JPH0134528B2 - - Google Patents

Info

Publication number
JPH0134528B2
JPH0134528B2 JP11836480A JP11836480A JPH0134528B2 JP H0134528 B2 JPH0134528 B2 JP H0134528B2 JP 11836480 A JP11836480 A JP 11836480A JP 11836480 A JP11836480 A JP 11836480A JP H0134528 B2 JPH0134528 B2 JP H0134528B2
Authority
JP
Japan
Prior art keywords
film
stretching
cyclohexanedimethanol
heat
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11836480A
Other languages
Japanese (ja)
Other versions
JPS5742726A (en
Inventor
Hisashi Koshiro
Yoshihiro Sakamoto
Masuo Myayama
Hideki Inudo
Tamio Moryama
Makoto Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojin Co Ltd
Original Assignee
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojin Co Ltd filed Critical Kojin Co Ltd
Priority to JP11836480A priority Critical patent/JPS5742726A/en
Publication of JPS5742726A publication Critical patent/JPS5742726A/en
Publication of JPH0134528B2 publication Critical patent/JPH0134528B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族ジカルボン酸成分としてテレ
フタル酸、ジオール成分としてエチレングリコー
ル及び1,4−シクロヘキサンジメタノールより
なるコポリエステルからチユーブラ法によつて製
造される透明性のすぐれたヒートシール性のある
ポリエステル系収縮包装用フイルム及びその製造
方法に関するものである。 従来から知られている熱収縮包装用フイルムと
してはポリ塩化ビニル、ポリプロピレン、ポリエ
チレンなどがある。 この内、ポリ塩化ビニル熱収縮フイルムは100
℃前後の比較的低い温度でも良好な収縮性を示す
が、添加併用される可塑剤、熱安定剤等の衛生性
に難が免れなく、更に使用後のフイルムの焼却処
理時に塩化水素を発生する等の欠点が指摘されて
いる。 また、ポリプロピレン熱収縮フイルムは本格的
な2軸延伸がなされており、熱収縮性は良好であ
るが、100〜140℃の比較的高温でないと熱収縮性
が発現されないこと、また、ヒートシール部の強
度があまり大きくないことなどの欠点を有する。 一方、ポリエチレンのようなエチレン系重合体
よりなる熱収縮性フイルムは安価であること、ヒ
ートシール部の強度が大きいことなどの特徴から
収縮包装用途に広く使用されているが、収縮応力
が小さいこと、耐熱性が劣ることなど、諸特性は
必ずしも満足しうるものではない。 また、ポリエチレンテフタレート等のホモポリ
エステル樹脂は強度、剛性、透明性、耐熱性、耐
油性にすぐれていて、延伸したフイルムは磁気テ
ープ等多くの用途に使用されているが、通常室温
より若干高い温度で結晶化するために、耐衝撃性
に劣り、またヒートシール性が劣ることなどによ
り一般に収縮包装用フイルムとしてはあまり適し
ていない。 これらの欠点を改良するためには、かかるポリ
エステルに各種の第3成分を共重合することでポ
リエステルの結晶化を抑制し、その結果耐衝撃性
を改良する方法が有効である。 本発明者等は、芳香族ジカルボン酸成分として
テレフタル酸、ジオール成分としてエチレングリ
コール及び1,4−シクロヘキサンジメタノール
よりなるコポリエステルを特定条件下で2軸延伸
することによつて、ポリエステルのもつ耐熱性、
耐油性等の長所を保ち、かつ低温熱収縮性と大き
な熱収縮応力を発現する透明性のすぐれたヒート
シール性の良好な収縮包装用フイルムを提供する
ことに成功した。 すなわち、本発明は 1 芳香族ジカルボン酸成分としてテレフタル
酸、ジオール成分としてエチレングリコール及
び1,4−シクロヘキサンジメタノールよりな
り、かつジオール成分中、1,4−シクロヘキ
サンジメタノールが10乃至40モル%であるコポ
リエステルより主としてなる、透明性のすぐれ
たヒートシール性のあるポリエステル系収縮包
装用フイルム、及び前記樹脂組成を環状ダイス
より溶融押出し、冷却したチユーブ状未延伸フ
イルムを加熱下に該管状体の内部に供給する気
体の圧力及びニツプロールの速度差によつて2
軸延伸を行うに際し、延伸帯域におけるフイル
ム表面温度(Tf1)を Tg−15≦Tf1≦Tg+15 (但しTg:DTAによる2次転移点温度) の範囲内で選択し、延伸終了点後のフイルム表
