JP2821243B2 - Manufacturing method of laminated biaxially stretched film - Google Patents

Manufacturing method of laminated biaxially stretched film

Info

Publication number
JP2821243B2
JP2821243B2 JP2157246A JP15724690A JP2821243B2 JP 2821243 B2 JP2821243 B2 JP 2821243B2 JP 2157246 A JP2157246 A JP 2157246A JP 15724690 A JP15724690 A JP 15724690A JP 2821243 B2 JP2821243 B2 JP 2821243B2
Authority
JP
Japan
Prior art keywords
film
polyamide
stretching
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2157246A
Other languages
Japanese (ja)
Other versions
JPH0447924A (en
Inventor
和久 宮下
賢二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2157246A priority Critical patent/JP2821243B2/en
Publication of JPH0447924A publication Critical patent/JPH0447924A/en
Application granted granted Critical
Publication of JP2821243B2 publication Critical patent/JP2821243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、積層二軸延伸フィルムの製造方法に関する
ものであり、詳しくは、逐次二軸延伸法を用いたポリア
ミド積層二軸延伸フィルムの製造方法に関するものであ
る。
The present invention relates to a method for producing a laminated biaxially stretched film, and more particularly, to a method for producing a polyamide laminated biaxially oriented film using a sequential biaxial stretching method. It is about the method.

〔従来の技術〕[Conventional technology]

m−及び/又はp−キシリレンジアミンと炭素数6〜
12のα,ω脂肪族ジカルボン酸とから成るポリアミド構
成単位を分子鎖中70モル%以上含有する芳香族ポリアミ
ド(以下Aと略す)のフィルムは、湿度依存性の少ない
優れた酸素ガスバリヤー性を示し、しかも、透明性、耐
油性に優れている。しかしながら、耐屈曲ピンホール性
に劣っており、その用途が制限されていた。
m- and / or p-xylylenediamine and carbon number 6 to
A film of an aromatic polyamide (hereinafter abbreviated as A) containing at least 70 mol% of polyamide constituent units composed of α and ω aliphatic dicarboxylic acids in the molecular chain has excellent oxygen gas barrier properties with little humidity dependency. And excellent in transparency and oil resistance. However, it is inferior in bending pinhole resistance, and its use has been limited.

一方、脂肪族ポリアミド(以下Bと略す)のフィルム
は、引張強度、耐ピンホール強度等の機械的性質に優れ
ているが、食品、医薬品、薬品等に用いた場合、酸素ガ
ス遮断性が充分とはいえない。
On the other hand, an aliphatic polyamide (hereinafter abbreviated as B) film is excellent in mechanical properties such as tensile strength and pinhole resistance, but has a sufficient oxygen gas barrier property when used in foods, pharmaceuticals, chemicals, and the like. Not really.

そこで、(A)を主成分とした層と(B)を主成分と
した層とから成る二軸延伸フィルムが提案されるに至っ
ている。
Therefore, a biaxially stretched film including a layer containing (A) as a main component and a layer containing (B) as a main component has been proposed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記のポリアミド積層二軸延伸フィル
ムの製造は、必ずしも容易ではない。
However, production of the above-described polyamide-laminated biaxially stretched film is not always easy.

例えば、特開昭56−49269号公報には、大量生産に適
しているために工業的に有利とされている逐次二軸延伸
法による製造方法が開示されているが、逐次二軸延伸性
を確保するために、前記(A)と(B)の合計層が8層
以上であることを必須要件としている。
For example, JP-A-56-49269 discloses a production method by a sequential biaxial stretching method which is industrially advantageous because it is suitable for mass production. In order to ensure this, it is essential that the total number of layers (A) and (B) is eight or more.

また、他の製造方法としては、特開昭57−51427号公
報に記載の方法があるが、該方法はインフレーション法
による製造方法であり、従って、工業的に有利な製造方
法ではない。
As another production method, there is a method described in JP-A-57-51427, but this method is a production method by an inflation method, and is not an industrially advantageous production method.

本発明は、比較的少ない合計層数で且つ機械的性質、
酸素ガス遮断性の良好なポリアミド積層二軸延伸フィル
ムの逐次二軸延伸法による製造方法の提供を目的とした
ものである。
The invention provides a relatively low total number of layers and mechanical properties,
An object of the present invention is to provide a method for producing a polyamide laminated biaxially stretched film having good oxygen gas barrier properties by a sequential biaxial stretching method.

〔課題を解決するたの手段〕[Means for solving the problem]

本発明者等は、上記実情に鑑み鋭意検討を重ねた結
果、合計層数5層以下のポリアミド積層フィルムについ
ては、延伸温度、変形速度、延伸倍率および熱処理温度
の選択により、十分な逐次二軸延伸性が確保されるとの
知見を得、本発明の完成に至った。
The present inventors have conducted intensive studies in view of the above-mentioned circumstances, and as a result, with respect to a polyamide laminated film having a total number of layers of 5 layers or less, a sufficient sequential biaxial The knowledge that stretchability was ensured was obtained, and the present invention was completed.

すなわち、本発明の要旨は、m−及び/又はp−キシ
リレンジアミンと炭素数6〜12のα,ω脂肪族ジカルボ
ン酸とから成るポリアミド構成単位を分子鎖中70モル%
以上含有する芳香族ポリアミド、脂肪族ポリアミド及び
これらの混合ポリアミドより成る原料群から選択された
2種以上の原料ポリアミドを溶融状態で押出して合計層
数が5以下の無配向積層フィルムを得、該無配向積層フ
ィルムを延伸温度が40〜80℃、平均変形速度が10,000%
/分以上の条件下に2.5〜3.7倍縦延伸し、該縦延伸フィ
ルムを延伸温度が55〜100℃、平均変形速度が300〜10,0
00%/分の条件下に3.0〜5.0倍横延伸し、次いで、該横
延伸フィルムを前記の脂肪族ポリアミドの融点より110
℃低い温度を下限とし且つ芳香族ポリアミド原料の融点
より5℃低い温度を上限とする条件下に熱処理すること
を特徴とする積層二軸延伸フィルムの製造方法に存す
る。
That is, the gist of the present invention is to provide a polyamide structural unit comprising m- and / or p-xylylenediamine and an α, ω aliphatic dicarboxylic acid having 6 to 12 carbon atoms in a molecular chain at 70 mol%.
A non-oriented laminated film having a total number of layers of 5 or less is obtained by extruding in a molten state two or more raw material polyamides selected from a raw material group consisting of an aromatic polyamide, an aliphatic polyamide and a mixed polyamide containing the same. Stretching temperature of non-oriented laminated film is 40 ~ 80 ℃, average deformation rate is 10,000%
The film is stretched longitudinally 2.5 to 3.7 times under the conditions of / min or more, the stretched film is stretched at a temperature of 55 to 100 ° C, and the average deformation rate is 300 to 10,000.
The film was stretched 3.0 to 5.0 times under the condition of 00% / min.
A method for producing a laminated biaxially stretched film, characterized in that a heat treatment is performed under the condition that the lower temperature is lower by 5 ° C. and the upper limit is 5 ° C. lower than the melting point of the aromatic polyamide raw material.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

先ず、原料ポリアミドについて説明する。 First, the raw material polyamide will be described.

