定を行うという方法
が提案されている。しかし、この方法は工程が複雑で、
安定した品質のポリアミドフィルムが得られないという
問題がある。
Further, in JP-A-4-173229, after unstretched polyamide film is TD stretched and MD stretched, TD relaxing and heat fixing, MD relaxing and heat fixing are performed, and subsequently heat fixing is performed under steam. That method has been proposed. However, this method has complicated steps,
There is a problem that a stable quality polyamide film cannot be obtained.

【0007】このような問題を解決するものとして、特
開2000−26627号などでは、ポリアミド樹脂と
して、脂肪族ポリアミド樹脂よりも比較的、吸湿性の低
い芳香族ポリアミド樹脂を主成分として用いたポリアミ
ドフィルムが提案されているが、現在、2軸延伸フィル
ムとして広く用いられているナイロン6などの脂肪族ポ
リアミドを主成分とする構成では、未だ上記の問題を解
決できるものではない。また、上記のポリアミドフィル
ムは、耐屈曲疲労性などの機械的特性に劣る芳香族ポリ
アミド樹脂を主成分としているため、耐屈曲疲労性改良
剤の配合による改良を施してはいるが、その性能はナイ
ロン6などの脂肪族ポリアミドを主成分とするフィルム
に比較すると明らかに劣るという問題がある。
In order to solve such a problem, in Japanese Patent Laid-Open No. 2000-26627 or the like, a polyamide using as a main component an aromatic polyamide resin having a lower hygroscopicity than an aliphatic polyamide resin is used as a main component. Although a film has been proposed, the above-mentioned problem cannot be solved yet with a structure containing an aliphatic polyamide as a main component such as nylon 6, which is widely used as a biaxially stretched film at present. Further, the above-mentioned polyamide film is mainly composed of an aromatic polyamide resin having poor mechanical properties such as flex fatigue resistance, so that the performance is improved by blending a flex fatigue resistance improver. There is a problem that it is clearly inferior to a film containing an aliphatic polyamide as a main component such as nylon 6.

【0008】[0008]

【発明が解決しようとする課題】本発明は前記問題点を
解決し、高湿度雰囲気下での吸湿伸び率が低く、かつ透
明性や機械的強力に優れたポリアミドフィルムおよびそ
の製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and provides a polyamide film having a low hygroscopic elongation in a high humidity atmosphere, excellent transparency and mechanical strength, and a method for producing the same. It is a thing.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討をした結果、本発明に至った
ものである。すなわち本発明は、ポリアミド樹脂99.
9〜99.0質量%に層状珪酸塩0.1〜1.0質量%
が均一に分散された樹脂組成物からなるフィルムであっ
て、20℃、40%RH雰囲気下から20℃、80%R
H雰囲気下へ湿度変化させたときのTD方向の吸湿伸び
率が1.3%以下であり、ヘーズが5.0%以下であ
り、面配向係数が0.05以上であることを特徴とする
ポリアミドフィルムを要旨とするものである。
The inventors of the present invention have achieved the present invention as a result of extensive studies to solve the above problems. That is, the present invention relates to polyamide resin 99.
Layer silicate 0.1 to 1.0% by mass in 9 to 99.0% by mass
Is a film composed of a resin composition in which are uniformly dispersed, at 20 ° C., 40% RH, and 20 ° C., 80% R
The moisture absorption elongation in the TD direction when the humidity is changed to an H atmosphere is 1.3% or less, the haze is 5.0% or less, and the plane orientation coefficient is 0.05 or more. The main point is a polyamide film.

【0010】このように、ポリアミド樹脂に層状珪酸塩
を所定の割合で均一に分散させて面配向係数を高くする
ことで、機械的強力に優れ、高湿度雰囲気下での吸湿伸
び率の変化が小さく、透明性に優れたポリアミドフィル
ムが得られ、印刷性やラミネート加工性の向上が図れ
る。また、ポリアミド樹脂に層状珪酸塩を分散させて面
配向係数を高くすると、ヘーズが高くなる傾向にある
が、本発明では、下記の製造方法を採用することで、ヘ
ーズを抑えて透明性に優れたポリアミドフィルムを得る
ことができる。
As described above, by uniformly dispersing the layered silicate in the polyamide resin at a predetermined ratio to increase the plane orientation coefficient, the mechanical strength is excellent, and the change in the hygroscopic elongation in a high humidity atmosphere is suppressed. A polyamide film that is small and has excellent transparency can be obtained, and printability and laminating processability can be improved. Further, when the layered silicate is dispersed in the polyamide resin to increase the plane orientation coefficient, the haze tends to increase, but in the present invention, by adopting the following manufacturing method, the haze is suppressed and the transparency is excellent. A polyamide film can be obtained.

【0011】ポリアミド樹脂を二軸延伸する方法として
は、縦方向に延伸処理した後、横方向に延伸処理する逐
次二軸延伸と、縦横同時に延伸処理を行う同時二軸延伸
とがあり、本発明では、逐次二軸延伸と同時二軸延伸と
でその製造条件を異ならせている。
As a method of biaxially stretching a polyamide resin, there are a sequential biaxial stretching in which a longitudinal stretching treatment is performed and then a transverse stretching treatment, and a simultaneous biaxial stretching in which a longitudinal and transverse stretching treatment is simultaneously performed. Then, the manufacturing conditions are made different between the sequential biaxial stretching and the simultaneous biaxial stretching.

【0012】すなわち、逐次二軸延伸する場合には、ポ
リアミド樹脂99.9〜99.0質量%に層状珪酸塩
0.1〜1.0質量%が均一に分散された樹脂組成物を
溶融製膜し、この未延伸フィルムを縦方向に延伸した後
に、横延伸倍率が2倍に至るまではフィルム温度(T
i)をTg≦Ti≦Tcpの範囲とし、横延伸倍率が最
大となる最大延伸倍率点でのフィルム温度(Te)をT
m−70≦Te≦Tmの範囲として横方向に延伸し、こ
の逐次二軸延伸によりフィルム化することを特徴とする
ポリアミドフィルムの製造方法を要旨とするものであ
る。ここで、Tgはポリアミド樹脂のガラス転移温度、
Tcpはポリアミド樹脂の結晶化ピーク温度、Tmはポ
リアミド樹脂の融点である。
That is, in the case of successive biaxial stretching, a resin composition in which 0.1 to 1.0% by mass of layered silicate is uniformly dispersed in 99.9 to 99.0% by mass of polyamide resin is prepared by melting. After film formation and stretching of this unstretched film in the machine direction, the film temperature (T
i) in the range of Tg ≦ Ti ≦ Tcp, and the film temperature (Te) at the maximum stretching ratio point at which the transverse stretching ratio becomes maximum is T
A gist of the method for producing a polyamide film is that the film is stretched in the transverse direction in the range of m-70≤Te≤Tm, and the film is formed by the successive biaxial stretching. Here, Tg is the glass transition temperature of the polyamide resin,
Tcp is the crystallization peak temperature of the polyamide resin, and Tm is the melting point of the polyamide resin.

【0013】また、同時二軸延伸する場合には、ポリア
ミド樹脂99.9〜99.0質量%に層状珪酸塩0.1
〜1.0質量%が均一に分散された樹脂組成物を溶融製
膜し、この未延伸フィルムを、面倍率が4倍に至るまで
はフィルム温度(Ti)をTg≦Ti≦Tcpの範囲と
し、面倍率が最大となる最大延伸倍率点でのフィルム温
度(Te)をTm−70≦Te≦Tmの範囲として同時
二軸延伸し、フィルム化することを特徴とするポリアミ
ドフィルムの製造方法を要旨とするものである。ここ
で、Tgはポリアミド樹脂のガラス転移温度、Tcpは
ポリアミド樹脂の結晶化ピーク温度、Tmはポリアミド
樹脂の融点である。
In the case of simultaneous biaxial stretching, a layered silicate of 0.1 is added to the polyamide resin of 99.9 to 99.0 mass%.
~ 1.0% by mass of the resin composition uniformly dispersed is melt-cast into a film, and the unstretched film has a film temperature (Ti) within a range of Tg ≤ Ti ≤ Tcp until the surface magnification reaches 4 times. The method for producing a polyamide film is characterized in that the film temperature (Te) at the maximum draw ratio point at which the areal magnification becomes maximum is Tm-70 ≤ Te ≤ Tm, and the film is simultaneously biaxially drawn to form a film. It is what Here, Tg is the glass transition temperature of the polyamide resin, Tcp is the crystallization peak temperature of the polyamide resin, and Tm is the melting point of the polyamide resin.

【0014】このように、層状珪酸塩を特定の比率で配
合したポリアミド樹脂組成物を特定の条件下で逐次延伸
あるいは同時二軸延伸することにより、高湿度雰囲気下
での吸湿伸び率を抑え、機械的強力が高く、かつ透明性
に優れたポリアミドフィルムを容易に製造することがで
きる。
As described above, the polyamide resin composition containing the layered silicate in a specific ratio is sequentially or biaxially stretched under specific conditions to suppress the hygroscopic elongation in a high humidity atmosphere, A polyamide film having high mechanical strength and excellent transparency can be easily manufactured.

【0015】[0015]

【発明の実施の形態】本発明のポリアミドフィルムは、
ポリアミド樹脂99.9〜99.0質量%に層状珪酸塩
0.1〜1.0質量%が均一に分散された樹脂組成物か
らなる必要がある。層状珪酸塩の配合割合が0.1質量
%より少なくなると、得られたフィルムは、吸湿伸び率
が大きく、寸法安定性に劣るものとなる。また、層状珪
酸塩の配合割合が1.0質量%より多くなると、フィル
ムのヘーズが高くなり、透明性に劣るものとなる。特に
本発明のように面配向係数を高くしてフィルムの強度性
能を良くする場合には、この配合割合が重要な要件とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The polyamide film of the present invention is
It is necessary for the resin composition to have a layered silicate of 0.1 to 1.0% by mass uniformly dispersed in a polyamide resin of 99.9 to 99.0% by mass. When the blending ratio of the layered silicate is less than 0.1% by mass, the obtained film has a high hygroscopic elongation and poor dimensional stability. Further, when the mixing ratio of the layered silicate is more than 1.0% by mass, the haze of the film becomes high and the transparency becomes poor. In particular, when the surface orientation coefficient is increased to improve the strength performance of the film as in the present invention, this blending ratio is an important requirement.

【0016】また、この樹脂組成物からなるフィルム
は、20℃、40%RH雰囲気下から20℃、80%R
H雰囲気下へ湿度変化させたときのTD方向の吸湿伸び
率が1.3%以下である必要がある。このように湿度変
化させたときのTD方向の吸湿伸び率が1.3%を超え
ると、このフィルムに印刷を施す際に印刷ピッチずれが
生じて印刷性に劣るものとなり、さらにフィルムが吸湿
して寸法変化が生じやすくなるため、良好なラミネート
加工が行えなくなる。
A film made of this resin composition can be used at 20 ° C. and 80% R under 20 ° C. and 40% RH atmosphere.
It is necessary that the hygroscopic elongation in the TD direction is 1.3% or less when the humidity is changed to the H atmosphere. When the hygroscopic elongation in the TD direction when the humidity is changed exceeds 1.3% in this way, a print pitch shift occurs during printing of this film, resulting in poor printability. As a result, dimensional change easily occurs, and good lamination cannot be performed.