面温度を 0.54Tf1−6<Tf2<0.54Tf1+15 (但しTf2:延伸終了点から4.5d(dは原反直
径)進行した点におけるフイルム表面温度)で
示される負の温度勾配を付与して縦・横とも2
乃至6倍に延伸することを特徴とするポリエス
テル系収縮包装用フイルム製造方法である。 本発明に用いられる原料のコポリエステル樹脂
は、重合工程で副生する僅かの量のホモポリマー
を含有し、また、僅かの分枝を有することがある
が基本的には線状共重合物である。但し熱収縮包
装用フイルムの原料としてはジオール成分中1,
4−シクロヘキサンジメタノール含有量が10乃至
40モル%であることが必要である。コポリエステ
ルにおけるジオール成分中の1,4−シクロヘキ
サンジメタノール含有量が40モル%より多いと樹
脂の粘性が高くなり、押出成形性に問題が出てき
て実用的でない。また10モル%より少ないと耐衝
撃性及びヒートシール性が低下し、収縮包装用フ
イルムとして不適当となる。 なお必要ならば、このコポリエステルに他の樹
脂、例えばポリエチレンテレフタレート等がコポ
リエステルの性質が阻害されない程度混入されて
いてもよい。 また、フイルムに潜在的な熱収縮性をもたせる
ための2軸延伸の方法としては既に数多くの方法
が提案されているが、本発明に採択の特定樹脂に
よつて良好な熱収縮性をもつフイルムを得るため
には、冷却固化されたチユーブ状未延伸フイルム
を上下に位置した2対のニツプロール間にはさん
で、加熱下に、該管状フイルム内に供給する気体
の圧力と2対のニツプロールの周速の調整によつ
て、該フイルムを縦横同時2軸延伸するチユーブ
状同時2軸伸方式が最も望しい。 チユーブラ法のうちダイより押出されたチユー
ブをそのまま気体の圧力でブローアツプする、謂
ゆるインフレーシヨン法では、フイルムが未だ溶
融状態にある時にブローアツプさせるために、有
効な高度の配向が起こらず、比較的低温で高収縮
率を示すフイルムを得ることは困難である。 また、テンター式同時2軸延伸法では延伸時の
熱履歴が、インフレーシヨン法及びチユーブ状同
時2軸延伸法等のチユーブラ法に比較して長いた
め、熱収縮率の高いフイルムを得ることが難し
く、また謂ゆるボーイング現象のため縦横のバラ
ンス性が得られにくい。 本発明の方法は、チユーブ状同時2軸延伸法を
適用することによつて有効な高度の配向が起こる
ような温度域で膨張延伸して同時2軸配向を行
い、良好な低温熱収縮性、透明性及びヒートシー
ル性を持つフイルムを特定のコポリエステルから
製造するものである。 本発明に用いる原料樹脂は非結晶性であり、し
かも延伸可能温度域における小範囲の温度変化に
よつて透明性、及び延伸変形に対する抵抗性が比
較的急激に変化する性質をもつている。 線状ホモポリエステルやポリプロピレンの如き
結晶性樹脂で結晶化を抑制した未延伸フイルムを
同時に膨張延伸せしめる時は延伸の初期に分子の
配向と同時に急激な結晶化が起こるためフイルム
のヤング率が急速に増大し、即ち、延伸変形に対
する適当な抵抗性が附与され、この結果、延伸帯
域における変形速度が適当に調節されるようにな
るが、本発明に使用される樹脂の如き非晶性の材
料にあつては延伸の進行に併い分子の配向が起こ
つても結晶化を併わないため延伸変形の速度を適
当に抑制するための抵抗性が不足し、余りにも急
激な延伸の進行が起こりがちとなる。その結果、
延伸中のバブルが不安定で、しかもパクし易くな
るばかりでなく、バブルの1箇所が他の部分より
僅かでも余計に膨張し始めて薄くなると以後その
部分が他の部分よりも優先的に膨張を続け、結果
的にはいびつなバブル形状となり、フイルムの厚
み斑が著しく増大し商品価値を極度に低下させる
原因となる。 この欠点を除くために種々検討を行なつた結
果、延伸帯域における該フイルム表面温度及び延
伸終了点後のフイルム表面温度の温度勾配を正確
に設定しなければ有効な配向と均一でしかも安定
した延伸の進行が得られないことがわかつた。 すなわち、延伸帯域におけるフイルム表面温度
が高すぎる場合は破断し易くなるばかりかバブル
内圧ひいては延伸張力が低下し延伸の有効性が減
少し、延伸フイルムの強度や熱収縮率も低下す
る。 一方、延伸帯域におけるフイルム表面温度が低
すぎる時は、バブル内圧ひいては延伸張力が過大
となつて、フイルムの破断すなわちバブルのパン
クの頻度が多くなる。また、フイルムの破断に至
らないまでもフイルムの厚みムラが大きくなつた
り、透明性が悪くなり白化現象を起こしたりす
る。 すなわち、延伸帯域におけるフイルム表面温度
(Tf1)は Tg−15≦Tf1≦Tg+15 (但し、Tg:DTAによる2次転移点温度) の範囲内で適宜選択すればよいことがわかつた。 また同様に延伸の進行をスムーズに行なわせる
ためには延伸終了点後のフイルム表面温度を 0.54Tf1−6<Tf2<0.54Tf1+15 (但し、Tf2:延伸終了点から4.5d(dは原反直
径)進行した点におけるフイルム表面温度) で示された負の温度勾配を附与して延伸すればよ
いことがわかつた。 すなわち、勾配の下り方が不足するとバブル全
体の揺れが発生し延伸フイルムの厚みムラが大き
くなり、著しい場合にはパンクにつながる。ま
た、温度勾配をつけ過ぎるとバブル内圧が増大
し、延伸帯域での安定性が悪くなり、バブルの溶
融破断につながる。 以上のような温度条件を正確にとる事によつて
安定した延伸が可能となり、得られたフイルムの