本発明において、原料ポリアミドの一つであるm−及
び/又はp−キシリレンジアミンと炭素数6〜12のα,
ω脂肪族ジカルボン酸とからなるポリアミド構成単位を
分子鎖中70モル%以上含有する芳香族ポリアミドとして
は、次のものが挙げられる。
In the present invention, m- and / or p-xylylenediamine which is one of the raw material polyamides and α, having 6 to 12 carbon atoms,
As the aromatic polyamide containing a polyamide constituent unit composed of ω aliphatic dicarboxylic acid in an amount of 70 mol% or more in the molecular chain, the following may be mentioned.

(1)ポリ−メタキシリレンアジパミド、ポリ−メタキ
シリレンピペラジド、ポリ−メタキシリレンアゼラミ
ド、ポリ−パラキシリレンアゼラミド、ポリ−パラキシ
リレンデカナミドのような単独重合体 (2)ポリ−メタキシリレン/パラキシリレンアジパミ
ド、ポリ−メタキシリレン/パラキシリレンピペラミ
ド、ポリ−メタキシリレン/パラキシリレンアゼラミ
ド、ポリ−メタキシリレン/パラキシリレンセパカミド
のような共重合体 (3)上記のような単独もしくは共重合体構成成分70モ
ル%以上と他のポリアミド構成成分とからなる共重合体 (4)上記のような単独もしくは共重合体と相溶性のあ
る重合体5〜20重量%との混合物 上記において、他のポリアミド構成成分としては、ヘ
キサメチレンジアミン、2,2,4−トリメチルヘキサメチ
レンジアミンのような脂肪族ジアミン、ピペラジンビス
プロピルアミン、ネオペンチルグリコールビスプロピル
アミンのような異節環または異原子含有ジアミン等とア
ジピン酸、アゼライン酸、セバシン酸のような脂肪酸ジ
カルボン酸、テレフタル酸、イソフタル酸のような芳香
族ジカルボン酸、1,4−シクロヘキサンジカルボン酸の
ような環状脂肪族ジカルボン酸等とから得られるポリア
ミド構成成分、ε−カプロラクタムのようなラクタム、
ε−アミノカルボン酸のようなω−アミノカルボン酸等
が挙げられる。
(1) Homopolymers such as poly-met-xylylene adipamide, poly-met-xylylene piperazide, poly-met-xylylene azeramid, poly-para-xylylene azeramide, poly-para-xylylene decanamid (2) Copolymers such as poly-meta-xylylene / para-xylylene adipamide, poly-met-xylylene / para-xylylene piperamide, poly-met-xylylene / para-xylylene azeramide, poly-met-xylylene / para-xylylene sepacamide (3) A copolymer comprising 70% by mole or more of the above-mentioned homo- or copolymer component and another polyamide component (4) A polymer 5 compatible with the above-mentioned homo- or copolymer component In the above, other polyamide constituents include hexamethylenediamine, 2,2,4-trimethylhexa. Aliphatic ring- or heteroatom-containing diamines such as aliphatic diamines such as methylene diamine, piperazine bispropylamine and neopentyl glycol bispropylamine, and fatty acid dicarboxylic acids such as adipic acid, azelaic acid and sebacic acid, and terephthalic acid An aromatic dicarboxylic acid such as isophthalic acid, a polyamide component obtained from a cycloaliphatic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, a lactam such as ε-caprolactam,
and ω-aminocarboxylic acids such as ε-aminocarboxylic acid.

また、上記において、重合体に相溶可能な重合体とし
ては、他のポリアミド構成成分あるいは他の相溶可能な
熱可塑性樹脂を意図する。混合する重合体が20重量%を
越える場合は、得られる積層延伸フィルムのガスバリヤ
ー性が低下して好ましくない。
In the above description, as the polymer compatible with the polymer, other polyamide constituents or other compatible thermoplastic resins are intended. If the amount of the polymer to be mixed exceeds 20% by weight, the gas barrier property of the obtained laminated stretched film is undesirably reduced.

そして、上記芳香族ポリアミド原料において、m−及
び/又はp−キシリレンジアミンと炭素数6〜12のα,
ω脂肪族ジカルボン酸とからなるポリアミド構成単位が
分子鎖中70モル%未満である重合体の場合、得られた積
層二軸延伸フィルムのガスバリヤー性が低下して、本発
明の目的に合致しない。
And, in the aromatic polyamide raw material, m- and / or p-xylylenediamine and α, having 6 to 12 carbon atoms,
In the case of a polymer having less than 70 mol% of the polyamide constituent unit composed of the ω aliphatic dicarboxylic acid in the molecular chain, the gas barrier property of the obtained laminated biaxially stretched film is reduced, which does not meet the purpose of the present invention. .

本発明において、脂肪族ポリアミドとしては、次のも
のが挙げられる。
In the present invention, examples of the aliphatic polyamide include the following.

(1)ε−カプロラクタムの単独重合体(ホモポリマ
ー) (2)ε−カプロラクタムを主成分とし、2〜10モル%
のこれと共重合可能な化合物との共重合体(コポリマ
ー) (3)上記ホモポリマー及び/又はコポリマーと相溶性
のある重合体5〜20重量%との混合物 上記において、ε−カプロラクタムと共重合可能な化
合物としては、脂肪族または芳香族のジアミン類と脂肪
族または芳香族のジカルボン酸類とのナイロン塩が挙げ
られる。
(1) Homopolymer of ε-caprolactam (homopolymer) (2) 2 to 10% by mole of ε-caprolactam as a main component
(3) Mixture of the above homopolymer and / or copolymer with 5 to 20% by weight of a polymer compatible with the above. In the above, copolymerization with ε-caprolactam Possible compounds include nylon salts of aliphatic or aromatic diamines with aliphatic or aromatic dicarboxylic acids.

そして、ジアミン類の代表例としては、エチレンジア
ミン、テトラメチレンジアミン、ペンタメチレンジアミ
ン、ヘキサメチレンジアミン、オクタメチレンジアミ
ン、デカメチレンジアミン、メタキシリレンジアミン、
パラキシリレンジアミン等が挙げられ、ジカルボン酸類
の代表例としては、アジピン酸、セバシン酸、コルク
酸、グルタール酸、アゼライン酸、β−メチルアジピン
酸、テレフタル酸、イソフタル酸、デカメチレンジカル
ボン酸、ドデカメチレンジカルボン酸、ピメリン酸等が
挙げられる。
Representative examples of diamines include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, metaxylylenediamine,
Paraxylylenediamine and the like, and representative examples of dicarboxylic acids include adipic acid, sebacic acid, corkic acid, glutaric acid, azelaic acid, β-methyladipic acid, terephthalic acid, isophthalic acid, decamethylenedicarboxylic acid, dodeca Examples include methylene dicarboxylic acid and pimelic acid.