【0017】また、本発明のポリアミドフィルムは、面
配向係数が0.05以上である必要がある。面配向係数
は、フィルムの機械的強力に影響を与えるものであり、
本発明のように面配向係数を0.05以上とすること
で、従来より包装用途などとして市販されているポリア
ミド2軸延伸フィルムと同等以上の強度性能、具体的に
は、厚み15μmの延伸フィルムである場合に、突刺強
力で10N以上の強力を付与することができる。面配向
係数が0.05未満であると、機械的強力に劣るものと
なり、包装用途などに使用した場合に破袋などのトラブ
ルが発生しやすく、実使用に適さなくなる。従って、面
配向係数は、0.055以上とすることがより好まし
い。この面配向係数を0.05以上にするためには、後
述のように、上記の樹脂組成物を溶融して作成した未延
伸フィルムを延伸処理する場合に、その延伸倍率を面倍
率で9倍以上となるようにする必要がある。これは逐次
二軸延伸、同時二軸延伸のいずれの場合についても同様
である。
The polyamide film of the present invention must have a plane orientation coefficient of 0.05 or more. The plane orientation coefficient affects the mechanical strength of the film,
By setting the plane orientation coefficient to be 0.05 or more as in the present invention, the strength performance is equal to or more than that of a polyamide biaxially stretched film which has been conventionally marketed for packaging and the like, specifically, a stretched film having a thickness of 15 μm. In the case of, it is possible to give a puncture strength of 10 N or more. If the plane orientation coefficient is less than 0.05, the mechanical strength is inferior, and problems such as bag breakage are likely to occur when used for packaging applications, making it unsuitable for actual use. Therefore, the plane orientation coefficient is more preferably 0.055 or more. In order to make the plane orientation coefficient of 0.05 or more, as described later, when the unstretched film prepared by melting the above resin composition is stretched, the stretching ratio is 9 times in terms of the surface magnification. It is necessary to make it above. This is the same for both sequential biaxial stretching and simultaneous biaxial stretching.

【0018】また、本発明のポリアミドフィルムは、ヘ
ーズが5.0%以下であることが必要である。ヘーズが
5.0%を超えると、フィルムの透明性が悪くなり、印
刷の見栄えが劣るものとなる。通常、フィルムには滑り
性が求められるため、シリカなどの微粒子を添加するこ
とから、フィルムのヘーズは3〜5%レベルの範囲にあ
るのが一般的である。これらの微粒子を添加しなけれ
ば、よりヘーズを低くすることが可能であるが、滑り性
が悪くなり、印刷、ラミネートなどの加工ができなくな
る。また、本発明のように層状珪酸塩を添加し、かつ、
面配向係数を高くした場合の透明性の悪化は、不均一な
ボイド形成によるものであるので、シリカなどの滑剤添
加による透明性の悪化とは異なり、著しい外観不良(不
均一感)が生じることとなる。なお、特殊な装飾上の要
求から、白色顔料などの無機物や他のポリマーを配合さ
せ、意図してフィルムの透明性を悪くする場合は、この
限りでない。
Further, the polyamide film of the present invention must have a haze of 5.0% or less. When the haze exceeds 5.0%, the transparency of the film is deteriorated and the appearance of printing is deteriorated. Usually, since the film is required to have slipperiness, the haze of the film is generally in the range of 3 to 5% because fine particles such as silica are added. If these fine particles are not added, the haze can be made lower, but the slipperiness deteriorates, and processing such as printing and laminating becomes impossible. Further, as in the present invention, a layered silicate is added, and
The deterioration of transparency when the surface orientation coefficient is increased is due to non-uniform void formation, so unlike the deterioration of transparency due to the addition of a lubricant such as silica, a remarkable poor appearance (unevenness) may occur. Becomes Note that this is not the case when an inorganic substance such as a white pigment or another polymer is mixed to intentionally deteriorate the transparency of the film due to special decorative requirements.

【0019】本発明のポリアミドフィルムを構成するポ
リアミド樹脂としては、脂肪族ポリアミドを主成分とす
るものが好適に使用できる。脂肪族ポリアミドとして
は、3員環以上のラクタム、重合可能なω−アミノ酸、
二塩基酸とジアミンなどの重縮合によって得られるポリ
アミド樹脂、具体的には、ε−カプロラクタム、アミノ
カプロン酸、エナントラクタム、7−アミノヘプタン
酸、11−アミノウンデカン酸、9−アミノノナン酸、
α−ピロリドン、α−ピペリドンなどの重合体、ヘキサ
メチレンジアミン、ノナメチレンジアミン、ウンデカメ
チレンジアミン、ドデカメチレンジアミンなどのジアミ
ンと、アジピン酸、セバチン酸、ドデカン二塩基酸、グ
ルタール酸などのジカルボン酸との塩を重縮合させて得
られる重合体またはこれらの共重合体が挙げられ、中で
もナイロン4、ナイロン6、ナイロン7、ナイロン8、
ナイロン11、ナイロン12、ナイロン66、ナイロン
610、ナイロン611、ナイロン612、ナイロン6
/66、ナイロン6/12等が好適に使用でき、特に、
機械的特性や熱的特性に優れることから、ナイロン6や
ナイロン66を主成分とする重合体がより好適に使用で
き、ナイロン6が最適である。なお、本発明の効果を大
きく損なわない限りにおいて、メタキシリレンジアミ
ン、テレフタル酸、イソフタル酸などの芳香族成分を共
重合したり、ナイロン6T、ナイロン6/6T、ナイロ
ン6I/6T等の芳香族ポリアミドを添加しても良い。
As the polyamide resin constituting the polyamide film of the present invention, those containing an aliphatic polyamide as a main component can be preferably used. As the aliphatic polyamide, a lactam having three or more members, a polymerizable ω-amino acid,
Polyamide resin obtained by polycondensation of dibasic acid and diamine, specifically, ε-caprolactam, aminocaproic acid, enanthlactam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid,
Polymers such as α-pyrrolidone and α-piperidone, diamines such as hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, and dodecamethylenediamine, and dicarboxylic acids such as adipic acid, sebacic acid, dodecane dibasic acid, and glutaric acid. Examples thereof include polymers obtained by polycondensing a salt of with or copolymers thereof. Among them, nylon 4, nylon 6, nylon 7, nylon 8,
Nylon 11, Nylon 12, Nylon 66, Nylon 610, Nylon 611, Nylon 612, Nylon 6
/ 66, nylon 6/12 and the like can be preferably used, and in particular,
A polymer containing nylon 6 or nylon 66 as a main component can be more preferably used because of its excellent mechanical properties and thermal properties, and nylon 6 is most suitable. As long as the effects of the present invention are not significantly impaired, aromatic components such as metaxylylenediamine, terephthalic acid and isophthalic acid are copolymerized, and aromatic compounds such as nylon 6T, nylon 6 / 6T and nylon 6I / 6T are used. Polyamide may be added.

【0020】ポリアミド樹脂の相対粘度は特に限定され
ないが、溶媒として98質量%濃硫酸を用い、温度25
℃、濃度1g/dlの条件で測定された相対粘度が1.
5〜5.0の範囲にあるものが好ましい。相対粘度が
1.5未満のものでは、フィルムの機械的性能が低下
し、相対粘度が5.0を超えるものでは、製膜性が低下
する。
The relative viscosity of the polyamide resin is not particularly limited, but 98% by mass concentrated sulfuric acid is used as a solvent, and the temperature is 25
The relative viscosity measured under the conditions of 1 ° C. and a concentration of 1 g / dl is 1.
Those in the range of 5 to 5.0 are preferable. When the relative viscosity is less than 1.5, the mechanical performance of the film is lowered, and when the relative viscosity is more than 5.0, the film formability is lowered.

【0021】本発明で使用される層状珪酸塩としては、
モンモリロナイト、バイデライト、サポナイト、ノント
ロライト、ヘクトライト、スティブンサイトなどのスメ
クタイト系粘土鉱物や、バーミキュライト粘土鉱物、ハ
ロイサイト粘土鉱物などが挙げられる。これらの層状珪
酸塩は天然のものであっても合成されたものであっても
良く、合成されたものとしては、例えば、膨潤性フッ素
雲母系鉱物などが挙げられる。なかでも、層の厚みが6
〜12Å、層の一辺の長さが0.001〜10μmの結
晶単位からなるものが好ましい。
The layered silicate used in the present invention includes:
Examples include smectite clay minerals such as montmorillonite, beidellite, saponite, nontrolite, hectorite, and stevensite, vermiculite clay minerals, halloysite clay minerals, and the like. These layered silicates may be natural or synthetic, and examples of the synthetic ones include swelling fluoromica-based minerals. Above all, the layer thickness is 6
.About.12 .ANG., And the length of one side of the layer is preferably 0.001 to 10 .mu.m.

【0022】上記のポリアミド樹脂に層状珪酸塩を均一
に分散させた樹脂組成物を得るには、層状珪酸塩を膨潤
化剤、例えば、12アミドドデカン酸と接触させて、予
め層状珪酸塩の層間を広げて、層間にモノマーを取り込
みやすくした後、ポリアミドモノマーと混合し、重合す
れば良い。
In order to obtain a resin composition in which the layered silicate is uniformly dispersed in the above polyamide resin, the layered silicate is contacted with a swelling agent, for example, 12-amidododecanoic acid, and the interlayer of the layered silicate is preliminarily prepared. Is spread so that the monomer can be easily taken in between the layers, and then it is mixed with the polyamide monomer and polymerized.

【0023】また、本発明のポリアミドフィルムを構成
する樹脂組成物には、その特性を大きく損なわない限り
において、滑剤、帯電防止剤、ブロッキング防止剤、可
塑剤、着色剤、離型剤、顔料等の添加剤を添加してもよ
く、これらは樹脂組成物の溶融混練時もしくは重合時に
加えられる。
Further, the resin composition constituting the polyamide film of the present invention may be a lubricant, an antistatic agent, an antiblocking agent, a plasticizer, a colorant, a release agent, a pigment, etc., as long as the characteristics thereof are not significantly impaired. The above additives may be added, and these are added at the time of melt-kneading or polymerization of the resin composition.

【0024】上記のように構成されたポリアミドフィル
ムは、以下のような方法により製造される。本発明のポ
リアミドフィルムは、例えば、ポリアミド樹脂に層状珪
酸塩を上記の配合割合にて均一に分散させた樹脂組成物
を押出機で加熱溶融してTダイよりフィルム状に押出
し、エアーナイフキャスト法、静電印可キャスト法など
公知のキャスティング法により回転する冷却ドラム上で
冷却固化して未延伸フィルムを製膜し、この未延伸フィ
ルムに延伸処理を施すことで得られる。未延伸フィルム
が配向していると、後工程で延伸性が低下することがあ
るため、この未延伸フィルムは、実質的に無定形、無配
向の状態であることが好ましい。
The polyamide film configured as described above is manufactured by the following method. The polyamide film of the present invention is obtained, for example, by heating and melting a resin composition in which a layered silicate is uniformly dispersed in a polyamide resin in the above-mentioned mixing ratio with an extruder and extruding it into a film form from a T-die by an air knife casting method. It can be obtained by cooling and solidifying on a rotating cooling drum by a known casting method such as the electrostatic impression casting method to form an unstretched film, and subjecting this unstretched film to a stretching treatment. If the unstretched film is oriented, the stretchability may be deteriorated in a later step. Therefore, the unstretched film is preferably in a substantially amorphous and non-oriented state.