透明性・厚みムラも良好となつた。 また、延伸倍率は用途により必要とする熱収縮
率に応じて選択できるが通常の熱収縮性フイルム
用途に用いるためには2倍以上に延伸するのが好
ましく、また延伸加工性の面からは6倍以下に延
伸するのが安定的に延伸でき好ましい。 このように2軸延伸し、延伸装置から取出した
フイルムは必要に応じてアンニーリングすること
ができる。 本発明のフイルムの用途としては耐衝撃性、透
明性にすぐれているので、重量物、特に美観を必
要とする物、例えば殺虫剤等のエアゾール缶、レ
コードジヤケツト、書籍、反物等の包装に好適で
ある。 以下、本発明を実施例にもとづいて具体的に説
明する。実施例中に示した測定項目は下記の方法
によつた。 1 熱収縮率 縦横共10cmの正方形に切り取つたフイルムを
所定温度のグリセリン浴中に10秒間浸漬し、次
式により算出した。 10−A/10×100 但し、Aは浸漬後の1辺の長さ(単位cm)を
示す。 2 熱収縮応力 ASTM2838−69に準ずる。 3 ヘイズ ASTM D1003−61Tに準ずる。 4 溶断シール強度 通常の溶断シーラーにてヒートシールした時
のシール部の剥離強度g/cm巾で示す。 溶断シール条件:電圧110V、電流7A、加圧時
間1秒 5 衝撃強度 ASTM D−256に準ずる。 6 フイルム表面温度 太さ直径約1mm、露出部長さ約15mmのクロメ
ル−コンスタンタン型熱電対(4.5Ω)を接続
した表面温度計を用い、フイルム表面に熱電対
先端を接触させ、30秒後の指示値をもつてフイ
ルム表面温度とした。熱源の輻射熱が強い場
合、その影響を避けるため熱電対のフイルムに
接しない側をアルミ箔で覆う。 実施例 1 芳香族ジカルボン酸成分としてテレフタル酸、
ジオール成分としてエチレングリコール及び1,
4−シクロヘキサンジメタノールよりなり、かつ
ジオール成分中1,4−シクロヘキサンジメタノ
ールが30モル%であるコポリエステル(Tg:81
℃)を200〜270℃で溶融混練し、255℃に保つた
環状ダイスより下向きに押出した。環状ダイスの
スリツト直径は75mmでスリツトギヤツプは0.8mm
である。 押出されたチユーブ状フイルムをダイス直下に
取付けた外径66mmで内部に20℃の冷却水を循環し
ている円筒状マンドレルの外表面を摺動させなが
ら外側は水槽を通すことにより水冷して室温に冷
却して引取り直径約66mm厚み135μのチユーブ状
未延伸原反を得た。 この未延伸原反を2軸延伸装置に導き膨張延伸
を行なつた。複数の赤外線ヒーターにより電圧電
流を調整してフイルムを延伸温度に加熱し、延伸
帯域より高速ニツプロールに近い所から延伸帯域
に向けた空気流により規定の延伸後の温度Tf2
なるようフイルムを冷却し低高速ニツプロール
(第1図2,3)間の管状フイルム内に加圧空気
を送り込んで該空気圧と低高速ニツプロールの周
速比の調整によつて縦3倍、横3倍に管状2軸延
伸した。延伸における安定性等についての結果を
第1表に示す。 延伸条件No.1とNo.9はTf1が、No.4と5はTf2
本発明範囲外である。 良好な延伸性を示した管状延伸フイルムを折畳
んで延伸機から取出し、チユーブ状アンニーリン
グ装置に導き、チユーブ状で加熱筒より80℃の熱
風を噴射し、約10秒間アンニーリングした後、冷
却筒で冷風により室温に冷却され再度折り畳んで
取り出し巻き取つた。 実施例 2 芳香族ジカルボン酸成分としてテレフタル酸、
ジオール成分として、エチレングリコール及び
1,4−シクロヘキサンジメタノールよりなり、
かつジオール成分中1,4−シクロヘキサンジメ
タノールが15モル%であるコポリエステル
(Tg:78℃)を、実施例1と同様に同時2軸延伸
した。延伸における安定性等についての結果を同
様に第1表に示す。延伸条件No.10はTf1がNo.11と
14はTf2が本発明の範囲外である。 実施例1、2のフイルム及び比較例1として、
通常の方法によつてチユーブ状同時2軸延伸した
ポリエチレンテレフタレートフイルム、比較例2
として収縮包装用フイルムとして一般的なポリプ
ロピレンフイルムの各物性値を第2表に示す。
The present invention relates to a polyester having excellent transparency and heat-sealing properties, which is produced by the tubular method from a copolyester consisting of terephthalic acid as an aromatic dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as a diol component. The present invention relates to a shrink wrapping film and a method for producing the same. Conventionally known heat-shrinkable packaging films include polyvinyl chloride, polypropylene, and polyethylene. Of these, 100 are polyvinyl chloride heat shrinkable films.