上記の脂肪族ポリアミドの中で、通常ナイロン−6と
称されるε−カプロラクタムのホモポリマーは、安価で
入手が容易であるが、従来より逐次二軸延伸が困難とい
われていたものである。
Among the above-mentioned aliphatic polyamides, a homopolymer of ε-caprolactam, usually called nylon-6, is inexpensive and easily available, but it has conventionally been said that sequential biaxial stretching is difficult.

本発明方法は、斯かるε−カプロラクタムのホモポリ
マーに対し、円滑な逐次二軸延伸を遂行し得るので、工
業的に極めて有利といえる。
The method of the present invention can be said to be extremely advantageous industrially because such a homopolymer of ε-caprolactam can be smoothly and sequentially biaxially stretched.

本発明において、混合ポリアミドは、上記の芳香族ポ
リアミドと脂肪族ポリアミドとの混合物を使用すること
ができる。混合ポリアミドは、通常、製造工程で発生す
る、テンタークリップで把持されたフィルム側端部の切
断端材(以下「耳トリム端材」という)やスクラップ等
を利用して準備される。
In the present invention, as the mixed polyamide, a mixture of the above-mentioned aromatic polyamide and aliphatic polyamide can be used. The mixed polyamide is usually prepared by using a cut off material (hereinafter, referred to as “ear trim end material”) at the side of the film gripped by the tenter clip, a scrap, and the like, which are generated in a manufacturing process.

なお、原料ポリアミドは、いずれも吸湿性が大きく、
吸湿したものを使用した場合は、原料を熱溶融して押し
出す際に、水蒸気やオリゴマーが発生し、フィルム化を
阻害し易い。
In addition, the raw material polyamide has large hygroscopicity,
When a material that has absorbed moisture is used, when the material is hot-melted and extruded, water vapor and oligomers are generated, which tends to hinder film formation.

従って、水分含有率が0.1重量%以下の実質的に無水
の原料を使用するのが好ましい。
Therefore, it is preferable to use a substantially anhydrous raw material having a water content of 0.1% by weight or less.

本発明においては、フィルムの性質に影響を与えない
範囲で、上記の原料ポリアミドに対し、滑剤、帯電防止
剤、酸化防止剤、ブロッキング防止剤、安定剤、染料、
顔料、無機質微粒子等の各種添加剤を添加することがで
きる。
In the present invention, within the range that does not affect the properties of the film, the above-mentioned raw material polyamide, a lubricant, an antistatic agent, an antioxidant, an antiblocking agent, a stabilizer, a dye,
Various additives such as pigments and inorganic fine particles can be added.

次に、製膜方法について説明する。 Next, a film forming method will be described.

本発明方法では、先ず、実質的に無定形で配向してい
ない未延伸の積層フィルム(以下「無配向積層フィル
ム」という)を共押出法により製造する。
In the method of the present invention, first, a substantially amorphous, non-oriented, unoriented laminated film (hereinafter referred to as “non-oriented laminated film”) is produced by a co-extrusion method.

共押出法は、例えば、ドライラミネート法、ウェット
ラミネート法等に比較し、単一フィルムの成形や接着剤
塗布などの前工程が省略でき1工程で無配向積層フィル
ムが得られ、かつ溶剤公害や溶剤臭を残すなどの欠点が
ない優れた方法である。
The co-extrusion method, for example, compared to the dry lamination method, the wet lamination method, etc., can omit the previous steps such as forming a single film and applying an adhesive, so that a non-oriented laminated film can be obtained in one step, and solvent pollution and This is an excellent method that has no drawbacks such as leaving solvent odor.

共押出法の具体例としては、マルチマニホールドダイ
法、フィードブロック法、マルチスロッドダイ法等が知
られているが、本発明方法においてはいづれの方法も採
用し得る。
As a specific example of the co-extrusion method, a multi-manifold die method, a feed block method, a multi-srod die method, and the like are known, and any of the methods can be employed in the method of the present invention.

共押出された無配向積層フィルムは、40℃以下、好ま
しくは35℃以下に保たれたキャスティングロール上の表
面に密着されて固化される。密着手段は、静電ピニング
法、エアナイフ法等の公知の手段を採用することができ
る。
The co-extruded non-oriented laminated film is brought into close contact with the surface of the casting roll kept at 40 ° C. or lower, preferably 35 ° C. or lower, and solidified. Known means such as an electrostatic pinning method and an air knife method can be employed as the contact means.

本発明方法において、無配向積層フィルムは、前記の
芳香族ポリアミド(A)、脂肪族ポリアミド(B)及び
これらの混合ポリアミド(C)より成る原料群から選択
され、合計層数が5以下の無配向積層フィルムとする必
要がある。
In the method of the present invention, the non-oriented laminated film is selected from a raw material group consisting of the aromatic polyamide (A), the aliphatic polyamide (B) and a mixed polyamide (C) thereof, and has a total number of layers of 5 or less. It is necessary to form an oriented laminated film.

上記の層構成としては、A/B、A/B/A、B/A/B、A/B/C、
B/A/C、A/C/B、A/C/B/C/A、B/C/A/C/B等が挙げられる。
A / B, A / B / A, B / A / B, A / B / C,
B / A / C, A / C / B, A / C / B / C / A, B / C / A / C / B and the like.

上記の無配向積層フィルムは、引き続き、ロール式縦
延伸機によって、縦方向に延伸(以下、単に「縦延伸」
という)される。本発明においては、公知のロール式高
速縦延伸機が使用できる。
The non-oriented laminated film is stretched in the longitudinal direction by a roll-type longitudinal stretching machine (hereinafter, simply referred to as “longitudinal stretching”).
Is called). In the present invention, a known roll-type high-speed longitudinal stretching machine can be used.

縦延伸は、延伸温度が40〜80℃、平均変形速度が10,0
00%/分以上の条件下に2.5〜3.7倍行う必要がある。
In the longitudinal stretching, the stretching temperature is 40 to 80 ° C and the average deformation speed is 10.0
It must be performed 2.5 to 3.7 times under the condition of 00% / min or more.