【0025】延伸処理には、縦方向に延伸した後、横方
向に延伸処理する逐次二軸延伸と、縦横同時に延伸処理
を行う同時二軸延伸とがあり、本発明では、逐次二軸延
伸を行う場合と同時二軸延伸を行う場合とでその製造条
件が異なるが、いずれの延伸方法においても、0.05
以上の面配向係数が得られるように面倍率が9倍以上に
なるようにして延伸処理することが必要である。
The stretching treatment includes sequential biaxial stretching in which stretching is carried out in the longitudinal direction and then in the transverse direction, and simultaneous biaxial stretching in which stretching is carried out simultaneously in the longitudinal and transverse directions. In the present invention, sequential biaxial stretching is carried out. The production conditions are different between the case of performing the simultaneous biaxial stretching and the case of performing the simultaneous biaxial stretching.
In order to obtain the above surface orientation coefficient, it is necessary to perform stretching treatment so that the surface magnification becomes 9 times or more.

【0026】逐次二軸延伸は以下のように行われる。ま
ず、未延伸フィルムにフィルム延伸のための予熱を行
い、周速の異なる加熱ローラ群からなるローラ式縦延伸
機を用いて縦延伸処理を行う。縦延伸機の加熱ローラ群
は未延伸フィルムのガラス転移点以上の温度となるよう
に設定し、この加熱延伸ロールとフィルム冷却のための
冷却ロールとの間での縦延伸倍率が、2.6〜3.2倍
となるように縦延伸処理を行うことが好ましい。
Sequential biaxial stretching is performed as follows. First, the unstretched film is preheated for stretching the film, and is longitudinally stretched by using a roller type longitudinal stretching machine including heating roller groups having different peripheral speeds. The heating roller group of the longitudinal stretching machine is set so as to have a temperature not lower than the glass transition point of the unstretched film, and the longitudinal stretching ratio between the heating stretching roll and the cooling roll for cooling the film is 2.6. It is preferable to perform the longitudinal stretching treatment so that the stretching ratio is about 3.2 times.

【0027】次いで、テンター式横延伸機にてフィルム
延伸のための予熱を行った後、横延伸処理を行うが、本
発明では、横延伸倍率が2倍に至るまではフィルム温度
TiをTg≦Ti≦Tcpの範囲とし、横延伸倍率が2
倍を超え最大延伸倍率となった時点におけるフィルム温
度TeをTm−70≦Te<Tmの範囲とする必要があ
る。ここで、Tgはポリアミド樹脂のガラス転移温度、
Tcpはポリアミド樹脂の結晶化ピーク温度、Tmはポ
リアミド樹脂の融点である。
Next, after preheating the film for stretching with a tenter type transverse stretching machine, the transverse stretching treatment is carried out. In the present invention, the film temperature Ti is Tg≤Tg until the transverse stretching ratio reaches 2. The range of Ti ≦ Tcp is set, and the transverse stretching ratio is 2
It is necessary to set the film temperature Te at the time when the stretching ratio exceeds the maximum to reach the maximum draw ratio in the range of Tm-70 ≦ Te <Tm. Here, Tg is the glass transition temperature of the polyamide resin,
Tcp is the crystallization peak temperature of the polyamide resin, and Tm is the melting point of the polyamide resin.

【0028】横延伸倍率が2倍に至るまでのフィルム温
度Tiがガラス転移温度Tgより低いと、初期の延伸応
力(降伏点応力)が高くなり、フィルムにネックやボイ
ドが発生して初期切断が発生する。また、たとえ延伸で
きたとしても、横延伸倍率が2倍を越えた後にフィルム
温度が高くなると、フィルムが白化して外観性に劣るも
のとなる。逆に、横延伸倍率が2倍に至るまでのフィル
ム温度Tiがポリアミド樹脂の結晶化ピーク温度Tcp
よりも高いと、フィルムが弾性変形している段階で結晶
化が進むためフィルム白化を誘発し、外観性に劣るだけ
でなく、フィルム白化に起因するフィルム切れが頻発し
て、操業性が著しく低下する。横延伸倍率が2倍を超え
最大延伸倍率となった時点におけるフィルム温度Te
が、Tm−70よりも低いとフィルム切れや操業性の低
下が生じ、フィルム温度TeがTm以上となると、吸湿
伸びを低減させる結晶構造が破壊されるためか、吸湿伸
びが大きくなり、フィルム温度TeがTmを大きく超え
ると、フィルム自体が融解し、破断する。また、フィル
ム温度Tiでの延伸処理を横延伸倍率が2倍に満たない
うちに終了し、フィルム温度Teでの延伸処理に切り替
えると、弾性変形が優先的に進行して、いまだ塑性変形
の割合が小さい状態で続く高温での延伸処理に供給され
るため、弾性変形部のフィルムでボイドが発生して白化
する。逆に、フィルム温度Tiでの延伸処理を横延伸倍
率が2倍を超えるまで行うと、フィルム温度Teでの延
伸処理において、フィルムの吸湿伸びを抑え、かつ、透
明性を良くする効果が発現しなくなる。従って、延伸倍
率が2倍を超えた時点で速やかにフィルム温度TeをT
m−70≦Te<Tmの範囲に上げることが望ましい。
When the film temperature Ti until the transverse stretching ratio reaches 2 times is lower than the glass transition temperature Tg, the initial stretching stress (yield point stress) becomes high, and necks and voids are generated in the film to cause initial cutting. Occur. Even if the film can be stretched, if the film temperature becomes high after the transverse stretching ratio exceeds 2, the film will be whitened and the appearance will be poor. On the contrary, the film temperature Ti until the transverse stretching ratio reaches 2 times is the crystallization peak temperature Tcp of the polyamide resin.
If the value is higher than the above value, crystallization is promoted at the stage of elastic deformation of the film, which induces film whitening, resulting in poor appearance and frequent film breakage due to film whitening, resulting in a significant decrease in operability. To do. Film temperature Te when the transverse stretching ratio exceeds 2 times and reaches the maximum stretching ratio
However, when it is lower than Tm-70, film breakage and deterioration of operability occur, and when the film temperature Te is Tm or higher, the hygroscopic elongation becomes large, probably because the crystal structure that reduces the hygroscopic elongation is destroyed. If Te greatly exceeds Tm, the film itself melts and breaks. Further, when the stretching treatment at the film temperature Ti is completed before the transverse stretching ratio is less than 2 times and the stretching treatment is switched to the film temperature Te, elastic deformation preferentially proceeds, and the ratio of plastic deformation is still present. Is supplied to the subsequent stretching process at a high temperature in a small state, voids are generated in the film of the elastically deformed portion and whitening occurs. On the contrary, when the stretching treatment at the film temperature Ti is performed until the transverse stretching ratio exceeds 2 times, an effect of suppressing the hygroscopic elongation of the film and improving transparency is exhibited in the stretching treatment at the film temperature Te. Disappear. Therefore, when the stretching ratio exceeds 2 times, the film temperature Te is quickly changed to T
It is desirable to raise the range to m-70 ≦ Te <Tm.

【0029】このように横延伸倍率が2倍に至るまでは
フィルム温度Tiをポリアミド樹脂のガラス転移温度か
ら結晶化ピーク温度の間に制御して、塑性変形を優先的
に進行させて弾性変形の割合を小さくすることで、延伸
応力を低減して横延伸倍率が2倍を超えた後の弾性変形
部におけるボイドの発生を押さえることができる。ま
た、横延伸倍率が2倍を超え最大延伸倍率に達する時に
は、フィルム温度を結晶化温度よりも高くすることでフ
ィルムの結晶化を進行して吸湿伸びを低減でき、さらに
延伸変形により、より一層フィルム中の塑性変形率を上
げて弾性変形比率を下げることができる。その結果、吸
湿伸びが低く、透明性に優れたフィルムを高い操業性で
生産できる。また、本発明では、上記構成に加えて、フ
ィルムを形成する樹脂組成物に層状珪酸塩が均一に分散
されているため、さらにポリアミド樹脂の結晶化の進行
が助長され、結果として高湿度雰囲気下での吸湿伸びを
低減でき、透明性の向上が図れる。
As described above, until the transverse stretching ratio reaches 2, the film temperature Ti is controlled between the glass transition temperature of the polyamide resin and the crystallization peak temperature so that plastic deformation is preferentially promoted to cause elastic deformation. By reducing the ratio, it is possible to reduce the stretching stress and suppress the occurrence of voids in the elastically deformed portion after the transverse stretching ratio exceeds 2. Further, when the transverse stretching ratio exceeds 2 times and reaches the maximum stretching ratio, the film temperature can be made higher than the crystallization temperature to promote the crystallization of the film and reduce the hygroscopic elongation. The elastic deformation ratio can be lowered by increasing the plastic deformation ratio in the film. As a result, a film having low hygroscopic elongation and excellent transparency can be produced with high operability. Further, in the present invention, in addition to the above-mentioned constitution, since the layered silicate is uniformly dispersed in the resin composition forming the film, the crystallization of the polyamide resin is further promoted, and as a result, in a high humidity atmosphere. It is possible to reduce the hygroscopic elongation and improve the transparency.

【0030】一方、同時二軸延伸は以下のように行われ
る。まず、未延伸フィルムにフィルム延伸のための予熱
を行い、テンター式同時二軸延伸機を用いて縦横同時に
延伸処理を行う。本発明では、面倍率が4倍に至るまで
はフィルム温度TiをTg≦Ti≦Tcpの範囲とし、
面倍率が最大となる最大延伸倍率点でのフィルム温度T
eをTm−70≦Te≦Tmの範囲とする必要がある。
ここで、Tgはポリアミド樹脂のガラス転移温度、Tc
pはポリアミド樹脂の結晶化ピーク温度、Tmはポリア
ミド樹脂の融点である。
On the other hand, the simultaneous biaxial stretching is carried out as follows. First, the unstretched film is preheated for stretching the film, and is stretched simultaneously in the longitudinal and lateral directions using a tenter type simultaneous biaxial stretching machine. In the present invention, the film temperature Ti is set in the range of Tg ≦ Ti ≦ Tcp until the surface magnification reaches 4 times,
Film temperature T at the maximum draw ratio point where the surface magnification becomes maximum
It is necessary to set e within the range of Tm−70 ≦ Te ≦ Tm.
Here, Tg is the glass transition temperature of the polyamide resin, Tc
p is the crystallization peak temperature of the polyamide resin, and Tm is the melting point of the polyamide resin.