It shows good shrinkability even at relatively low temperatures around ℃, but there are problems with hygiene due to the plasticizers, heat stabilizers, etc. that are added, and hydrogen chloride is generated when the film is incinerated after use. The following shortcomings have been pointed out. In addition, polypropylene heat-shrinkable film has been fully biaxially stretched and has good heat-shrinkability. The disadvantage is that the strength is not very high. On the other hand, heat-shrinkable films made of ethylene-based polymers such as polyethylene are widely used for shrink packaging because they are inexpensive and have high strength at the heat-sealed part, but they have low shrinkage stress. , poor heat resistance, and other properties are not necessarily satisfactory. In addition, homopolyester resins such as polyethylene terephthalate have excellent strength, rigidity, transparency, heat resistance, and oil resistance, and the stretched film is used for many purposes such as magnetic tape, but the temperature is usually slightly higher than room temperature. Since it crystallizes at high temperatures, it has poor impact resistance and poor heat sealability, so it is generally not suitable as a film for shrink wrapping. In order to improve these drawbacks, it is effective to copolymerize the polyester with various third components to suppress crystallization of the polyester and thereby improve impact resistance. The present inventors have developed a polyester with heat resistance by biaxially stretching a copolyester consisting of terephthalic acid as an aromatic dicarboxylic acid component and ethylene glycol and 1,4-cyclohexanedimethanol as a diol component under specific conditions. sex,
We have succeeded in providing a shrink packaging film that maintains advantages such as oil resistance, exhibits low-temperature heat shrinkability and large heat shrinkage stress, has excellent transparency, and has good heat sealability. That is, the present invention consists of (1) terephthalic acid as an aromatic dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as a diol component, and 1,4-cyclohexanedimethanol is 10 to 40 mol% in the diol component. A polyester shrink wrapping film with excellent transparency and heat-sealing properties, which is mainly made of a certain copolyester, and the resin composition are melt-extruded from an annular die, and the cooled tubular unstretched film is heated to form the tubular body. 2 due to the pressure of the gas supplied inside and the speed difference of the Nipprol.
When performing axial stretching, the film surface temperature (T f1 ) in the stretching zone is selected within the range of Tg-15≦T f1 ≦Tg + 15 (Tg: secondary transition temperature by DTA), and the film is The surface temperature is set to 0.54T f1 -6 < T f2 <0.54T f1 +15 (where T f2 is the film surface temperature at a point 4.5 d (d is the diameter of the original film) from the end of stretching). Add 2 both vertically and horizontally
This is a method for producing a polyester shrink wrapping film, which is characterized by stretching the film by a factor of 6 to 6 times. The raw material copolyester resin used in the present invention contains a small amount of homopolymer produced as a by-product during the polymerization process, and may have a small amount of branching, but is basically a linear copolymer. be. However, as raw materials for heat-shrinkable packaging films, 1,
4-Cyclohexane dimethanol content is 10 to
It needs to be 40 mol%. If the content of 1,4-cyclohexanedimethanol in the diol component of the copolyester is more than 40 mol %, the viscosity of the resin will increase, causing problems in extrusion moldability, making it impractical. If the amount is less than 10 mol%, the impact resistance and heat sealability will decrease, making the film unsuitable for shrink packaging. If necessary, other resins, such as polyethylene terephthalate, may be mixed into this copolyester to the extent that the properties of the copolyester are not impaired. In addition, many methods have already been proposed as methods for biaxial stretching to give films latent heat shrinkability, but films with good heat shrinkability can be obtained by using the specific resin adopted in the present invention. In order to obtain this, a tubular unstretched film that has been cooled and solidified is sandwiched between two pairs of nip rolls positioned above and below, and while heated, the pressure of the gas supplied into the tubular film and the pressure of the two pairs of nip rolls are adjusted. Most desirable is a tube-like simultaneous biaxial stretching method in which the film is simultaneously biaxially stretched vertically and horizontally by adjusting the circumferential speed. In the so-called inflation method, in which the tube extruded from the die is blown up using gas pressure, an effective high degree of orientation does not occur because the film is blown up while it is still in a molten state. It is difficult to obtain a film that exhibits high shrinkage at extremely low temperatures. In addition, in the tenter type simultaneous biaxial stretching method, the thermal history during stretching is longer than in tubular methods such as the inflation method and the tube type simultaneous biaxial stretching method, so it is difficult to obtain a film with a high heat shrinkage rate. This is difficult, and due to the so-called bowing phenomenon, it is difficult to achieve vertical and horizontal balance. The method of the present invention performs simultaneous biaxial orientation by expansion stretching in a temperature range where an effective high degree of orientation occurs by applying a tube-shaped simultaneous biaxial stretching method, and achieves good low-temperature heat shrinkability, A transparent and heat-sealable film is produced from a specific copolyester. The raw material resin used in the present invention is non-crystalline, and has the property that its transparency and resistance to stretching deformation change relatively rapidly with temperature changes within a small range of temperatures within which it can be stretched. When an unstretched film whose crystallization has been suppressed with a crystalline resin such as linear homopolyester or polypropylene is simultaneously expanded and stretched, rapid crystallization occurs at the same time as molecular orientation in the initial stage of stretching, resulting in a rapid increase in Young's modulus of the film. amorphous materials, such as the resins used in the present invention, are In this case, even though molecular orientation occurs as the stretching progresses, crystallization does not occur, so the resistance to appropriately suppress the speed of stretching deformation is insufficient, and the stretching progresses too rapidly. It becomes difficult. the result,