延伸温度が40℃より低い場合は、縦延伸後のフィルム
に縦延伸斑を生じ易く、また、80℃より高い場合は、フ
ィルムがロール表面上に粘着し易くなり、同様に、縦延
伸後のフィルムに縦延伸斑を生じ易く、更には、延伸さ
れた方向に方向性を持った水素結合が生起し、次の横方
向への延伸(以下、単に「横延伸」という)時に、フィ
ルムに横延伸斑や未延伸残部(テンタークリップ近傍の
延伸されていない部分)を生じたり、フィルムが裂け易
くなり、好ましくない。
If the stretching temperature is lower than 40 ° C, the film after longitudinal stretching tends to cause longitudinal stretching unevenness, and if the temperature is higher than 80 ° C, the film easily sticks to the roll surface, similarly, after the longitudinal stretching. The film tends to have longitudinal stretching unevenness, and furthermore, directional hydrogen bonding occurs in the stretching direction, and the film stretches in the next transverse direction (hereinafter simply referred to as “lateral stretching”). Uneven stretches and unstretched residual portions (unstretched portions near the tenter clips) are generated, and the film is easily torn, which is not preferable.

上記の変形速度とは、次の(I)式によって算出され
る値をいう。
The above-mentioned deformation speed refers to a value calculated by the following equation (I).

上記の(I)式において、各々の記号は次の意味を有
する。
In the above formula (I), each symbol has the following meaning.

VMD:フィルムの縦変形速度(%/分) X :フィルムの縦延伸倍率(倍)であり、UH/ULより
求まる L :縦方向延伸区間の長さ(m) UL :低速ロールの線速度(m/分) UH :高速ロールの線速度(m/分) 変形速度(VMD)が10,000%/分より低い場合は、縦
延伸は良好に行われたとしても、次の横延伸時にフィル
ムに横延伸斑を生じ易くなり、好ましくない。一方、変
形速度(VMD)が10,000%/分より大である場合は、縦
延伸は良好に行われ、しかも、次の横延伸時にフィルム
に横延伸斑が生じることがないので好ましい。変形速度
の上限は、使用する装置の構造、性能、延伸開始時のフ
ィルム温度等により、種々選択することができるが、10
0,000%/分以下とするのがよい。
V MD : Film longitudinal deformation speed (% / min) X: Film longitudinal stretching ratio (times), obtained from U H / U L L: Length of longitudinal stretching section (m) UL : Low speed roll Linear velocity (m / min) U H : linear velocity of high-speed roll (m / min) If the deformation speed (V MD ) is lower than 10,000% / min, During the transverse stretching, unevenness in the transverse stretching is likely to occur in the film, which is not preferable. On the other hand, when the deformation rate (V MD ) is more than 10,000% / min, the longitudinal stretching is favorably performed, and the transverse stretching is not generated in the next transverse stretching, which is preferable. The upper limit of the deformation rate can be selected variously depending on the structure of the apparatus used, the performance, the film temperature at the start of stretching, etc.
It is good to be less than 0,000% / min.

なお、延伸開始時のフィルム温度が低い場合は、変形
速度は上記範囲内において小さくし、フィルム温度が高
い場合は、上記範囲内において大きくするのが好まし
い。また、変形速度が5,000%/分以上の場合は、延伸
中に発熱を伴ってフィルム温度が若干(10〜20℃)上昇
することがあり、この場合は、必要に応じてフィルムを
冷却する必要がある。
In addition, when the film temperature at the start of stretching is low, it is preferable that the deformation speed be low within the above range, and when the film temperature is high, it is preferable that the deformation speed be high within the above range. When the deformation rate is 5,000% / min or more, the film temperature may increase slightly (10 to 20 ° C.) due to heat generation during stretching. In this case, it is necessary to cool the film as necessary. There is.

縦延伸倍率が2.5倍より小さい場合は、最終的に得ら
れるフィルムに所望の配向効果を賦与することができ
ず、3.7倍より大きい場合は、次の横延伸時に横延伸斑
や未延伸残部を生じ易く、且つ、裂け易くなるので好ま
しくない。好ましい縦延伸倍率は、2.7〜3.5倍である。
If the longitudinal stretching ratio is smaller than 2.5 times, the desired orientation effect cannot be imparted to the finally obtained film, and if it is larger than 3.7 times, the transverse stretching unevenness and unstretched residue at the next transverse stretching. It is not preferable because it is apt to occur and torn easily. The preferred longitudinal stretching ratio is 2.7 to 3.5 times.

延伸温度は、予熱ロールにより、また、縦延伸倍率
は、ロール式縦延伸機における高速ロールと低速ロール
の線速度を変えることにより、容易に調整することがで
きる。
The stretching temperature can be easily adjusted by a preheating roll, and the longitudinal stretching ratio can be easily adjusted by changing the linear velocity of a high-speed roll and a low-speed roll in a roll-type vertical stretching machine.

横延伸は、延伸温度が55〜100℃、平均変形速度が300
〜10,000%/分の条件下に3.0〜5.0倍行う必要がある。
For transverse stretching, the stretching temperature is 55-100 ° C, and the average deformation speed is 300
It is necessary to perform 3.0 to 5.0 times under conditions of ~ 10,000% / min.

延伸温度(横延伸終了位置でのフィルム温度)は、55
〜100℃、好ましくは60〜90℃にする必要があるが、フ
ィルムの変形速度および延伸倍率が高い場合は、フィル
ム温度は上記範囲内で高めを選び、変形速度および延伸
倍率が低い場合は、フィルム温度は上記範囲内で低めを
選ぶのが好ましい。そして、上記延伸温度の範囲外で
は、安定した横延伸を行うことは困難である。
The stretching temperature (the film temperature at the end of the transverse stretching) is 55
100100 ° C., preferably 60-90 ° C., but when the deformation rate and stretching ratio of the film are high, the film temperature is selected to be higher within the above range, and when the deformation speed and stretching ratio are low, It is preferable to select a lower film temperature within the above range. When the stretching temperature is out of the range, it is difficult to perform stable transverse stretching.

なお、フィルムの加熱は、熱風を吹き込む方法、赤外
線ヒーターを設置する方法、これらを組み合わせる方法
等のいずれかによればよい。
The film may be heated by a method of blowing hot air, a method of installing an infrared heater, a method of combining these methods, or the like.

上記の変形速度とは、次の(II)式で算出される値を
いう。
The above-mentioned deformation speed refers to a value calculated by the following equation (II).

上記の(II)式において、各々の記号は次の意味を有
する。
In the above formula (II), each symbol has the following meaning.

VTD:フィルムの横変形速度(%/分) Y :フィルムの機械的設定倍率(倍)であり、y2/y1
より求まる。y1はテンタークリップが拡幅し始める位置
でのテンターの幅、y2は横延伸終了位置でのテンター間
の幅を意味する。
V TD: transverse deformation speed of the film (% / min) Y: a mechanical set magnification of the film (magnification), y 2 / y 1
Find more. y 1 is the width of the tenter at a position where the tenter clip begins to widen, y 2 denotes a width between tenter in the transverse stretching end position.