【0031】面倍率が4倍に至るまでのフィルム温度T
iがガラス転移温度Tgより低いと、初期の延伸応力
(降伏点応力)が高くなり、フィルムにネックやボイド
が発生して初期切断が発生する。また、たとえ延伸でき
たとしても、面倍率が4倍を超えた後にフィルム温度が
高くなると、フィルムが白化して外観性に劣るものとな
る。逆に、面倍率が4倍に至るまでのフィルム温度Ti
がポリアミド樹脂の結晶化ピーク温度Tcpよりも高い
と、フィルムが弾性変形している段階で結晶化が進むた
めフィルム白化を誘発し、外観性に劣るだけでなく、フ
ィルム白化に起因するフィルム切れが頻発して、操業性
が著しく低下する。面倍率が4倍を超え最大面倍率とな
った時点におけるフィルム温度TeがTm−70よりも
低いと、フィルム切れが発生して操業性が低下し、フィ
ルム温度Teがポリアミド樹脂の融点Tmを超えると、
吸湿伸びを低減させる結晶構造が破壊されるためか吸湿
伸びが大きくなり、フィルム温度TeがTmを大きく超
えると、フィルム自体が融解し、破断する。また、フィ
ルム温度がTiでの延伸処理を面倍率が4倍に満たない
うちに終了し、フィルム温度がTeでの延伸処理に変更
すると、弾性変形が優先的に進行していまだ塑性変形の
割合が小さい状態で、続く高温での延伸処理に供給され
るため、弾性変形部のフィルムでボイドが発生して白化
する。また、フィルム温度がTiでの延伸処理を面倍率
が4倍を超えるまで行うと、フィルム温度Teでの延伸
処理において、フィルムの吸湿伸びを抑え、かつ、透明
性を良くする効果が発現しなくなる。従って、面倍率が
4倍を超えた時点で速やかにフィルム温度TeをTm−
70≦Te≦Tmの範囲に上げることが望ましい。
Film temperature T until the areal magnification reaches 4 times
When i is lower than the glass transition temperature Tg, the initial stretching stress (yield point stress) becomes high, and a neck or a void is generated in the film to cause initial cutting. Further, even if the film can be stretched, if the film temperature rises after the areal magnification exceeds 4, the film will be whitened and the appearance will be poor. On the contrary, the film temperature Ti until the surface magnification reaches 4 times Ti
Is higher than the crystallization peak temperature Tcp of the polyamide resin, crystallization proceeds at the stage where the film is elastically deformed, which induces film whitening, which not only deteriorates the appearance but also causes film breakage due to film whitening. Frequently occurs and the operability is significantly reduced. If the film temperature Te is lower than Tm-70 when the surface magnification exceeds 4 times and becomes the maximum surface magnification, film breakage occurs and the operability is lowered, and the film temperature Te exceeds the melting point Tm of the polyamide resin. When,
Perhaps because the crystal structure that reduces the hygroscopic elongation is destroyed, the hygroscopic elongation increases, and when the film temperature Te greatly exceeds Tm, the film itself melts and breaks. Moreover, if the stretching treatment at the film temperature of Ti is completed before the surface magnification is less than 4 times and the stretching treatment at the film temperature is changed to Te, the elastic deformation is preferentially progressed and the ratio of the plastic deformation still remains. Is supplied to the subsequent stretching treatment at a high temperature in a small state, a void is generated in the film of the elastically deformed portion and whitening occurs. Further, when the stretching treatment with the film temperature Ti is performed until the surface magnification exceeds 4 times, the effect of suppressing the hygroscopic elongation of the film and improving the transparency is not exhibited in the stretching treatment with the film temperature Te. . Therefore, when the surface magnification exceeds 4 times, the film temperature Te is promptly changed to Tm-
It is desirable to raise the range to 70 ≦ Te ≦ Tm.

【0032】このように同時二軸延伸処理を、面倍率が
4倍に至るまではフィルム温度Tiをポリアミド樹脂の
ガラス転移温度Tgから結晶化ピーク温度Teの間に制
御して、塑性変形を優先的に進行させて弾性変形の割合
を小さくすることで、延伸応力を低減して面倍率が4倍
を超えた後の弾性変形部におけるボイドの発生を押さえ
ることができる。また、面倍率が4倍を超えて最大延伸
倍率に達する時には、フィルム温度が結晶化温度よりも
高くなるように設定してフィルムの結晶化を進行させる
ことができ、吸湿伸びを低減でき、さらに延伸変形を施
すことで、より一層フィルム中の塑性変形率を上げて弾
性変形比率を下げることができる。その結果、吸湿伸び
が低く、透明性に優れたフィルムを高い操業性で生産で
きる。また、本発明では、上記構成に加えて、フィルム
を形成する樹脂組成物に層状珪酸塩が分散されているた
め、さらにポリアミド樹脂の結晶化が促進され、結果と
して高湿度雰囲気下での吸湿伸びを低減でき、透明性の
向上が図れる。
As described above, the simultaneous biaxial stretching treatment controls the film temperature Ti between the glass transition temperature Tg of the polyamide resin and the crystallization peak temperature Te until the surface magnification reaches 4 times, giving priority to plastic deformation. It is possible to reduce the stretching stress and suppress the generation of voids in the elastically deformed portion after the surface magnification exceeds 4 times by progressively advancing the elastic deformation to reduce the elastic deformation ratio. Further, when the areal ratio exceeds 4 times and reaches the maximum draw ratio, the film temperature can be set to be higher than the crystallization temperature to promote the crystallization of the film, and the hygroscopic elongation can be reduced. By performing stretching deformation, the plastic deformation rate in the film can be further increased and the elastic deformation rate can be lowered. As a result, a film having low hygroscopic elongation and excellent transparency can be produced with high operability. Further, in the present invention, in addition to the above configuration, since the layered silicate is dispersed in the resin composition forming the film, crystallization of the polyamide resin is further promoted, and as a result, hygroscopic elongation in a high humidity atmosphere Can be reduced and transparency can be improved.

【0033】また、上記のように逐次二軸延伸または同
時二軸延伸を行う際の温度制御は、1つの延伸部におい
てフィルム進行方向に向かって徐々に風量を上げたり、
また延伸部を2つ以上のゾーンに分割して個別に温度制
御したり、また、これらを組み合わせて適用しても良
い。
As described above, the temperature control during the sequential biaxial stretching or the simultaneous biaxial stretching is performed by gradually increasing the air volume in one film stretching direction in the film advancing direction.
Further, the stretched portion may be divided into two or more zones for individual temperature control, or these may be applied in combination.

【0034】上記のように逐次二軸延伸あるいは同時二
軸延伸が行われたフィルムは、同テンター内において1
50〜220℃の温度で熱固定し、必要に応じて0〜1
0%、好ましくは2〜6%の範囲で縦方向および/また
は横方向の弛緩処理を施す。
The film that has been sequentially biaxially stretched or simultaneously biaxially stretched as described above is
Heat set at a temperature of 50 to 220 ° C, and 0 to 1 if necessary.
The relaxation treatment in the longitudinal direction and / or the transverse direction is performed in the range of 0%, preferably 2 to 6%.

【0035】本発明のポリアミドフィルムを、シュリン
クフィルムなどを除く一般的な包装材料として用いる場
合には、熱寸法安定性や湿熱寸法安定性を求められる
が、概ね、最大熱水収縮率で4%以下、望ましくは3.
5%以下とすることが求められる。熱水収縮率は、温度
を上げるほど、また、弛緩処理を大きくするほど低下す
るため、所望の熱水収縮率が得られるように、温度や弛
緩処理を適宜、微調整する必要がある。
When the polyamide film of the present invention is used as a general packaging material excluding shrink film and the like, it is required to have thermal dimensional stability and wet heat dimensional stability. The following is preferably 3.
It is required to be 5% or less. The hot water shrinkage decreases as the temperature increases and the relaxation treatment increases. Therefore, it is necessary to appropriately finely adjust the temperature and the relaxation treatment so as to obtain a desired hot water shrinkage.

【0036】引き続いて延伸フィルムは、一旦クリップ
から解放して、端部の未延伸残部をトリミングした後、
原反ロールとして巻き取り、別途、スリッターにて所望
の幅にスリットし、製品として巻き取る。
Subsequently, the stretched film was once released from the clip, and the unstretched residue at the end was trimmed.
It is wound up as a raw roll, separately slit into a desired width with a slitter, and wound up as a product.

【0037】なお、本発明のポリアミドフィルムには、
機能性を付与するために、各種機能性コート液の塗布を
行っても良い。コーティングは、通常、逐次二軸延伸の
場合には横延伸直前あるいは横延伸後のフィルムに、ま
た、同時二軸延伸を行う場合には延伸直前あるいは延伸
後のフィルムに施される。コーティングの方法は特に限
定されるものではなく、例えば、グラビアロール法、リ
バースロール法、エアーナイフ法、リバースグラビア
法、マイヤーバー法、インバースロール法、またはこれ
らの組み合わせによる各種コーティング方式や、各種噴
霧方式などを採用することができる。
The polyamide film of the present invention contains
In order to impart functionality, various functional coating liquids may be applied. The coating is usually applied to the film immediately before or after transverse stretching in the case of sequential biaxial stretching, or to the film immediately before or after stretching in the case of simultaneous biaxial stretching. The coating method is not particularly limited, and examples thereof include a gravure roll method, a reverse roll method, an air knife method, a reverse gravure method, a Meyer bar method, an inverse roll method, or various coating methods by a combination thereof or various spray methods. A method etc. can be adopted.

【0038】以上のように本発明によると、ポリアミド
樹脂に層状珪酸塩を特定の割合で均一に分散させた樹脂
組成物を用いて、特定の条件下で延伸処理することで、
機械的強力や透明性に優れ、高湿度雰囲気下でも吸湿変
化率が小さいポリアミドフィルムを高い操業性で安定し
て製造することができる。
As described above, according to the present invention, by using a resin composition in which a layered silicate is uniformly dispersed in a polyamide resin at a specific ratio, a stretching treatment is performed under specific conditions.
A polyamide film having excellent mechanical strength and transparency and having a small moisture absorption change rate even in a high humidity atmosphere can be stably manufactured with high operability.

【0039】[0039]