Not only is the bubble during stretching unstable and easy to pop, but if one part of the bubble begins to expand even slightly more than the other parts and becomes thinner, that part will expand preferentially over other parts. As a result, the bubble shape becomes distorted, and the thickness unevenness of the film increases significantly, resulting in an extremely low commercial value. As a result of various studies to eliminate this drawback, we found that effective orientation and uniform and stable stretching cannot be achieved unless the temperature gradient of the film surface temperature in the stretching zone and the film surface temperature after the end point of stretching is set accurately. It was found that no progress was made. That is, if the surface temperature of the film in the stretching zone is too high, it not only tends to break, but also reduces the bubble internal pressure and therefore the stretching tension, reducing the effectiveness of stretching, and the strength and heat shrinkage rate of the stretched film. On the other hand, when the film surface temperature in the stretching zone is too low, the bubble internal pressure and thus the stretching tension become excessive, increasing the frequency of film breakage, that is, bubble puncture. Further, even if the film does not break, the film may become uneven in thickness, its transparency may deteriorate, and a whitening phenomenon may occur. That is, it has been found that the film surface temperature (T f1 ) in the stretching zone can be appropriately selected within the range of Tg-15≦T f1 ≦Tg+15 (Tg: second-order transition temperature by DTA). Similarly, in order to proceed smoothly with the stretching, the film surface temperature after the stretching end point should be set to 0.54T f1 -6 < T f2 < 0.54T f1 +15 (T f2 : 4.5 d (d) from the stretching end point). It was found that stretching can be carried out by applying a negative temperature gradient as shown by (the film diameter)) (the film surface temperature at the point where the film has advanced). That is, if the slope is insufficiently descended, the entire bubble will shake, increasing the unevenness in the thickness of the stretched film, and in severe cases will lead to punctures. Furthermore, if the temperature gradient is too high, the internal pressure of the bubble will increase, resulting in poor stability in the stretching zone, leading to melting and rupture of the bubble. By accurately adjusting the temperature conditions as described above, stable stretching became possible, and the obtained film had good transparency and thickness unevenness. In addition, the stretching ratio can be selected depending on the heat shrinkage rate required depending on the application, but in order to use it for ordinary heat-shrinkable film applications, it is preferable to stretch it to 2 times or more, and from the viewpoint of stretchability, It is preferable to stretch the film by a factor of 2 times or less because it can be stably stretched. The film biaxially stretched in this manner and taken out from the stretching device can be annealed if necessary. Since the film of the present invention has excellent impact resistance and transparency, it can be used for packaging heavy items, especially items that require aesthetic appearance, such as aerosol cans for pesticides, record jackets, books, cloth items, etc. suitable. Hereinafter, the present invention will be specifically explained based on Examples. The measurement items shown in the examples were determined by the following methods. 1. Heat shrinkage rate A film cut into a square of 10 cm in length and width was immersed in a glycerin bath at a predetermined temperature for 10 seconds, and calculated using the following formula. 10-A/10×100 However, A indicates the length of one side (unit: cm) after immersion. 2 Heat shrinkage stress Conforms to ASTM2838-69. 3 Haze Conforms to ASTM D1003-61T. 4 Melting seal strength Peeling strength of the sealed portion when heat-sealed with a normal melt sealer is shown in g/cm width. Fusing seal conditions: Voltage 110V, current 7A, pressure time 1 second 5 Impact strength According to ASTM D-256. 6 Film surface temperature Using a surface thermometer connected to a chromel-constantan type thermocouple (4.5Ω) with a thickness of approximately 1 mm in diameter and an exposed length of approximately 15 mm, touch the tip of the thermocouple to the film surface and read the indication after 30 seconds. The value was taken as the film surface temperature. If the radiant heat from the heat source is strong, cover the side of the thermocouple that does not touch the film with aluminum foil to avoid its effects. Example 1 Terephthalic acid as aromatic dicarboxylic acid component,
Ethylene glycol and 1, as diol components
Copolyester consisting of 4-cyclohexanedimethanol and containing 30 mol% of 1,4-cyclohexanedimethanol in the diol component (Tg: 81
) were melt-kneaded at 200 to 270°C and extruded downward through an annular die maintained at 255°C. The slit diameter of the annular die is 75mm and the slit gap is 0.8mm.