U :テンターの速度(m/分) Lr :横延伸区間の長さ(m) 平均変形速度(VTD)が300%/分より低い場合は、フ
ィルムに横延伸斑が生じ易く、10000%/分より大であ
る場合は、フィルムに破断が生じ易く、好ましくない。
U: Speed of the tenter (m / min) L r : Length of the transverse stretching section (m) When the average deformation speed (V TD ) is lower than 300% / min, the film tends to have transverse stretching unevenness and 10,000% If it is more than / min, the film is likely to break, which is not preferable.

横延伸倍率が3倍より小さい場合は、未延伸残部を生
じ易く、5倍を超える場合は、横延伸フィルムの破断が
生じ易く好ましくない。延伸倍率の好ましい範囲は、3.
5〜4.5倍の範囲である。
When the transverse stretching ratio is smaller than 3 times, the unstretched residue tends to be generated, and when it exceeds 5 times, the transversely stretched film is apt to break, which is not preferable. The preferred range of the stretching ratio is 3.
The range is 5 to 4.5 times.

次に、二軸方向に延伸されたフィルムは、前記の脂肪
族ポリアミド原料(B)の融点より110℃低い温度を下
限とし且つ芳香族ポリアミ原料(A)の融点より5℃低
い温度を上限とする条件下に熱処理する。
Next, the biaxially stretched film has a lower limit of a temperature 110 ° C. lower than the melting point of the aliphatic polyamide raw material (B) and an upper limit of a temperature 5 ° C. lower than the melting point of the aromatic polyamide raw material (A). Heat treatment under the following conditions.

上記の熱処理により、二軸延伸された積層フィルムの
寸法安定性を向上させることができる。
By the above heat treatment, the dimensional stability of the biaxially stretched laminated film can be improved.

そして、上記の熱処理における温度条件は、最終的に
得ようとするフィルムに賦与する性質に応じて、以下の
条件を選択することができる。
The temperature conditions in the above heat treatment can be selected from the following conditions according to the properties imparted to the film finally obtained.

(1)沸騰水中に5分間浸漬した場合に収縮率が4%以
内であるような、熱水非収縮性のフィルムを得る場合 熱処理温度は、(A)の融点より55℃低い温度を下限
とし、(A)の融点より5℃低い温度を上限とする温度
範囲を選ぶ。
(1) When obtaining a hot water non-shrinkable film having a shrinkage ratio of 4% or less when immersed in boiling water for 5 minutes The lower limit of the heat treatment temperature is 55 ° C. lower than the melting point of (A). , A temperature range having an upper limit of 5 ° C. lower than the melting point of (A) is selected.

上記範囲より低い温度で熱処理を行なうと、最終的に
得られるフィルムの熱水収縮率が大きくなり、目的とす
る熱水非収縮性のフィルムが得られず、上記範囲を超え
る温度で熱処理を行なうと、フィルムの表面が白化し、
失透したり、フィルムが破断したりするので好ましくな
い。
When the heat treatment is performed at a temperature lower than the above range, the hot water shrinkage of the finally obtained film is increased, and the desired hot water non-shrinkable film cannot be obtained, and the heat treatment is performed at a temperature exceeding the above range. And the surface of the film whitens,
It is not preferable because of devitrification and breakage of the film.

(2)沸騰水中に5分間浸漬した場合の収縮率が15%以
上であるような熱水収縮性のフィルムを得る場合 熱処理温度は、(B)の融点より100℃低い温度を下
限とし、(B)の融点より30℃低い温度を上限とする温
度範囲を選ぶ。
(2) When obtaining a hot-water shrinkable film having a shrinkage ratio of 15% or more when immersed in boiling water for 5 minutes The lower limit of the heat treatment temperature is 100 ° C. lower than the melting point of (B). A temperature range having an upper limit of 30 ° C. lower than the melting point of B) is selected.

上記範囲より低い温度で熱処理を行なうと、フィルム
の熱処理が不十分となり、室温で放置した場合でも自然
収縮してしまい、上記範囲を超える温度で熱処理を行な
うと、熱水収縮率が小さくなり、収縮率の大きい熱水収
縮性のフィルムが得られない。
When the heat treatment is performed at a temperature lower than the above range, the heat treatment of the film becomes insufficient, and the film naturally shrinks even when left at room temperature, and when the heat treatment is performed at a temperature exceeding the above range, the hot water shrinkage decreases, A hot water shrinkable film having a large shrinkage rate cannot be obtained.

なお、上記の各熱処理は、上記の温度範囲内におい
て、フィルムを緊張状態、弛緩状態または両者を組み合
わせた状態のいずれの状態で行なってもよい。本発明方
法においては、約3〜15%程度の弛緩状態で行うのが好
ましいが、勿論、これに限定されるものではない。
Note that each of the above heat treatments may be performed in the above temperature range in any state of the film in a tensioned state, a relaxed state, or a state in which both are combined. In the method of the present invention, it is preferable to carry out the reaction in a relaxed state of about 3 to 15%, but of course, the present invention is not limited to this.

熱処理により充分に熱固定された積層二軸延伸フィル
ムは、常法に従い、冷却して巻き取られる。
The laminated biaxially stretched film that has been sufficiently heat-set by heat treatment is cooled and wound up according to a conventional method.

〔実施例〕〔Example〕

次に、本発明を実施例に基づいて更に詳細に説明する
が、本発明はその要旨を越えない限り、以下の例に限定
されるものではない。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples unless it exceeds the gist.

以下の例において、得られたフィルムの物理的性質
は、次に記した方法によって評価した。
In the following examples, the physical properties of the obtained films were evaluated by the methods described below.

フィルムの厚さ(μm) フィルムの幅方向に30mmの間隔でフィルムの全厚さを
測定し、その平均値を示す。厚さは、接触式のシックネ
スゲージを用いて測定した。
Film thickness (μm) The total thickness of the film is measured at intervals of 30 mm in the width direction of the film, and the average value is shown. The thickness was measured using a contact type thickness gauge.

フィルムの厚さ斑(%) 次式より算出した値を意味する。Film thickness unevenness (%) A value calculated by the following equation.

(上記の厚さ斑は、10%以下であると厚さ精度がよいと
いえる) 延伸倍率(倍) 未延伸フィルムにフェルトペンで直径30mmの円を描
き、延伸後の円と延伸前の円との縦方向(長手方向)お
よび横方向(幅方向)のそれぞれの長さを測定し、その
比率を算出し、延伸倍率とした。
(The thickness unevenness described above can be said to have good thickness accuracy if the thickness is 10% or less.) Stretching ratio (times) Draw a circle with a diameter of 30 mm on a non-stretched film with a felt pen, and the circle after stretching and the circle before stretching. And the respective lengths in the vertical direction (longitudinal direction) and in the horizontal direction (width direction) were measured, and the ratio was calculated to obtain the draw ratio.