【実施例】次に、実施例により、本発明をさらに具体的
に説明する。なお、以下の実施例および比較例におい
て、その評価に用いた原料および評価方法は、次のとお
りである。 (1)原料 a.マスターチップの作成 平均粒子径が1μmのモンモリロナイト100gに対し
て、濃度1Nの12−アミドドデカン酸塩化物水溶液1
0リットルを混合し、攪拌した。次にこれを濾過水洗し
た後、乾燥し、モンモリロナイトと12−アミノドデカ
ン酸アンモニウムイオンとの複合体を得た。攪拌機を備
えた密閉反応容器にε−カプロラクタム10kgと水1
kg、さらに樹脂組成物中のモンモリロナイト含有量が
4%となるように所定量の複合体を混合し、80℃で反
応系が均一な状態になるまで攪拌した。次に反応系を2
60℃まで加熱し、反応容器内の圧力が1.5MPaの
状態で約1時間攪拌した。圧力を常圧に戻し、260℃
で約1時間攪拌を行い、さらに窒素気流下で反応系内の
水を除去しながら約1時間攪拌した。重合が終了した時
点で、上記反応生成物をストランド状に水浴中に払い出
し、冷却、固化後、切断して、モンモリロナイトが均一
に分散したポリアミド樹脂組成物のペレットを得た。こ
のペレットを95℃の温水中で約6時間処理し、可溶成
分を抽出した後、温度80℃の減圧下で乾燥した。上記
の方法により、モンモリロナイトを4%含有したナイロ
ン6樹脂組成物を得た。得られた樹脂組成物の相対粘度
は2.7であった。 b.シリカマスターチップの作成 攪拌機を備えた密閉反応容器に10kgのε−カプロラ
クタム、1kgの水、および500gのシリカ(富士シ
リシア化学社製、商品名:サイリシア310P)を投入
し、100℃に保持して、この温度で反応系内が均一に
なるまで攪拌した。引き続き攪拌しながら260℃に加
熱し、圧力1.5MPaを1時間維持し、さらに1時間
かけて常圧まで放圧し、さらに1時間重合した。重合が
終了した時点で、上記反応生成物をストランド状に払い
出し、冷却、固化した後、切断して、ポリアミド樹脂か
らなるペレットを得た。次いで、このペレットを95℃
の温水中で約8時間処理し、可溶成分を抽出した後、温
度80℃の減圧下で乾燥した。得られたポリアミド樹脂
の相対粘度は2.7であった。 (2)評価方法 a.ポリアミド樹脂の相対粘度:96質量%濃硫酸中に
それぞれの樹脂の乾燥ペレットを濃度が1g/dlとな
るように溶解し、温度25℃で測定した。 b.TD方向の吸湿伸び率(%):延伸フィルムを20
℃、40%RHの雰囲気下で1日調湿し、MD方向×T
D方向=10mm×150mmの試料を作成し、初期サ
ンプルのTD方向の長さ(A)を測定した。続いて20
℃、80%RH雰囲気下に湿度変化させ、1日調湿した
後、サンプルのTD方向の長さ(B)を測定した。この
測定結果を用いて下記式よりTD方向の吸湿伸び率
(C)を算出した。
EXAMPLES Next, the present invention will be described more specifically by way of examples. In addition, in the following Examples and Comparative Examples, the raw materials and the evaluation methods used for the evaluation are as follows. (1) Raw material a. Preparation of master chip 1 g of 12-amidododecanoic acid chloride aqueous solution with a concentration of 1 N per 100 g of montmorillonite having an average particle size of 1 μm
0 liter was mixed and stirred. Next, this was filtered, washed with water and dried to obtain a complex of montmorillonite and ammonium 12-aminododecanoate ion. In a closed reaction vessel equipped with a stirrer, 10 kg of ε-caprolactam and water 1
A predetermined amount of the complex was mixed so that the montmorillonite content in the resin composition was 4%, and the mixture was stirred at 80 ° C. until the reaction system became uniform. Next, set the reaction system to 2
The mixture was heated to 60 ° C. and stirred for about 1 hour while the pressure inside the reaction vessel was 1.5 MPa. Return the pressure to normal pressure and 260 ℃
The mixture was stirred for about 1 hour, and further stirred for about 1 hour while removing water in the reaction system under a nitrogen stream. When the polymerization was completed, the reaction product was dispensed into a water bath in a strand form, cooled, solidified, and cut to obtain pellets of a polyamide resin composition in which montmorillonite was uniformly dispersed. The pellets were treated in warm water at 95 ° C for about 6 hours to extract soluble components, and then dried under reduced pressure at 80 ° C. By the above method, a nylon 6 resin composition containing 4% of montmorillonite was obtained. The relative viscosity of the obtained resin composition was 2.7. b. Preparation of silica master chip 10 kg of ε-caprolactam, 1 kg of water, and 500 g of silica (manufactured by Fuji Silysia Chemical Ltd., trade name: Sylysia 310P) were placed in a closed reaction vessel equipped with a stirrer and kept at 100 ° C. The mixture was stirred at this temperature until the inside of the reaction system became uniform. Subsequently, the mixture was heated to 260 ° C. with stirring, the pressure was kept at 1.5 MPa for 1 hour, the pressure was released to normal pressure over 1 hour, and the polymerization was conducted for 1 hour. When the polymerization was completed, the reaction product was discharged in a strand form, cooled, solidified, and then cut to obtain a pellet made of a polyamide resin. The pellets are then placed at 95 ° C.
After the soluble component was extracted by treating the same in warm water for about 8 hours, it was dried under reduced pressure at a temperature of 80 ° C. The obtained polyamide resin had a relative viscosity of 2.7. (2) Evaluation method a. Relative viscosity of polyamide resin: 96 mass% Dry pellets of each resin were dissolved in concentrated sulfuric acid so that the concentration became 1 g / dl, and the temperature was measured at 25 ° C. b. Moisture absorption elongation (%) in TD direction: Stretched film 20
Humidity is maintained for 1 day in the atmosphere of 40 ° C and 40% RH, MD direction x T
A sample of D direction = 10 mm × 150 mm was prepared, and the length (A) of the initial sample in the TD direction was measured. 20 in succession
The humidity was changed in the atmosphere of 80 ° C. and 80% RH, the humidity was controlled for one day, and then the length (B) in the TD direction of the sample was measured. Using this measurement result, the hygroscopic elongation (C) in the TD direction was calculated by the following formula.

【0040】C(%)={(B−A)/A}×100 c.熱水収縮率(%):延伸フィルムを20℃、65%
RHの条件下で1日調湿し、油性インクで100mm間
隔の平行線をマークし、これを10mm幅にスリットし
た。その後、マーク間の寸法(処理前の寸法:P)を測
定した。次いで、このサンプルを100℃熱水中で5分
間ボイル処理し、付着水分を除去した後、再度、20
℃、65%RHの雰囲気下で1日調湿した後、マーク間
の寸法(処理後の寸法:Q)を測定した。この測定結果
を用いて下記式より熱水収縮率(BS)を求めた。
C (%) = {(B−A) / A} × 100 c. Hot water shrinkage (%): Stretched film at 20 ° C, 65%
The humidity was controlled for 1 day under the condition of RH, parallel lines with 100 mm intervals were marked with an oil-based ink, and this was slit into a width of 10 mm. Then, the dimension between the marks (dimension before treatment: P) was measured. Next, this sample was boiled in hot water at 100 ° C. for 5 minutes to remove the attached water, and then again subjected to 20 times.
After humidity conditioning for 1 day in an atmosphere of 65 ° C. and 65% RH, the dimension between marks (dimension after treatment: Q) was measured. The hot water shrinkage ratio (BS) was determined from the following formula using the measurement results.

【0041】BS(%)={(P−Q)/P}×100 d.面配向係数:延伸フィルムの主配向方向(Nx)と
その垂直方向(Ny)と厚み方向(Nz)の屈折率を、
ATAGO社製のデジタル屈折計RX−2000を用い
て測定し、下記式より面配向係数(X)を求めた。
BS (%) = {(P−Q) / P} × 100 d. Plane orientation coefficient: The refractive index in the main orientation direction (Nx) of the stretched film, its vertical direction (Ny), and the thickness direction (Nz),
It was measured using a digital refractometer RX-2000 manufactured by ATAGO Co., Ltd., and the surface orientation coefficient (X) was obtained from the following formula.

【0042】X={(Nx+Ny)/2}−Nz e.突刺強力(N):内径100mmφの円形型枠にフ
ィルムを緊張させて固定し、この試料の中央部に先端が
曲率半径0.5mmの針を50mm/分の速度で試料面
に垂直に当てて突き刺し、フィルムが破れる際の強度を
測定した。 f.ヘーズ(%):東京電色社製のヘーズメータを用い
て、ASTM−D−1003に記載の方法に準じて測定
した。 実施例1 主たるポリアミド成分として、相対粘度が3.0、ガラ
ス転移温度Tgが50℃、結晶化ピーク温度Tcpが1
20℃、融点Tmが225℃であるナイロン6を用い
た。そしてこのナイロン6に層状珪酸塩としてモンモリ
ロナイトが0.4質量%、滑剤としてシリカが0.2質
量%含まれるように、上記のように作成した各マスター
チップを混合して、押出し温度260〜270℃で溶融
混練し、幅が630mmのTダイよりシート状に溶融押
出した。そして、エアーナイフキャスト法により、20
℃の回転ドラムに密着させて急冷し、実質的に無定形で
配向していない未延伸ポリアミドフィルムを作製した。
X = {(Nx + Ny) / 2} -Nz e. Puncture strength (N): The film is tensioned and fixed to a circular mold having an inner diameter of 100 mmφ, and a needle having a tip with a radius of curvature of 0.5 mm is vertically applied to the sample surface at a speed of 50 mm / min at the center of the sample. The strength at which the film was pierced and the film was broken was measured. f. Haze (%): measured using a haze meter manufactured by Tokyo Denshoku Co., Ltd. according to the method described in ASTM-D-1003. Example 1 As a main polyamide component, relative viscosity is 3.0, glass transition temperature Tg is 50 ° C., and crystallization peak temperature Tcp is 1.
Nylon 6 having a temperature of 20 ° C. and a melting point Tm of 225 ° C. was used. Then, each of the master chips prepared as described above was mixed such that 0.4% by mass of montmorillonite as a layered silicate and 0.2% by mass of silica as a lubricant were contained in this nylon 6, and the extrusion temperature was set to 260 to 270. The mixture was melt-kneaded at 0 ° C. and melt-extruded into a sheet form from a T die having a width of 630 mm. Then, by the air knife cast method, 20
The film was brought into close contact with a rotating drum at 0 ° C. and rapidly cooled to prepare a substantially amorphous and unoriented polyamide film.

【0043】次いでこの未延伸フィルムに以下のような
逐次二軸延伸を施した。まず、未延伸フィルムを周速の
異なる一連の加熱ローラ群からなる縦延伸機に導き、5
5℃の温度で2.8倍に縦延伸して縦延伸ポリアミドフ
ィルムを得た。
Next, the unstretched film was sequentially biaxially stretched as follows. First, the unstretched film is introduced into a longitudinal stretching machine composed of a series of heating rollers having different peripheral speeds, and 5
The film was longitudinally stretched 2.8 times at a temperature of 5 ° C. to obtain a longitudinally stretched polyamide film.

【0044】続いて、この縦延伸フィルムをテンター式
横延伸機に導いてクリップに把持し、60℃でフィルム
延伸のための予熱を行った。そしてこのフィルムを、横
延伸倍率が2倍に至るまではフィルム温度Tiが70℃
となるように、すなわち、ナイロン6のガラス転移温度
Tgよりも高く、ナイロン6の結晶化ピーク温度Tcp
よりも低い温度となるように調節し、延伸処理を行っ
た。横延伸倍率が2倍を超えるとフィルム温度Tiを上
げて、延伸倍率が3.8倍となるまで延伸して、面場率
を10.6とした。そしてこの最大延伸倍率点における
フィルム温度Teが180℃となるように、すなわちナ
イロン6の融点Tm−70よりも高く、ナイロン6の融
点Tmよりも低い温度となるように調節し、逐次延伸処
理を行った。その後、同テンター内で160〜220℃
の定幅熱処理および4%の弛緩熱処理を施した。
Subsequently, this longitudinally stretched film was introduced into a tenter type horizontal stretching machine, gripped by clips, and preheated for stretching the film at 60 ° C. The film temperature Ti is 70 ° C. until the transverse stretching ratio reaches 2 times.
That is, higher than the glass transition temperature Tg of nylon 6 and the crystallization peak temperature Tcp of nylon 6
The temperature was adjusted so that the temperature was lower than that, and the stretching treatment was performed. When the transverse stretching ratio exceeded 2 times, the film temperature Ti was raised and the film was stretched until the stretching ratio reached 3.8 times, and the area ratio was set to 10.6. Then, the film temperature Te at this maximum draw ratio point is adjusted to be 180 ° C., that is, the temperature is higher than the melting point Tm-70 of nylon 6 and lower than the melting point Tm of nylon 6, and the successive stretching treatment is performed. went. After that, 160-220 ℃ in the same tenter
Constant width heat treatment and 4% relaxation heat treatment.

【0045】得られた二軸延伸ポリアミドフィルムのフ
ィルムの両端をクリップから開放し、耳部をトリミング
して巻き取り、厚み15μmのフィルムを作製した。得
られたフィルム(原反)は、スリッターにて1000m
m幅にスリットし、製品として巻き取った。
Both ends of the obtained biaxially stretched polyamide film were released from the clips, and the ears were trimmed and wound up to produce a film having a thickness of 15 μm. The obtained film (original) is 1000m with a slitter
It was slit into m width and wound up as a product.

【0046】このフィルム製品から、TD吸湿伸び率
(%)、面配向係数、突刺強力(N)、熱水収縮率
(%)、ヘーズ(%)を測定するための各試験片を作製
した。得られた試験片の物性を表1に示す。
From this film product, test pieces for measuring TD moisture absorption elongation (%), plane orientation coefficient, puncture strength (N), hot water shrinkage (%) and haze (%) were prepared. Table 1 shows the physical properties of the obtained test pieces.

【0047】[0047]

【表1】 実施例2 モンモリロナイトの含有量を0.1質量%とした。そし
て、それ以外は実施例1と同様にしてポリアミドフィル
ムを作製し、各試験片を作製した。
[Table 1] Example 2 The content of montmorillonite was set to 0.1% by mass. Then, a polyamide film was manufactured in the same manner as in Example 1 except for the above, and each test piece was manufactured.