It is. The extruded tube-shaped film is slid on the outer surface of a cylindrical mandrel with an outer diameter of 66 mm and inside which circulates cooling water at 20°C, and the outside is cooled with water by passing through a water tank and brought to room temperature. A tube-shaped unstretched original fabric having a diameter of about 66 mm and a thickness of 135 μm was obtained. This unstretched original fabric was introduced into a biaxial stretching device and expanded and stretched. The film is heated to the stretching temperature by adjusting the voltage and current using multiple infrared heaters, and the film is cooled to the specified temperature after stretching, T f2 , by an air flow directed toward the stretching zone from a place closer to the high-speed nip roll than the stretching zone. Then, pressurized air is sent into the tubular film between the low-speed and high-speed nip rolls (Fig. 1, 2 and 3), and by adjusting the air pressure and the circumferential speed ratio of the low-speed and low-speed nip rolls, the tubular biaxial film is tripled in length and three times in width. Stretched. Table 1 shows the results regarding stability, etc. during stretching. For stretching conditions No. 1 and No. 9, T f1 is outside the scope of the present invention, and for stretching conditions No. 4 and 5, T f2 is outside the scope of the present invention. The tubular stretched film that showed good stretchability is folded and taken out from the stretching machine, guided into a tube-shaped annealing device, heated with 80°C hot air from a tube-shaped heating cylinder, annealed for about 10 seconds, and then cooled. The tube was cooled to room temperature by cold air, then folded again, taken out, and rolled up. Example 2 Terephthalic acid as aromatic dicarboxylic acid component,
The diol component consists of ethylene glycol and 1,4-cyclohexanedimethanol,
A copolyester (Tg: 78°C) containing 15 mol % of 1,4-cyclohexanedimethanol in the diol component was simultaneously biaxially stretched in the same manner as in Example 1. The results regarding stability during stretching, etc. are also shown in Table 1. Stretching condition No.10 is T f1 is No.11.
No. 14 has T f2 outside the scope of the present invention. As the films of Examples 1 and 2 and Comparative Example 1,
Polyethylene terephthalate film simultaneously biaxially stretched into a tube shape by a conventional method, Comparative Example 2
Table 2 shows the physical properties of polypropylene film, which is commonly used as a shrink wrapping film.

【表】【table】

【表】 ある。
第2表からわかるように本発明の熱収縮性コポ
リエステルはポリエチレンテレフタレート収縮フ
イルムと比較して透明性・耐衝撃性にすぐれ、か
つヒートシール強度の強いことが明らかである。
ポリプロピレン収縮フイルムよりも熱収縮性及び
熱収縮応力など収縮包装フイルムとしての物性が
すぐれていることがわかる。 実施例 3 表2に示した、実施例1のフイルム及び実施例
2のフイルム、比較例1及び2の各フイルムを用
いて、直径6cm高さ18cmの市販殺虫剤エアゾール
缶を予備包装し、140℃の熱風が吹きつけている
市販の収縮トンネル中を8秒間通過させた。結果
は第3表に示すとおり、本発明のコポリエステル
は被包装形状の凹凸にもかかわらずぴつたりと密
着し、皺のない包装状態となつた。フイルムのす
ぐれた透明性によつて、被包装物の印刷及び内容
物が鮮明に見え、美しい外観を呈した。
[Table] Yes.
As can be seen from Table 2, it is clear that the heat-shrinkable copolyester of the present invention has superior transparency and impact resistance, as well as strong heat-sealing strength, compared to polyethylene terephthalate shrinkable films.