破断強度(kg/mm2)、破断伸度(%) フィルムから、幅10mm、長さ100mmの試験片を調製
し、この試験片につき、島津製作所製のオートグラフ
(DSS−2000型)を用い、チャック間隔50mm、引っ張り
速度50mm/分、測定雰囲気23℃、相対湿度40%の条件下
に測定した。
Breaking strength (kg / mm 2 ), breaking elongation (%) A test piece of 10 mm in width and 100 mm in length was prepared from the film, and an autograph (DSS-2000 type) manufactured by Shimadzu Corporation was used for this test piece. The measurement was performed under the conditions of a chuck interval of 50 mm, a pulling speed of 50 mm / min, a measurement atmosphere of 23 ° C., and a relative humidity of 40%.

耐ピンホール強度(kg/mm) オートグラフ(DSS−2000型)のクロスヘッドに、内
径100mmφの円形型枠を取り付け、この型枠に試料フィ
ルムを緊張させて固定し、一方のオートグラフ・ヘッド
に取り付けられたロドーセルには、金属の丸棒を介して
先端が直径0.5mmの球面をなした針を取り付け、クロス
ヘッドを50mm/分の上昇速度で移動させることにより突
き刺し、フィルムが破れる際の強度(g)を測定し、フ
ィルムの厚さ(mm)で除した値を、耐ピンホール強度と
した。
Pinhole strength (kg / mm) A circular formwork with an inner diameter of 100 mm is attached to the autograph (DSS-2000) crosshead, and the sample film is tensioned and fixed to this formwork. Attach a spherical needle with a 0.5 mm diameter tip through a metal round bar to the rhodo cell attached to the, and pierce by moving the crosshead at a rising speed of 50 mm / min. The strength (g) was measured, and the value divided by the thickness (mm) of the film was defined as the pinhole resistance.

酸素透過率(cc/m2・24hrs) 酸素透過率測定装置OXY−TRAN100型(Modern control
社製)を用い25℃、65%RHの条件にて測定した。
Oxygen permeability (cc / m 2 · 24hrs) oxygen permeability measuring apparatus OXY-TRAN100 type (Modern Control
Was measured under the conditions of 25 ° C. and 65% RH.

熱水収縮率(%) 先ず、製品フィルムを温度23℃、相対湿度50%の雰囲
気下でコンディショニングし、フィルム表面に一辺の長
さ80mmである正方形の標線を、正方形の各辺がフィルム
の縦方向及び横方向に平行となるように描いた。
Hot water shrinkage (%) First, the product film is conditioned in an atmosphere at a temperature of 23 ° C and a relative humidity of 50%, and a square marked line with a side length of 80 mm is placed on the film surface. It is drawn so as to be parallel to the vertical and horizontal directions.

次に、この試料を沸騰水の中に5分間浸漬して取り出
した後、再び、温度23℃、相対湿度50%の雰囲気下に24
時間放置した。
Next, the sample was immersed in boiling water for 5 minutes, taken out, and then again placed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%.
Left for hours.

沸騰水へ浸漬する前と浸漬した後の正方形の寸法を測
定し、下記の計算 式より求めた。
The dimensions of the square before and after immersion in boiling water were measured, and were determined by the following formula.

ここで、IM1、IM2はフィルム縦方向に沿った辺の浸漬
前後の長さを、IT1、IT2はフィルム横方向に沿った辺の
浸漬前後の長さを、それぞれ意味する。
Here, I M1 and I M2 mean the lengths before and after immersion of the side along the longitudinal direction of the film, and I T1 and I T2 mean the lengths before and after immersion of the side along the lateral direction of the film, respectively.

なお、縦方向熱水収縮率および横方向熱水収縮率は、
熱水非収縮性フィルムの場合、約4%以下が望ましく、
熱水収縮性フィルムの場合、約15%以上が望ましい。
The vertical hot water shrinkage and the horizontal hot water shrinkage are
For hot water non-shrinkable films, less than about 4% is desirable,
For hot water shrinkable films, about 15% or more is desirable.

以下の例で使用した原料ポリアミドは、次の通りであ
る。
The raw material polyamide used in the following examples is as follows.

<芳香族ポリアミド(A)> ポリメタキシリレンアジパミド(三菱瓦斯化学
(製)、MXD−NY)(融点243℃) <脂肪族ポリアミド(B)> ポリ−ε−カプロアミド(三菱化成(株)製、ノバミ
ッド1022)(融点224℃) <混合ポリアミド(C)> 上記(A)、(B)の混合比約1:2の混合物(実施例
1で製造したB/A/Bより成る二軸延伸積層フィルムの耳
トリム端材粉砕物) 実施例1 2台の65mmφの押出機を用い、原料(B)及び(A)
をそれぞれ260℃、270℃の温度で加熱溶融し、2つの導
入口と3つのマニホールドとを有するTダイに導いた。
<Aromatic polyamide (A)> Polymethaxylylene adipamide (Mitsubishi Gas Chemical Co., Ltd., MXD-NY) (melting point: 243 ° C.) <Aliphatic polyamide (B)> Poly-ε-caproamide (Mitsubishi Chemical Corporation) Manufactured by Novamid 1022) (melting point: 224 ° C) <Mixed polyamide (C)> A mixture of the above (A) and (B) at a mixing ratio of about 1: 2 (a biaxial mixture of B / A / B produced in Example 1) Example 1 Raw material (B) and (A) using two 65 mmφ extruders
Was heated and melted at temperatures of 260 ° C. and 270 ° C., respectively, and led to a T-die having two inlets and three manifolds.

中央マニホールドに第1の押出機からの原料(A)を
導き、その上下のマニホールドに他の押出機からの原料
(B)を導いた。原料(B)は、流路によって2つに分
岐させて上下のマニホールドに導いた。そして、Tダイ
出口でB/A/Bの3層に積層してフィルム状に押出した。
The raw material (A) from the first extruder was guided to the central manifold, and the raw material (B) from another extruder was guided to the upper and lower manifolds. The raw material (B) was branched into two by a flow path and led to upper and lower manifolds. Then, three layers of B / A / B were laminated at the exit of the T-die and extruded into a film.

上記の積層フィルムを35℃に保たれた800mmφの冷却
ロールに静電ピニング法で密着させ、急冷することによ
り、原料(B)層が各約50μm、原料(A)層が約50
μ、全厚さ約150μmの無配向積層フィルムを得た。
The laminated film was brought into close contact with an 800 mmφ cooling roll maintained at 35 ° C. by an electrostatic pinning method and quenched, whereby the raw material (B) layer was about 50 μm each, and the raw material (A) layer was about 50 μm.
μ, a non-oriented laminated film having a total thickness of about 150 μm was obtained.