【0048】得られた試験片の物性を表1に示す。 実施例3 モンモリロナイトの含有量を1.0質量%とした。そし
て、それ以外は実施例1と同様にしてポリアミドフィル
ムを作製し、各試験片を作製した。
Table 1 shows the physical properties of the obtained test pieces. Example 3 The content of montmorillonite was set to 1.0% by mass. Then, a polyamide film was manufactured in the same manner as in Example 1 except for the above, and each test piece was manufactured.

【0049】得られた試験片の物性を表1に示す。 実施例4 フィルム温度Teを200℃とした。そしてそれ以外
は、実施例1と同様にしてポリアミドフィルムを作製
し、各試験片を作製した。
Table 1 shows the physical properties of the obtained test pieces. Example 4 The film temperature Te was set to 200 ° C. A polyamide film was produced in the same manner as in Example 1 except for the above, and each test piece was produced.

【0050】得られた試験片の物性を表1に示す。実施
例1〜実施例4で得られたポリアミドフィルムは、ポリ
アミド樹脂に層状珪酸塩が所定の割合で均一に分散され
た樹脂組成物を溶融製膜して、本発明の条件下で逐次二
軸延伸を行ったため、高湿度雰囲気下でもTD方向の吸
湿伸び率が小さく、印刷性やラミネート加工性に優れた
フィルムが得られた。また、0.05以上の面配向係数
が得られ、突刺強力が10N以上と高く、また、熱水収
縮率が小さいフィルムが得られた。さらに、ヘーズが5
%以下と低く、透明性に優れたフィルムが得られた。こ
のようなポリアミドフィルムは、包装材料として好適に
使用できるものであった。 比較例1 モンモリロナイトを配合しなかった。そして、それ以外
は実施例1と同様にして、ポリアミドフィルムを作製
し、各試験片を作製した。
Table 1 shows the physical properties of the obtained test pieces. The polyamide films obtained in Examples 1 to 4 were obtained by melt-casting a resin composition in which a layered silicate was uniformly dispersed in a polyamide resin at a predetermined ratio, and successively biaxially produced under the conditions of the present invention. Since the film was stretched, a hygroscopic elongation in the TD direction was small even in a high humidity atmosphere, and a film excellent in printability and laminating processability was obtained. Further, a plane orientation coefficient of 0.05 or more was obtained, a puncture strength was as high as 10 N or more, and a film having a small hot water shrinkage rate was obtained. In addition, haze is 5
% Or less, and a film having excellent transparency was obtained. Such a polyamide film could be suitably used as a packaging material. Comparative Example 1 Montmorillonite was not added. Then, a polyamide film was produced in the same manner as in Example 1 except for the above, and each test piece was produced.

【0051】得られた試験片の物性を表1に示す。 比較例2 モンモリロナイトの配合割合を本発明の範囲よりも少な
く0.05質量%にした。そして、それ以外は実施例1
と同様にして、ポリアミドフィルムを作製し、各試験片
を作製した。
Table 1 shows the physical properties of the obtained test pieces. Comparative Example 2 The compounding ratio of montmorillonite was set to 0.05% by mass, which is less than the range of the present invention. And other than that, Example 1
A polyamide film was prepared in the same manner as in, and each test piece was prepared.

【0052】得られた試験片の物性を表1に示す。 比較例3 モンモリロナイトの配合割合を本発明の範囲よりも多く
2.0質量%にした。そして、それ以外は実施例1と同
様にして、ポリアミドフィルムを作製し、各試験片を作
製した。
Table 1 shows the physical properties of the obtained test pieces. Comparative Example 3 The compounding ratio of montmorillonite was set to 2.0% by mass, which is higher than the range of the present invention. Then, a polyamide film was produced in the same manner as in Example 1 except for the above, and each test piece was produced.

【0053】得られた試験片の物性を表1に示す。 比較例4 フィルム温度Teを本発明の範囲よりも低く90℃とし
た。そしてそれ以外は、実施例1と同様にしてポリアミ
ドフィルムを作製し、各試験片を作製した。
Table 1 shows the physical properties of the obtained test pieces. Comparative Example 4 The film temperature Te was set to 90 ° C., which is lower than the range of the present invention. A polyamide film was produced in the same manner as in Example 1 except for the above, and each test piece was produced.

【0054】得られた試験片の物性を表1に示す。 比較例5 フィルム温度Tiを本発明の範囲よりも高く140℃と
した。そしてそれ以外は、実施例1と同様にしてポリア
ミドフィルムを作製したが、フィルム切れが多発して試
験片を作製できなかった。 比較例6 フィルム温度Teを本発明の範囲よりも高く240℃と
した。そしてそれ以外は、実施例1と同様にしてポリア
ミドフィルムを作製し、各試験片を作製した。
Table 1 shows the physical properties of the obtained test pieces. Comparative Example 5 The film temperature Ti was set to 140 ° C, which is higher than the range of the present invention. A polyamide film was produced in the same manner as in Example 1 except for the above, but film breakage occurred frequently and a test piece could not be produced. Comparative Example 6 The film temperature Te was set to 240 ° C., which is higher than the range of the present invention. A polyamide film was produced in the same manner as in Example 1 except for the above, and each test piece was produced.

【0055】得られた試験片の物性を表1に示す。 比較例7 延伸倍率を縦2.4倍、横3.2倍として、面倍率を
7.68倍とした。そしてそれ以外は、実施例1と同様
にしてポリアミドフィルムを作製し、各試験片を作製し
た。
Table 1 shows the physical properties of the obtained test pieces. Comparative Example 7 The stretching ratio was 2.4 times in the longitudinal direction and 3.2 times in the lateral direction, and the areal magnification was 7.68 times. A polyamide film was produced in the same manner as in Example 1 except for the above, and each test piece was produced.

【0056】得られた試験片の物性を表1に示す。比較
例1,2は、モンモリロナイトが配合されていない、あ
るいはその配合割合が少なすぎたため、TD方向の吸湿
伸びが大きく、印刷性やラミネート加工性に劣るものと
なった。
Table 1 shows the physical properties of the obtained test pieces. In Comparative Examples 1 and 2, montmorillonite was not blended, or the blending ratio was too small, so that the hygroscopic elongation in the TD direction was large and the printability and the laminating processability were poor.

【0057】比較例3は、モンモリロナイトの配合割合
が本発明の範囲を超えていたため、TD方向の吸湿伸び
は小さいものの、ヘーズが高くなり、白化が生じて透明
性に劣り、外観に劣るものとなった。
In Comparative Example 3, since the blending ratio of montmorillonite exceeded the range of the present invention, the hygroscopic elongation in the TD direction was small, but the haze was high, whitening occurred, the transparency was poor, and the appearance was poor. became.

【0058】比較例4は、フィルム温度をTeを本発明
の範囲よりも低くしたため、延伸時にボイドが発生して
ヘーズが高くなり、外観性に劣るものとなった。比較例
5は、フィルム温度Tiを本発明の範囲よりも高くした
ため、延伸初期に結晶化が優先して進行し、フィルムが
白化して破断が発生したため、上記のように試験フィル
ムを作製できなかった。
In Comparative Example 4, since the film temperature Te was lower than the range of the present invention, voids were generated during stretching and haze was increased, resulting in poor appearance. In Comparative Example 5, since the film temperature Ti was set higher than the range of the present invention, crystallization preferentially proceeded in the initial stage of stretching, and the film was whitened and ruptured, so that the test film could not be prepared as described above. It was

【0059】比較例6は、フィルム温度Teを本発明の
範囲よりも高くしたため、生成した結晶の融解が進行し
て結晶化度が低下し、結果として吸湿伸びの大きいもの
しか得られなかった。
In Comparative Example 6, the film temperature Te was set higher than the range of the present invention, so that the generated crystals were melted and the crystallinity was lowered, and as a result, only those having a large hygroscopic elongation were obtained.

【0060】比較例7は、延伸倍率が低く、面倍率が9
倍未満であったため、フィルムの面配向係数が低くな
り、突刺強力が小さく、機械的強力に劣るものとなっ
た。 実施例5 主たるポリアミド成分として、融点が225℃、相対粘
度が3.0、ガラス転移温度Tgが50℃、結晶化ピー
ク温度Tcpが120℃、融点が225℃であるナイロ
ン6を用いた。そしてこのナイロン6に層状珪酸塩とし
てモンモリロナイトが0.4質量%、滑剤としてシリカ
が0.15質量%含まれるように、上記のように作成し
た各マスターチップを混合して押出し温度260〜27
0℃で溶融混練し、幅が630mmのTダイよりシート
状に溶融押出した。そして、エアーナイフキャスト法に
より、20℃の回転ドラムに密着させて急冷し、実質的
に無定形で配向していない未延伸ポリアミドフィルムを
作製した。
Comparative Example 7 has a low draw ratio and an area ratio of 9
Since it was less than twice, the plane orientation coefficient of the film was low, the puncture strength was small, and the mechanical strength was poor. Example 5 Nylon 6 having a melting point of 225 ° C., a relative viscosity of 3.0, a glass transition temperature Tg of 50 ° C., a crystallization peak temperature Tcp of 120 ° C. and a melting point of 225 ° C. was used as a main polyamide component. Then, each of the master chips prepared as described above was mixed so that the nylon 6 contained 0.4% by mass of montmorillonite as a layered silicate and 0.15% by mass of silica as a lubricant, and the extrusion temperature was from 260 to 27.
The mixture was melt-kneaded at 0 ° C. and melt-extruded into a sheet form from a T die having a width of 630 mm. Then, by an air knife casting method, it was brought into close contact with a rotating drum at 20 ° C. and rapidly cooled to prepare a substantially amorphous and unoriented polyamide film.

【0061】次いでこの未延伸フィルムに以下のような
同時二軸延伸を施した。まず、未延伸フィルムを後述す
るテンター式同時二軸延伸機の入口幅に合わせるため
に、その幅が260mmになるように両端をカットし、
入口クリッブの先端間幅を210mmにセットしたテン
ター式同時二軸延伸機に導いてクリップに把持して、6
0℃でフィルム延伸のための予熱を行った。そして、こ
のフィルムを、面倍率が4倍に至るまではフィルム温度
Tiが70℃になるように、すなわち、ナイロン6のガ
ラス転移温度Tgよりも高く、ナイロン6の結晶化ピー
ク温度Tcpよりも低い温度となるように調節して、延
伸処理を行った。面倍率が4倍を超えるとフィルム温度
Tiを上げて、面倍率が最大となる最大延伸倍率点にお
けるフィルム温度Teが180℃となるように、すなわ
ちナイロン6の融点Tm−70よりも高く、ナイロン6
の融点Tmよりも低い温度となるように調整して、縦方
向に3.0倍、横方向に3.3倍まで延伸した。その
後、同テンター内で160〜215℃の定幅熱処理およ
び4%の弛緩熱処理を施した。
Then, the unstretched film was subjected to the following simultaneous biaxial stretching. First, in order to match the unstretched film with the entrance width of the tenter simultaneous biaxial stretching machine described later, both ends are cut so that the width becomes 260 mm,
Guide it to a tenter type simultaneous biaxial stretching machine with the width between the tips of the inlet crib set to 210 mm, grip it with clips, and
Preheating for film stretching was performed at 0 ° C. The film temperature Ti of this film was set to 70 ° C. until the surface magnification reached 4 times, that is, higher than the glass transition temperature Tg of nylon 6 and lower than the crystallization peak temperature Tcp of nylon 6. The temperature was adjusted so that it was subjected to a stretching treatment. When the areal ratio exceeds 4 times, the film temperature Ti is increased so that the film temperature Te at the maximum draw ratio point at which the areal ratio becomes maximum is 180 ° C., that is, higher than the melting point Tm-70 of nylon 6, 6
The temperature was adjusted to be lower than the melting point Tm of, and stretched to 3.0 times in the longitudinal direction and 3.3 times in the transverse direction. Then, a constant width heat treatment at 160 to 215 ° C. and a relaxation heat treatment at 4% were performed in the same tenter.