It can be seen that the physical properties as a shrink wrapping film, such as heat shrinkability and heat shrink stress, are superior to polypropylene shrink films. Example 3 Using the film of Example 1, the film of Example 2, and the films of Comparative Examples 1 and 2 shown in Table 2, a commercially available insecticide aerosol can with a diameter of 6 cm and a height of 18 cm was prepackaged. It was passed through a commercially available shrink tunnel for 8 seconds with hot air blowing at .degree. As shown in Table 3, the copolyester of the present invention adhered tightly despite the irregularities of the packaged shape, resulting in a wrinkle-free package. Due to the excellent transparency of the film, the printing and contents of the packaged product were clearly visible, giving it a beautiful appearance.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明フイルムの製造条件の説明図で
ある。 前記の説明、1……未延伸フイルム、2……低
速ニツプロール、3……高速ニツプロール、a…
…延伸帯域、b……延伸終了点、c……Tf2測定
位置すなわちbより4.5dの点、d……未延伸フイ
ルムの直径。
FIG. 1 is an explanatory diagram of manufacturing conditions for the film of the present invention. The above description, 1... unstretched film, 2... low speed nip roll, 3... high speed nip roll, a...
...Stretching zone, b...Stretching end point, c...T f2 measurement position, that is, a point 4.5d from b, d...Diameter of unstretched film.

Claims (1)

【特許請求の範囲】 1 芳香族ジカルボン酸成分としてテレフタール
酸、ジオール成分としてエチレングリコール及び
1,4−シクロヘキサンジメタノールよりなり、
かつジオール成分中1,4−シクロヘキサンジメ
タノールが10乃脂40モル%であるコポリエステル
より主としてなるフイルムを、二軸延伸して得ら
れるヘイズが3%以下、溶断シール強度が400
g/cm幅以上、100℃における各延伸方向の熱収
縮率が20%以上であるポリエステル系熱収縮性包
装用フイルム。 2 芳香族ジカルボン酸成分として、テレフタル
酸、ジオール成分としてエチレングリコール及び
1,4−シクロヘキサンジメタノールよりなり、
かつジオール成分中1,4−シクロヘキサンジメ
タノールが10乃至40モル%であるコポリエステル
を主成分とする組成を環状ダイスより溶融押出
し、冷却した管状未延伸フイルムを加熱下に該管
状体の内部に供給する気体の圧力とニツプロール
の速度差によつて2軸延伸を行うに際し、延伸帯
域におけるフイルム表面温度(Tf1)を Tg−15≦Tf1≦Tg+15 (但しTgはDTAによるコポリエステル樹脂の2
次転移点温度) の範囲内で選択し、延伸終了点後のフイルム表面
温度を 0.54Tf1−6<Tf2<0.54Tf1+15 (但しTf2は延伸終了点から4.5d(dは原反直径)
進行した点におけるフイルム表面温度) で示される負の温度勾配を付与して縦横とも2乃
至6倍に延伸することを特徴とするポリエステル
系収縮包装用フイルムの製造方法。
[Scope of Claims] 1 Consisting of terephthalic acid as an aromatic dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as diol components,
And, the haze obtained by biaxially stretching a film mainly made of a copolyester containing 10 to 40 mol% of 1,4-cyclohexanedimethanol in the diol component, and a fusing seal strength of 400
A polyester heat-shrinkable packaging film having a width of at least g/cm and a heat shrinkage rate of at least 20% in each stretching direction at 100°C. 2 Consisting of terephthalic acid as an aromatic dicarboxylic acid component, ethylene glycol and 1,4-cyclohexanedimethanol as a diol component,
A composition mainly composed of a copolyester containing 10 to 40 mol% of 1,4-cyclohexanedimethanol in the diol component is melt-extruded from an annular die, and the cooled tubular unstretched film is placed inside the tubular body under heating. When biaxial stretching is performed using the pressure of the supplied gas and the speed difference of the Nippro roll, the film surface temperature (Tf1) in the stretching zone is set to
The film surface temperature after the end of stretching is 0.54Tf1-6<Tf2<0.54Tf1+15 (Tf2 is 4.5d from the end of stretching (d is the diameter of the original film).
1. A method for producing a polyester shrink wrapping film, which comprises stretching the film 2 to 6 times in length and width while applying a negative temperature gradient represented by (the film surface temperature at a point where the film has advanced).