上記の無配向積層フィルムを複数ロールで構成される
縦延伸機に導き、延伸温度50℃、平均変形速度13000%
/分、延伸倍率2.9の条件下に縦延伸を行なった。
The above non-oriented laminated film is guided to a longitudinal stretching machine composed of a plurality of rolls.
The film was longitudinally stretched at a stretch ratio of 2.9 / min.

引き続き、縦延伸したフィルムをテンター式横延伸機
に移送し、その両端をテンタークリップで把持し、延伸
温度80℃、平均変形速度3000%/分、延伸倍率3.2倍の
条件下に横延伸を行なった。
Subsequently, the longitudinally stretched film is transferred to a tenter-type transverse stretching machine, and both ends thereof are gripped with tenter clips, and transverse stretching is performed under the conditions of a stretching temperature of 80 ° C, an average deformation speed of 3000% / min, and a stretching ratio of 3.2 times. Was.

引き続き、横延伸したフィルムをテンタークリップで
把持したまま200℃で熱処理を行なった。
Subsequently, a heat treatment was performed at 200 ° C. while holding the transversely stretched film with a tenter clip.

熱処理後のフィルムは、フィルム両耳を切断除去し、
ワインダーによって巻き取った。
The film after heat treatment, cut off both ears of the film,
Wound by winder.

得られた積層二軸延伸フィルムは、B/A/Bの各層の厚
さが約5μm、総厚さが約15μmであった。
The thickness of each layer of B / A / B of the obtained laminated biaxially stretched film was about 5 μm, and the total thickness was about 15 μm.

上記の方法によって、5時間連続してフィルムの製造
を行ったが、途中、何等の異常もなく、順調に運転でき
た。
The film was produced continuously for 5 hours by the above-mentioned method, but the operation could be performed smoothly without any abnormality during the production.

運転条件の詳細及び延伸時の状況を第1表に示し、得
られたフィルムの物理的性質の測定結果を第2表に示
す。
Table 1 shows the details of the operating conditions and the situation at the time of stretching, and Table 2 shows the measurement results of the physical properties of the obtained film.

実施例2 実施例1において、2つの導入口と2つのマニホール
ドとを有するTダイを用いてA/Bの2層に積層してフィ
ルム状に押出した他は、実施例1と同様にして、原料
(B)層が約100μm、原料(A)層が約50μ、全厚さ
約150μmの無配向積層フィルムを得た。
Example 2 In Example 1, except that the two layers of A / B were laminated and extruded into a film using a T-die having two inlets and two manifolds, A raw material (B) layer was about 100 μm, a raw material (A) layer was about 50 μm, and a non-oriented laminated film having a total thickness of about 150 μm was obtained.

その後、実施例1において用いたと同じ装置を用い
て、第1表に記載した条件により、縦延伸、横延伸及び
熱処理を行ない、2層構成の積層二軸延伸フィルムを製
造した。
Thereafter, using the same apparatus as used in Example 1, longitudinal stretching, transverse stretching and heat treatment were performed under the conditions described in Table 1 to produce a two-layer laminated biaxially stretched film.

上記の方法によって、5時間連続してフィルムの製造
を行ったが、途中、何等の異常もなく、順調に運転でき
た。
The film was produced continuously for 5 hours by the above-mentioned method, but the operation could be performed smoothly without any abnormality during the production.

運転条件の詳細及び延伸時の状況を第1表に示し、得
られたフィルムの物理的性質の測定結果を第2表に示
す。
Table 1 shows the details of the operating conditions and the situation at the time of stretching, and Table 2 shows the measurement results of the physical properties of the obtained film.

実施例3 実施例1において、原料(B)及び(C)を使用し、
B/C/Bの3層に積層してフィルム状に押出した他は、実
施例1と同様にして、原料(B)層が各約50μm、原料
(C)層が約150μ、全厚さ約200μmの無配向積層フィ
ルムを得た。
Example 3 In Example 1, the raw materials (B) and (C) were used,
Except that the raw material (B) layer was about 50 μm each, the raw material (C) layer was about 150 μm, and the total thickness was the same as in Example 1 except that the three layers of B / C / B were extruded into a film. A non-oriented laminated film of about 200 μm was obtained.

その後、実施例1において用いたと同じ装置を用い
て、第1表に記載した条件により、縦延伸、横延伸及び
熱処理を行ない、3層構成の積層二軸延伸フィルムを製
造した。
Thereafter, using the same apparatus as used in Example 1, longitudinal stretching, transverse stretching and heat treatment were performed under the conditions shown in Table 1 to produce a three-layer laminated biaxially stretched film.

上記の方法によって、5時間連続してフィルムの製造
を行ったが、途中、何等の異常もなく、順調に運転でき
た。
The film was produced continuously for 5 hours by the above-mentioned method, but the operation could be performed smoothly without any abnormality during the production.

運転条件の詳細及び延伸時の状況を第1表に示す。 Table 1 shows the details of the operating conditions and the conditions at the time of stretching.

実施例4〜6 実施例1において、縦延伸、横延伸及び熱処理を第1
表に記載した条件に変更した他は、実施例1と同様にし
て、B/A/Bの3層より成る積層二軸延伸フィルムを製造
した。
Examples 4 to 6 In Example 1, the longitudinal stretching, the transverse stretching and the heat treatment were performed in the first manner.
A laminated biaxially stretched film composed of three layers of B / A / B was produced in the same manner as in Example 1 except that the conditions described in the table were changed.

上記の方法によって、5時間連続してフィルムの製造
を行ったが、途中、何等の異常もなく、順調に運転でき
た。
The film was produced continuously for 5 hours by the above-mentioned method, but the operation could be performed smoothly without any abnormality during the production.

運転条件の詳細及び延伸時の状況を第1表に示し、ま
た、実施例5において得られたフィルムの物理的性質の
測定結果を第2表に示す。
Table 1 shows the details of the operating conditions and the conditions at the time of stretching, and Table 2 shows the measurement results of the physical properties of the film obtained in Example 5.

比較例1〜6 実施例1において、縦延伸、横延伸及び熱処理を第1
表に記載した条件に変更した他は、実施例1と同様にし
て、B/A/Bの3層より成る積層二軸延伸フィルムを製造
した。
Comparative Examples 1 to 6 In Example 1, the longitudinal stretching, the transverse stretching and the heat treatment were performed in the first manner.
A laminated biaxially stretched film composed of three layers of B / A / B was produced in the same manner as in Example 1 except that the conditions described in the table were changed.

運転条件の詳細及び延伸時の状況を第1表に示す。 Table 1 shows the details of the operating conditions and the conditions at the time of stretching.