【0062】得られた二軸延伸ポリアミドフィルムのフ
ィルムの両端をクリップから開放し、耳部をトリミング
して巻き取り、厚み15μmのフィルムを作製した。得
られたフィルム(原反)は、スリッターにて500mm
幅にスリットし、製品として巻き取った。
The both ends of the obtained biaxially stretched polyamide film were released from the clips, and the ears were trimmed and wound up to prepare a film having a thickness of 15 μm. The obtained film (original) is 500 mm with a slitter.
It was slit into a width and rolled up as a product.

【0063】このフィルム製品から、TD吸湿伸び率
(%)、面配向係数、突刺強力(N)、熱水収縮率
(%)、ヘーズ(%)を測定するための各試験片を作製
した。得られた試験片の物性を表2に示す。
From this film product, test pieces for measuring TD moisture absorption elongation (%), plane orientation coefficient, puncture strength (N), hot water shrinkage (%) and haze (%) were prepared. Table 2 shows the physical properties of the obtained test pieces.

【0064】[0064]

【表2】 実施例6 モンモリロナイトの含有量を0.1質量%とした。そし
て、それ以外は実施例5と同様にしてポリアミドフィル
ムを作製し、各試験片を作製した。
[Table 2] Example 6 The content of montmorillonite was set to 0.1% by mass. Then, a polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0065】得られた試験片の物性を表2に示す。 実施例7 モンモリロナイトの含有量を1.0質量%とした。そし
て、それ以外は実施例5と同様にしてポリアミドフィル
ムを作製し、各試験片を作製した。
Table 2 shows the physical properties of the obtained test pieces. Example 7 The content of montmorillonite was set to 1.0% by mass. Then, a polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0066】得られた試験片の物性を表2に示す。 実施例8 フィルム温度Teを200℃とした。そしてそれ以外
は、実施例5と同様にしてポリアミドフィルムを作製
し、各試験片を作製した。
The physical properties of the obtained test piece are shown in Table 2. Example 8 The film temperature Te was set to 200 ° C. A polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0067】得られた試験片の物性を表2に示す。実施
例5〜実施例8で得られたポリアミドフィルムは、ポリ
アミド樹脂に層状珪酸塩が所定の割合で均一に分散され
た樹脂組成物を溶融製膜して、本発明の条件下で同時二
軸延伸を行ったため、高湿度雰囲気下でもTD方向の吸
湿伸び率が小さく、印刷性やラミネート加工性に優れた
フィルムが得られた。また、0.05以上の面配向係数
が得られ、突刺強力が10N以上と高く、また、熱水収
縮率が小さいフィルムが得られた。さらに、ヘーズが5
%以下と低く、透明性に優れたフィルムが得られた。こ
のようなポリアミドフィルムは、包装材料として好適に
使用できるものであった。 比較例8 モンモリロナイトを配合しなかった。そして、それ以外
は実施例5と同様にして、ポリアミドフィルムを作製
し、各試験片を作製した。
Table 2 shows the physical properties of the obtained test pieces. The polyamide films obtained in Examples 5 to 8 were formed by melt-casting a resin composition in which a layered silicate was uniformly dispersed in a polyamide resin at a predetermined ratio, and simultaneously biaxially produced under the conditions of the present invention. Since the film was stretched, a hygroscopic elongation in the TD direction was small even in a high humidity atmosphere, and a film excellent in printability and laminating processability was obtained. Further, a plane orientation coefficient of 0.05 or more was obtained, a puncture strength was as high as 10 N or more, and a film having a small hot water shrinkage rate was obtained. In addition, haze is 5
% Or less, and a film having excellent transparency was obtained. Such a polyamide film could be suitably used as a packaging material. Comparative Example 8 Montmorillonite was not added. Then, a polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0068】得られた試験片の物性を表2に示す。 比較例9 モンモリロナイトの配合割合を本発明の範囲よりも少な
く0.05質量%にした。そして、それ以外は実施例5
と同様にして、ポリアミドフィルムを作製し、各試験片
を作製した。
The physical properties of the obtained test piece are shown in Table 2. Comparative Example 9 The compounding ratio of montmorillonite was set to 0.05% by mass, which is less than the range of the present invention. And other than that, Example 5
A polyamide film was prepared in the same manner as in, and each test piece was prepared.

【0069】得られた試験片の物性を表2に示す。 比較例10 モンモリロナイトの配合割合を本発明の範囲よりも多く
2.0質量%にした。そして、それ以外は実施例5と同
様にして、ポリアミドフィルムを作製し、各試験片を作
製した。
The physical properties of the obtained test piece are shown in Table 2. Comparative Example 10 The compounding ratio of montmorillonite was set to 2.0% by mass, which is higher than the range of the present invention. Then, a polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0070】得られた試験片の物性を表2に示す。 比較例11 フィルム温度Teを本発明の範囲よりも低く90℃とし
た。そしてそれ以外は、実施例5と同様にしてポリアミ
ドフィルムを作製し、各試験片を作製した。
Table 2 shows the physical properties of the obtained test pieces. Comparative Example 11 The film temperature Te was set to 90 ° C., which is lower than the range of the present invention. A polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0071】得られた試験片の物性を表2に示す。 比較例12 フィルム温度Tiを本発明の範囲よりも高く140℃と
した。そしてそれ以外は、実施例5と同様にしてポリア
ミドフィルムを作製したが、フィルム切れが多発して試
験片を作製できなかった。 比較例13 フィルム温度Teを本発明の範囲よりも高く230℃と
した。そしてそれ以外は、実施例5と同様にしてポリア
ミドフィルムを作製し、各試験片を作製した。
Table 2 shows the physical properties of the obtained test pieces. Comparative Example 12 The film temperature Ti was set to 140 ° C, which is higher than the range of the present invention. A polyamide film was produced in the same manner as in Example 5 except for the above, but film breakage occurred frequently and a test piece could not be produced. Comparative Example 13 The film temperature Te was set to 230 ° C. higher than the range of the present invention. A polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0072】得られた試験片の物性を表2に示す。 比較例14 延伸倍率を縦2.7倍、横3.0倍として面倍率を8.
1倍とした。そしてそれ以外は、実施例5と同様にして
ポリアミドフィルムを作製し、各試験片を作製した。
Table 2 shows the physical properties of the obtained test pieces. Comparative Example 14 Stretching ratio is 2.7 times in the longitudinal direction and 3.0 times in the lateral direction, and the areal ratio is 8.
It was set to 1 time. A polyamide film was produced in the same manner as in Example 5 except for the above, and each test piece was produced.

【0073】得られた試験片の物性を表2に示す。比較
例8,9は、モンモリロナイトが配合されていない、あ
るいはその配合割合が少なすぎたため、TD方向の吸湿
伸びが大きく、印刷性やラミネート加工性に劣るものと
なった。
Table 2 shows the physical properties of the obtained test pieces. In Comparative Examples 8 and 9, since montmorillonite was not blended or the blending ratio was too small, the hygroscopic elongation in the TD direction was large and printability and laminating processability were poor.

【0074】比較例10は、モンモリロナイトの配合割
合が本発明の範囲を超えていたため、TD方向の吸湿伸
びは小さいものの、ヘーズが高くなり、白化が生じて透
明性に劣り、外観に劣るものとなった。
In Comparative Example 10, since the blending ratio of montmorillonite exceeded the range of the present invention, the hygroscopic elongation in the TD direction was small, but the haze was high, whitening occurred, the transparency was poor, and the appearance was poor. became.

【0075】比較例11は、フィルム温度をTeを本発
明の範囲よりも低くしたため、延伸時にボイドが発生し
てヘーズが高くなり、外観性に劣るものとなった。比較
例12は、フィルム温度Tiを本発明の範囲よりも高く
したため、延伸初期に結晶化が優先して進行し、フィル
ムが白化して破断が発生したため、上記のように試験フ
ィルムを作製できなかった。
In Comparative Example 11, since the film temperature was set to Te lower than the range of the present invention, voids were generated during stretching and haze was increased, resulting in poor appearance. In Comparative Example 12, since the film temperature Ti was set higher than the range of the present invention, crystallization was preferentially promoted in the initial stage of stretching, and the film was whitened and ruptured, so that the test film could not be prepared as described above. It was

【0076】比較例13は、フィルム温度Teを本発明
の範囲よりも高くしたため、生成した結晶の融解が進行
して結晶化度が低下し、結果として吸湿伸びの大きいも
のしか得られなかった。
In Comparative Example 13, since the film temperature Te was set higher than the range of the present invention, melting of the produced crystals proceeded to lower the crystallinity, and as a result, only those having large hygroscopic elongation were obtained.

【0077】比較例14は、延伸倍率が低く、面倍率が
9倍未満であったため、フィルムの面配向係数が低くな
り、突刺強力が小さく、機械的強力に劣るものとなっ
た。
In Comparative Example 14, the stretching ratio was low and the surface magnification was less than 9 times, so that the surface orientation coefficient of the film was low, the puncture strength was small, and the mechanical strength was poor.

【0078】[0078]

【発明の効果】本発明によれば、ポリアミド樹脂99.
9〜99.0質量%に層状珪酸塩0.1〜1.0質量%
が均一に分散された樹脂組成物からなるフィルムであっ
て、20℃、40%RH雰囲気下から20℃、80%R
H雰囲気下へ湿度変化させたときのTD方向の吸湿伸び
率が1.3%以下であり、ヘーズが5.0%以下であ
り、面配向係数が0.05以上であるフィルムとするこ
とで、高湿度雰囲気下でも吸湿伸びが小さく、印刷性や
ラミネート加工性に優れたフィルムが得られ、これまで
制限されていた逐次二軸延伸ポリアミドフィルムの利用
範囲の拡大が図れる。従って、このようなポリアミドフ
ィルムは、食品や医薬品や雑貨などの包装材料として好
適に使用できる。
According to the present invention, the polyamide resin 99.
Layer silicate 0.1 to 1.0% by mass in 9 to 99.0% by mass
Is a film composed of a resin composition in which are uniformly dispersed, at 20 ° C., 40% RH, and 20 ° C., 80% R
When the film has a hygroscopic elongation in the TD direction of 1.3% or less, a haze of 5.0% or less, and a plane orientation coefficient of 0.05 or more when the humidity is changed to an H atmosphere. In addition, even in a high-humidity atmosphere, a film having a small hygroscopic elongation and excellent printability and laminating processability can be obtained, and the application range of the successive biaxially stretched polyamide film which has been limited so far can be expanded. Therefore, such a polyamide film can be suitably used as a packaging material for foods, pharmaceuticals, miscellaneous goods, and the like.