JP11836480A 1980-08-29 1980-08-29 Polyester film for shrink packaging Granted JPS5742726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11836480A JPS5742726A (en) 1980-08-29 1980-08-29 Polyester film for shrink packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11836480A JPS5742726A (en) 1980-08-29 1980-08-29 Polyester film for shrink packaging

Publications (2)

Publication Number Publication Date
JPS5742726A JPS5742726A (en) 1982-03-10
JPH0134528B2 true JPH0134528B2 (en) 1989-07-19

Family

ID=14734870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11836480A Granted JPS5742726A (en) 1980-08-29 1980-08-29 Polyester film for shrink packaging

Country Status (1)

Country Link
JP (1) JPS5742726A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159618A (en) * 1981-03-27 1982-10-01 Gunze Ltd Highly shrinkable polyester film excellent in heat seal
JPS5864958A (en) * 1981-10-09 1983-04-18 大日本インキ化学工業株式会社 Heat-shrinkable film and heat-shrinkable packing method for article using said heat-shrinkable film
JPS5891538U (en) * 1981-12-15 1983-06-21 グンゼ株式会社 Containers
JPS60206839A (en) * 1984-03-30 1985-10-18 Okura Ind Co Ltd Heat-shrinkable polyester film
JPS60232948A (en) * 1984-05-04 1985-11-19 大倉工業株式会社 Heat-shrinkable polyester laminated film
JPS6148112U (en) * 1984-09-04 1986-03-31 グンゼ株式会社 Retort sterilizable glass bottle
JPS6228226A (en) * 1985-07-30 1987-02-06 Okura Ind Co Ltd Unidirectionally heat-shrinkable tubular film and manufacture thereof
JPS6291555A (en) * 1985-10-18 1987-04-27 Toyobo Co Ltd Heat-shrinkable polyester film
JPH0762077B2 (en) * 1985-07-31 1995-07-05 東洋紡績株式会社 Method for producing polyester heat-shrinkable tube
JP2563773B2 (en) * 1985-10-22 1996-12-18 グンゼ株式会社 Polyester shrink-link label with excellent low-temperature heat shrinkability
JPH0722965B2 (en) * 1986-07-18 1995-03-15 ダイアホイルヘキスト株式会社 Polyester shrink wrapping film
JPS63152639A (en) * 1986-08-04 1988-06-25 Unitika Ltd Polyester shrink film and production thereof
DE3751722T2 (en) * 1986-11-12 1996-07-11 Diafoil Hoechst Co Ltd Polyester shrink wrap
US4983653A (en) * 1986-11-12 1991-01-08 Diafoil Company, Ltd. Polyester shrinkable film containing benzotriazole
JP2893286B2 (en) * 1990-05-17 1999-05-17 グンゼ株式会社 Heat-shrinkable foamed composite film and method for producing the same
JPH05245930A (en) * 1991-12-26 1993-09-24 Sekisui Chem Co Ltd Polyester heat-shrinkable film
CA2161953A1 (en) * 1993-05-04 1994-11-10 Edward J. Deyrup Improved bonding resin and methods relating thereto
EP0688812A1 (en) * 1994-06-20 1995-12-27 Hoechst Celanese Corporation High barrier transparent films
JPH08192464A (en) * 1995-01-19 1996-07-30 Kanebo Ltd Polyester heat-shrinkable film
JP3692976B2 (en) 2001-07-11 2005-09-07 東洋紡績株式会社 Heat-shrinkable polyester film
JP3678186B2 (en) * 2001-08-01 2005-08-03 東洋紡績株式会社 Heat-shrinkable polyester film roll
JP5962363B2 (en) * 2012-09-12 2016-08-03 東洋紡株式会社 Heat-shrinkable polyester film for packaging

Also Published As

Publication number Publication date
JPS5742726A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
JPH0134528B2 (en)
JP5151015B2 (en) Heat-shrinkable polyester film and label and method for producing the same
US4354997A (en) Heat shrinkable film and process for preparing the same
JP4198058B2 (en) Polylactic acid resin biaxially stretched film
JP2007016120A (en) Heat-shrinkable polyester film and label, and method for production thereof
TW201139531A (en) Heat-shrinkable polyester film
JPS6097847A (en) Heat-shrinkable laminated film
JPH01120339A (en) Heat shrinkable film for packing and preparation thereof
JP3486692B2 (en) Base film for in-mold transfer
JP2022063244A (en) Heat-shrinkable film, packaging material, molding or container
JP2001001468A (en) Heat-shrinkable multilayered film
JPH0256213B2 (en)
JPS6228226A (en) Unidirectionally heat-shrinkable tubular film and manufacture thereof
JP2019123252A (en) Heat-shrinkable polyester-based film roll
JPH04193526A (en) Heat-shrinkable polyester film
JPS6233946B2 (en)
JPH04356533A (en) Heat-shrinking polyester film
JPS637573B2 (en)
JP4082662B2 (en) Heat shrinkable laminated film
JPH11105222A (en) Heat-shrinkable multilayered film
JPH04278348A (en) Heat-shrinkable polyester laminated film
JPH0729376B2 (en) Low temperature shrinkable polyester film
JPS60232948A (en) Heat-shrinkable polyester laminated film
TW200829483A (en) Packaging body
JPS6227981B2 (en)