〔発明の効果〕 以上説明した本発明によれば、延伸温度、変形速度、
延伸倍率および熱処理温度の確立により、工業的に有利
な逐次二軸延伸法によって合計層数5層以下の二軸延伸
積層ポリアミドフィルムを安定して製造することがで
き、本発明の工業的価値は大である。
[Effects of the Invention] According to the present invention described above, the stretching temperature, the deformation speed,
By establishing the stretching ratio and the heat treatment temperature, a biaxially stretched laminated polyamide film having a total number of layers of 5 or less can be stably produced by an industrially advantageous sequential biaxial stretching method, and the industrial value of the present invention is Is big.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−83892(JP,A) 特開 平2−245026(JP,A) 特開 昭57−51427(JP,A) 特開 昭56−62129(JP,A) 特公 昭63−43217(JP,B2) 特公 昭57−8646(JP,B2) 特公 昭52−17067(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B29C 55/02 - 55/16 B32B 27/34──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-83892 (JP, A) JP-A-2-245026 (JP, A) JP-A-57-51427 (JP, A) 62129 (JP, A) JP-B 63-4217 (JP, B2) JP-B 57-8646 (JP, B2) JP-B 52-17067 (JP, B2) (58) Fields studied (Int. 6 , DB name) B29C 55/02-55/16 B32B 27/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】m−及び/又はp−キシリレンジアミンと
炭素数6〜12のα,ω脂肪族ジカルボン酸とから成るポ
リアミド構成単位を分子鎖中70モル%以上含有する芳香
族ポリアミド、脂肪族ポリアミド及びこれらの混合ポリ
アミドより成る原料群から選択された2種以上の原料ポ
リアミドを溶融状態で押出して合計層数が5以下の無配
向積層フィルムを得、該無配向積層フィルムを延伸温度
が40〜80℃、平均変形速度が10,000%/分以上の条件下
に2.5〜3.7倍縦延伸し、該縦延伸フィルムを延伸温度が
55〜100℃、平均変形速度が300〜10,000%/分の条件下
に3.0〜5.0倍横延伸し、次いで、該横延伸フィルムを前
記の脂肪族ポリアミドの融点より110℃低い温度を下限
とし且つ芳香族ポリアミド原料の融点より5℃低い温度
を上限とする条件下に熱処理することを特徴とする積層
二軸延伸フィルムの製造方法。
Aromatic polyamides and fats containing at least 70 mol% of polyamide constituent units in the molecular chain comprising m- and / or p-xylylenediamine and α, ω aliphatic dicarboxylic acid having 6 to 12 carbon atoms. Extruded in a molten state from two or more raw material polyamides selected from a raw material group consisting of an aromatic polyamide and a mixed polyamide thereof to obtain a non-oriented laminated film having a total number of layers of 5 or less. The film is stretched longitudinally 2.5 to 3.7 times under the conditions of 40 to 80 ° C. and an average deformation rate of 10,000% / min or more.
At a temperature of 55 to 100 ° C. and an average deformation rate of 300 to 10,000% / min., Which is 3.0 to 5.0 times transversely stretched. Then, the lower limit of the temperature of the transversely stretched film is 110 ° C. lower than the melting point of the aliphatic polyamide. A method for producing a laminated biaxially stretched film, wherein the heat treatment is performed under conditions in which the upper limit is a temperature 5 ° C. lower than the melting point of the aromatic polyamide raw material.
JP2157246A 1990-06-15 1990-06-15 Manufacturing method of laminated biaxially stretched film Expired - Lifetime JP2821243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157246A JP2821243B2 (en) 1990-06-15 1990-06-15 Manufacturing method of laminated biaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157246A JP2821243B2 (en) 1990-06-15 1990-06-15 Manufacturing method of laminated biaxially stretched film

Publications (2)

Publication Number Publication Date
JPH0447924A JPH0447924A (en) 1992-02-18
JP2821243B2 true JP2821243B2 (en) 1998-11-05

Family

ID=15645441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157246A Expired - Lifetime JP2821243B2 (en) 1990-06-15 1990-06-15 Manufacturing method of laminated biaxially stretched film

Country Status (1)

Country Link
JP (1) JP2821243B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015455A1 (en) * 1991-02-28 1992-09-17 Mitsubishi Kasei Polytec Company Biaxially oriented polyamide laminate film
DK0676438T3 (en) * 1991-10-28 2000-02-07 Idemitsu Petrochemical Co Easy-to-split oriented film and process for making it
JPH0847972A (en) * 1994-06-03 1996-02-20 Unitika Ltd Biaxially oriented polyamide film and production thereof
JPH08156205A (en) * 1994-12-07 1996-06-18 Mitsubishi Chem Corp Polyamide laminated biaxially stretched film excellent in hot water resistance
JP4110433B2 (en) * 1998-05-27 2008-07-02 東洋紡績株式会社 Laminated polyamide film
US6365248B1 (en) * 1998-07-15 2002-04-02 Idemitsu Petrochemical Co., Ltd. Easily tearable laminated barrier film and bag product using the same
JP2008080687A (en) * 2006-09-28 2008-04-10 Mitsubishi Gas Chem Co Inc Manufacturing method of polyamide stretched film
JP5241608B2 (en) * 2009-05-25 2013-07-17 三菱樹脂株式会社 Biaxially stretched polyamide laminated film

Also Published As

Publication number Publication date
JPH0447924A (en) 1992-02-18

Similar Documents

Publication Publication Date Title
US5055355A (en) Oriented film laminates of polyamides and ethylene vinyl alcohol copolymers
CN103402737A (en) Stretched polyamide film
JPH0458381B2 (en)
JP2821243B2 (en) Manufacturing method of laminated biaxially stretched film
JP3671978B1 (en) Polyamide-based resin film roll and manufacturing method thereof
KR900000866B1 (en) Process for preparation of diaxially drawn
JP5034677B2 (en) Polyamide resin multilayer film and method for producing the same
JPWO2019065161A1 (en) Laminated stretched polyamide film
JP4861673B2 (en) Linear-cut polyamide-based heat-shrinkable laminated film and method for producing the same
JP4618228B2 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP2008080687A (en) Manufacturing method of polyamide stretched film
JP2003020349A (en) Polyamide film and its production method
JP2964663B2 (en) Laminated biaxially stretched film and method for producing the same
JPH0552253B2 (en)
JP4386001B2 (en) Polyamide-based resin laminated film roll and method for producing the same
JP2008080690A (en) Polyamide stretched film and its manufacturing method
JP5199838B2 (en) Biaxially stretched polyamide laminated film and method for producing the same
JP2825904B2 (en) Manufacturing method of laminated biaxially stretched film
JP5166688B2 (en) Linear-cut polyamide heat-shrinkable film and method for producing the same
JP4861672B2 (en) Straight-cut polyamide laminated film and method for producing the same
JP4658441B2 (en) Biaxially stretched polyamide film for food packaging
JP2008094049A (en) Polyamide stretched film and its manufacturing method
JPH0643552B2 (en) Polyamide composition
JP2008080689A (en) Polyamide stretched film and its manufacturing method
JP2008094048A (en) Polyamide stretched film and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12

EXPY Cancellation because of completion of term