【0079】また、本発明のポリアミドフィルムは、上
記の配合割合の樹脂組成物を用いて特定の温度条件下で
未延伸フィルムに逐次延伸あるいは同時二軸延伸を施す
ことで、操業性良く、安定して製造できる。
Further, the polyamide film of the present invention has good operability and is stable by subjecting an unstretched film to sequential stretching or simultaneous biaxial stretching under a specific temperature condition using the resin composition having the above-mentioned mixing ratio. Can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 7:00 B29L 7:00 Fターム(参考) 4F071 AA35 AB26 AD05 AF10 AF14 AF30 AH04 BA01 BB06 BB07 BB08 BC01 4F210 AA29 AB16 AB27 AR06 QC06 QC07 QD16 QG01 QG18 4J002 CL001 CL011 CL031 CL051 CL062 DJ006 FA016 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 7:00 B29L 7:00 F term (reference) 4F071 AA35 AB26 AD05 AF10 AF14 AF30 AH04 BA01 BB06 BB07 BB08 BC01 4F210 AA29 AB16 AB27 AR06 QC06 QC07 QD16 QG01 QG18 4J002 CL001 CL011 CL031 CL051 CL062 DJ006 FA016

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリアミド樹脂99.9〜99.0質量
%に層状珪酸塩0.1〜1.0質量%が均一に分散され
た樹脂組成物からなるフィルムであって、20℃、40
%RH雰囲気下から20℃、80%RH雰囲気下へ湿度
変化させたときのTD方向の吸湿伸び率が1.3%以下
であり、ヘーズが5.0%以下であり、面配向係数が
0.05以上であることを特徴とするポリアミドフィル
ム。
1. A film comprising a resin composition in which 0.1-9% by mass of layered silicate is uniformly dispersed in 99.9-99.0% by mass of a polyamide resin, and the film is at 40 ° C. and 40 ° C.
The moisture absorption elongation in the TD direction is 1.3% or less, the haze is 5.0% or less, and the plane orientation coefficient is 0 when the humidity is changed from a% RH atmosphere to a temperature of 20 ° C. and a 80% RH atmosphere. A polyamide film having a thickness of 0.05 or more.
【請求項2】 ポリアミド樹脂が脂肪族ポリアミドを主
成分とすることを特徴とする請求項1記載のポリアミド
フィルム。
2. The polyamide film according to claim 1, wherein the polyamide resin contains an aliphatic polyamide as a main component.
【請求項3】 ポリアミド樹脂99.9〜99.0質量
%に層状珪酸塩0.1〜1.0質量%が均一に分散され
た樹脂組成物を溶融製膜し、この未延伸フィルムを縦方
向に延伸した後に、横延伸倍率が2倍に至るまではフィ
ルム温度(Ti)をTg≦Ti≦Tcpの範囲とし、横
延伸倍率が最大となる最大延伸倍率点でのフィルム温度
(Te)をTm−70≦Te≦Tmの範囲として横方向
に延伸し、この逐次二軸延伸によりフィルム化すること
を特徴とするポリアミドフィルムの製造方法。 Tg:ポリアミド樹脂のガラス転移温度 Tcp:ポリアミド樹脂の結晶化ピーク温度 Tm:ポリアミド樹脂の融点
3. A resin composition in which 0.1 to 1.0% by mass of layered silicate is uniformly dispersed in 99.9 to 99.0% by mass of polyamide resin is melt-cast and the unstretched film is longitudinally stretched. After stretching in the direction, the film temperature (Ti) is set in the range of Tg ≦ Ti ≦ Tcp until the transverse stretching ratio reaches 2 times, and the film temperature (Te) at the maximum stretching ratio point at which the transverse stretching ratio becomes maximum is A method for producing a polyamide film, which comprises laterally stretching in the range of Tm-70 ≦ Te ≦ Tm, and forming a film by this sequential biaxial stretching. Tg: glass transition temperature of polyamide resin Tcp: crystallization peak temperature of polyamide resin Tm: melting point of polyamide resin
【請求項4】 ポリアミド樹脂99.9〜99.0質量
%に層状珪酸塩0.1〜1.0質量%が均一に分散され
た樹脂組成物を溶融製膜し、この未延伸フィルムを、面
倍率が4倍に至るまではフィルム温度(Ti)をTg≦
Ti≦Tcpの範囲とし、面倍率が最大となる最大延伸
倍率点でのフィルム温度(Te)をTm−70≦Te≦
Tmの範囲として同時二軸延伸し、フィルム化すること
を特徴とするポリアミドフィルムの製造方法。 Tg:ポリアミド樹脂のガラス転移温度 Tcp:ポリアミド樹脂の結晶化ピーク温度 Tm:ポリアミド樹脂の融点
4. A resin composition, in which 0.1 to 1.0% by mass of layered silicate is uniformly dispersed in 99.9 to 99.0% by mass of polyamide resin, is melt-cast and the unstretched film is Film temperature (Ti) Tg ≦
The film temperature (Te) at the maximum draw ratio point at which the areal ratio is maximized is Tm−70 ≦ Te ≦, where Ti ≦ Tcp.
A method for producing a polyamide film, comprising simultaneously biaxially stretching as a range of Tm to form a film. Tg: glass transition temperature of polyamide resin Tcp: crystallization peak temperature of polyamide resin Tm: melting point of polyamide resin
JP2001208710A 2001-07-10 2001-07-10 Polyamide film and method for producing the same Expired - Fee Related JP4889164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208710A JP4889164B2 (en) 2001-07-10 2001-07-10 Polyamide film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001208710A JP4889164B2 (en) 2001-07-10 2001-07-10 Polyamide film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003020349A true JP2003020349A (en) 2003-01-24
JP4889164B2 JP4889164B2 (en) 2012-03-07

Family

ID=19044481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208710A Expired - Fee Related JP4889164B2 (en) 2001-07-10 2001-07-10 Polyamide film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4889164B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162805A (en) * 2003-12-01 2005-06-23 Toray Ind Inc Aromatic polyamide film
JP2008081616A (en) * 2006-09-28 2008-04-10 Unitika Ltd Biaxial oriented polyamide film and its manufacturing method
JP2008239654A (en) * 2007-03-26 2008-10-09 Unitika Ltd Method for producing polyamide film
WO2010064616A1 (en) 2008-12-03 2010-06-10 東洋紡績株式会社 Biaxially stretched polyamide resin film
JP2010131809A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched multilayered polyamide resin film
JP2010132743A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched polyamide resin film
JP2010132744A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched polyamide resin film
JP2010131810A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched multilayered polyamide resin film
WO2012117884A1 (en) 2011-03-01 2012-09-07 東洋紡績株式会社 Stretched polyamide film
US20170327972A1 (en) * 2014-12-19 2017-11-16 Truetzschler Gmbh & Co. Kg Process and apparatus for the production of a low-shrinkage aliphatic polyamide yarn, and low-shrinkage yarn
CN109320898A (en) * 2018-10-11 2019-02-12 吉林建筑大学 Nano montmorillonite modified PA6/ABS alloy and preparation method
CN113348066A (en) * 2019-01-28 2021-09-03 东洋纺株式会社 Biaxially oriented polyamide film and rolled polyamide film roll

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125126A (en) * 1990-09-14 1992-04-24 Unitika Ltd Production of polyamide biaxially stretched film
JPH09194606A (en) * 1996-01-12 1997-07-29 Unitika Ltd Polyamide film and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125126A (en) * 1990-09-14 1992-04-24 Unitika Ltd Production of polyamide biaxially stretched film
JPH09194606A (en) * 1996-01-12 1997-07-29 Unitika Ltd Polyamide film and its preparation

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162805A (en) * 2003-12-01 2005-06-23 Toray Ind Inc Aromatic polyamide film
JP2008081616A (en) * 2006-09-28 2008-04-10 Unitika Ltd Biaxial oriented polyamide film and its manufacturing method
JP2008239654A (en) * 2007-03-26 2008-10-09 Unitika Ltd Method for producing polyamide film
EP2615129A2 (en) 2008-12-03 2013-07-17 Toyobo Co., Ltd. Biaxially stretched polyamide resin film
US8900687B2 (en) 2008-12-03 2014-12-02 Toyobo Co., Ltd. Biaxially stretched polyamide resin film
JP2010132743A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched polyamide resin film
JP2010132744A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched polyamide resin film
JP2010131810A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched multilayered polyamide resin film
CN102239204A (en) * 2008-12-03 2011-11-09 东洋纺织株式会社 Biaxially stretched polyamide resin film
US9718260B2 (en) 2008-12-03 2017-08-01 Toyobo Co., Ltd. Biaxially stretched polyamide resin film
WO2010064616A1 (en) 2008-12-03 2010-06-10 東洋紡績株式会社 Biaxially stretched polyamide resin film
KR101294457B1 (en) * 2008-12-03 2013-08-07 도요보 가부시키가이샤 Biaxially stretched polyamide resin film
JP2010131809A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched multilayered polyamide resin film
TWI465493B (en) * 2008-12-03 2014-12-21 Toyo Boseki Biaxially stretched polyamide resin film
US9315667B2 (en) 2011-03-01 2016-04-19 Toyobo Co., Ltd. Stretched polyamide film
WO2012117884A1 (en) 2011-03-01 2012-09-07 東洋紡績株式会社 Stretched polyamide film
KR101930967B1 (en) 2011-03-01 2018-12-19 도요보 가부시키가이샤 Stretched polyamide film
KR20180135989A (en) 2011-03-01 2018-12-21 도요보 가부시키가이샤 Stretched polyamide film
US20170327972A1 (en) * 2014-12-19 2017-11-16 Truetzschler Gmbh & Co. Kg Process and apparatus for the production of a low-shrinkage aliphatic polyamide yarn, and low-shrinkage yarn
US10689778B2 (en) * 2014-12-19 2020-06-23 Truetzschler Gmbh & Co. Kg Process and apparatus for the production of a low-shrinkage aliphatic polyamide yarn, and low-shrinkage yarn
CN109320898A (en) * 2018-10-11 2019-02-12 吉林建筑大学 Nano montmorillonite modified PA6/ABS alloy and preparation method
CN113348066A (en) * 2019-01-28 2021-09-03 东洋纺株式会社 Biaxially oriented polyamide film and rolled polyamide film roll
CN113348066B (en) * 2019-01-28 2023-04-04 东洋纺株式会社 Biaxially oriented polyamide film and rolled polyamide film roll

Also Published As

Publication number Publication date
JP4889164B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JPS60174629A (en) Manufacture of biaxially oriented polyamide film
JP2003020349A (en) Polyamide film and its production method
JP5034677B2 (en) Polyamide resin multilayer film and method for producing the same
JPS6024814B2 (en) resin composition
US4690792A (en) Biaxially drawn laminated films prepared by sequential stretching
US4753842A (en) Heat-shrinkable biaxially drawn polyamide film and process for preparation thereof
JP2009234131A (en) Production process of biaxially stretched polyamide resin film
JP2821243B2 (en) Manufacturing method of laminated biaxially stretched film
JPH04270655A (en) Laminaed biaxially stretched film and its manufacture
JP4658441B2 (en) Biaxially stretched polyamide film for food packaging
US6685871B2 (en) Toughened biaxially oriented film
KR100240447B1 (en) Polyamide resin composition for using as film
JPH0222032A (en) Biaxially oriented polyamide film
JPH10138332A (en) Biaxially stretched polyamide film and its manufacture
RU2786076C1 (en) Semi-aromatic polyamide film and method for obtaining the film
KR19990042595A (en) Polyamide Resin Composition for Film
JP3505898B2 (en) Manufacturing method of sequential biaxially stretched polyamide film
JP2797624B2 (en) Method for producing biaxially stretched polyamide film
JPS5852821B2 (en) Nylon stretched film and its manufacturing method
JPH1036665A (en) Biaxially oriented polyamide film
JP2000318036A (en) Production of biaxially stretched polyamide film
JP2003155359A (en) Biaxially stretched polyamide film
JPH11348115A (en) Production of simultaneously biarxially stretched polyamide film
JPH09327858A (en) Manufacture of biaxially oriented polyamide film
JP3409532B2 (en) Polyamide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees