JP3486692B2 - Base film for in-mold transfer - Google Patents

Base film for in-mold transfer

Info

Publication number
JP3486692B2
JP3486692B2 JP10359792A JP10359792A JP3486692B2 JP 3486692 B2 JP3486692 B2 JP 3486692B2 JP 10359792 A JP10359792 A JP 10359792A JP 10359792 A JP10359792 A JP 10359792A JP 3486692 B2 JP3486692 B2 JP 3486692B2
Authority
JP
Japan
Prior art keywords
film
heat
mold transfer
stretching
polybutylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10359792A
Other languages
Japanese (ja)
Other versions
JPH05269843A (en
Inventor
正治 西原
住典 田中
秀樹 福永
真人 美藤
雅文 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Okura Kogyo KK
Original Assignee
Nissha Printing Co Ltd
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd, Okura Kogyo KK filed Critical Nissha Printing Co Ltd
Priority to JP10359792A priority Critical patent/JP3486692B2/en
Publication of JPH05269843A publication Critical patent/JPH05269843A/en
Application granted granted Critical
Publication of JP3486692B2 publication Critical patent/JP3486692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Decoration By Transfer Pictures (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、インモールド転写用基
材フィルム、すなわち射出成形と同時に成形品表面に図
柄印刷を施す際に使用される転写箔の基材フィルムに関
するものである。 【0002】 【従来の技術】近年、家庭用電化製品、自動車内装品、
台所用品、化粧品容器、玩具類などに使用されるプラス
チック成形品は、その意匠性や居住性等に関する消費者
ニーズの多様化により、深絞り度の高い立体曲面構造の
表面仕上げが望まれる傾向が強くなっている。 【0003】こうした中、深絞り度の高いプラスチック
成形品の表面に図柄印刷を施す方法としては、図1に示
す如く基材フィルム4の表面に離型層、図柄層、接着層
等の印刷層5が順次塗工された転写箔3を、金型1の間
に予め位置決めしておき、その後射出成形機2により樹
脂を圧入して成形と同時に図柄印刷する、所謂インモー
ルド転写法が一般的に多く採用されている。このインモ
ールド転写法によれば、転写後の基材フィルムは成形品
から剥離するか、あるいはそのまま残して成形品と一体
化させることもできることから、優れた表面特性が発現
されるほか、従来の成形後に印刷する方法に比べて工程
の簡素化による大幅なコストダウンが可能となる上、更
に2次元又は3次元等の曲面にも極めて正確に印刷する
ことができるなど、種々の利点が得られるものである。 【0004】ところで、かかるインモールド転写用基材
フィルムとして、特開昭64−45699号公報、特開
平3−253317号公報、特開平3−288699号
公報等にはポリエチレンテレフタレート二軸延伸フィル
ムを、また特開平3−288700号公報にはポリ塩化
ビニル系フィルムを用いる方法がそれぞれ提案されてい
る。 【0005】このうち、ポリエチレンテレフタレート二
軸延伸フィルムは、強度、耐熱性、表面平滑性、非汚染
性等に優れた性質を有するため、この種のフィルムとし
て多用されているが、周知の如くポリエチレンテレフタ
レートは延伸及び熱固定等によって高度に結晶化してい
るため破断伸びが小さく、8R以下の深絞り度の高い複
雑な形状になるとインモールド成形時にフィルムが破れ
て転写箔としての機能を果たし得なくなるという問題を
有していた。 【0006】一方、ポリ塩化ビニル系フィルムは可塑剤
の添加によって破断伸びを大きくすることができ、深絞
り度の高い複雑な形状でも比較的よく追随させることが
できるが、その反面、耐熱性に難があるほか可塑剤がブ
リードアウトして転写面を汚染するという致命的な問題
があり、このフィルムも満足できるものでなかった。 【0007】 【発明の解決しようとする課題】本発明は、かかる事情
に鑑みなされたものであり、その目的とするところは深
絞り度の高い成形品でもインモールド成形時にフィルム
が破れたり皺が発生することなく、しかも図柄等の歪み
の少ない美麗な外観を有する樹脂成形品を得るのに最適
なインモールド転写用基材フィルムを提供する点にあ
る。 【0008】 【課題を解決するための手段】本発明者等は、上記目的
を達成するために種々の耐熱性樹脂について、固有のフ
ィルム特性と深絞り成形性などとの関係を総合的な面か
ら鋭意検討した結果、特定の条件で二軸延伸したポリブ
チレンテレフタレートフィルムが表面平滑で透明性と非
汚染性に優れ、しかもα型結晶とβ型結晶が共存すると
いう特異な結晶構造に基づく優れた強度と、そして従来
のポリエチレンテレフタレートフィルムには見られなか
った比較的大きな破断伸びを兼備する点に着目し、かか
る特定のフィルムでインモールド転写箔の基材フィルム
を構成すれば3R程度の高い深絞り度でもフィルムが破
れることなく極めてよく追随することを見い出し、本発
明を完成させたものである。 【0009】即ち、本発明は、固有粘度0.7以上のポ
リブチレンテレフタレートを縦横それぞれ1.5乃至
3.8倍となるように、チューブラー法によって同時二
軸延伸及び熱固定されたインモールド転写用基材フィル
ムであって、結晶融解熱が8.5乃至11.1cal/
gで、且つ面配向係数が0.07乃至0.16である
リブチレンテレフタレートフィルムよりなることを特徴
とするインモールド転写用基材フィルムに係るものであ
る。 【0010】以下、本発明のインモールド転写用基材フ
ィルムについて詳しく説明する。 【0011】本発明において、ポリブチレンテレフタレ
ートとはブチレンテレフタレートを主たる繰返し単位と
するポリエステルであり、具体的にはグリコール成分と
しての1,4−ブタンジオール、又はそのエステル形成
性誘導体と、二塩基酸成分としてのテレフタル酸、又は
そのエステル形成性誘導体を主成分とし、それらを縮合
して得られるホモ、またはコポリエステルである。 【0012】尚、本発明のポリブチレンテレフタレート
には、その性質を阻害しない範囲内で、ポリエチレンテ
レフタレート、ポリ(エチレンテレフタレート/エチレ
ンイソフタレート)などの他のポリエステル類やポリカ
ーボネート等を添加してもよく、更に必要に応じて適宜
の滑剤、アンチブロッキング剤、無機増量剤、酸化防止
剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、着色
剤、結晶化抑制剤、結晶化促進剤等の添加剤を加えても
さしつかえない。 【0013】本発明のインモールド転写用基材フィルム
は、かかるポリブチレンテレフタレートよりなるフィル
ムであって、且つその結晶融解熱が8cal/gより大
きいもの、好ましくは9cal/g以上のものである。 【0014】ここで結晶融解熱とは、差動走査熱量計を
用い昇温速度20℃/分で試料を加熱した時の結晶融解
に伴う収熱ピークの面積から求めたもので、一般的にそ
の値が高いほど結晶性に富み耐熱性がよくなる傾向があ
ることから、この結晶融解熱が8cal/g以下の場合
は結晶性が低下して耐熱性に乏しくなるほか、熱寸法安
定性の良好なフィルムが得られず図柄層等の塗工工程や
インモールド成形工程などでフィルムが収縮して図柄に
歪みが生じ、精巧な転写印刷が困難になる。尚、結晶融
解熱の上限は特にないが、通常、1,4−ブタンジオー
ルとテレフタル酸よりなるポリブチレンテレフタレート
ホモポリマーの結晶融解熱は約13cal/g程度であ
り、従ってそれ以下のものが一般的である。 【0015】また、本発明のインモールド転写用基材フ
ィルムは、面配向係数が0.07乃至0.16、好まし
くは0.09乃至0.15になるよう二軸延伸及び熱固
定されたポリブチレンテレフタレートフィルムで構成し
たものである。 【0016】本発明において、インモールド転写用基材
フィルムをかかる特定の二軸延伸及び熱固定されたフィ
ルムで構成した理由は、単にフィルムを高強度化、高ヤ
ング率化して印刷適性を向上させるためだけでなく、む
しろガラス転移温度が約40℃と低くしかも結晶化速度
が速いというポリブチレンテレフタレート特有の性質を
考慮した場合、未延伸フィルムのままでは耐熱性に乏し
く、また通常のインフレーションフィルムでは成形時に
白化して透明性が失われるという不都合が生じることか
ら、インモールド転写に必要な強度と深絞り成形性を保
持しつつ、更に優れた耐熱性と透明性を兼備させるには
二軸延伸及び熱固定が不可欠との結論に達したためであ
る。 【0017】ここで面配向係数△Pとは、フィルム面内
の長さ方向、幅方向及び厚さ方向の屈折率をそれぞれN
x、Ny、Nzとした場合、△P=(Nx+Ny)/2
−Nzで表されるもので、この面配向係数が0.07未
満の場合は延伸不足による厚さ斑が大きく、しかも耐熱
性とヤング率不足のために離型層、図柄層、接着層等の
塗工工程でフィルムが伸びやすく、所謂印刷ずれが発生
する。一方、面配向係数が0.16より大きい場合は高
倍率での延伸が必要となるため、フィルムを厚くしよう
とすると透明性が失われ、また透明性をよくしようとす
れば伸びが小さくなりすぎて深絞り成形性が低下しイン
モールド成形時にフィルムが破れやすくなるなど、透明
性と深絞り成形性を両立させることが困難になる。 【0018】尚、本発明のフィルムにおいて、上記長さ
方向及び幅方向の屈折率の差から求められる複屈折率は
0.05以下のものが好ましく、0.05を越えるとフ
ィルムの異方性が大きくなって深絞り成形性が低下す
る。 【0019】かかる本発明のポリブチレンテレフタレー
トフィルムを製造するには、まず原則として結晶融解熱
が8cal/gより大きいポリブチレンテレフタレート
原料を240乃至290℃の温度で溶融押出成形した
後、30℃以下の温度で急冷して透明な未延伸フィルム
となし、引続き40℃以下の予熱工程を経て二軸延伸及
び熱固定するという一連の方法で得られるものである。
その際、二軸延伸する方法としてはチューブラー同時二
軸延伸法が用いられる。ポリブチレンテレフタレートの
如く結晶化速度の速い樹脂においては延伸速度が速く、
しかも縦横同時に延伸されるチューブラー延伸法が延伸
過程での配向結晶化が抑制され、均一かつ安定して延伸
できる点で好ましい。 【0020】ここで、チューブラー同時二軸延伸法にお
ける延伸条件の具体例としては、延伸開始から終了まで
の時間が5秒以内になるよう設計した延伸ゾーンで、未
延伸フィルムの厚さ、結晶化度等に応じて温度50乃至
140℃、縦横それぞれ倍率1.5乃至3.8倍の各条
件のもと面配向係数が前記0.07乃至0.16になる
よう延伸するのであるが、ポリブチレンテレフタレート
の場合は延伸帯域に導くまでの予熱温度を40℃以下に
保持することも肝要で、予熱温度が40℃より高いと縦
横方向の延伸がアンバランスになったり、均一な延伸が
困難になる。尚、かかるチューブラー同時二軸延伸に供
されるポリブチレンテレフタレートの固有粘度は0.7
以上のものであり、0.7未満では溶融粘度が低くドロ
ーダウンしやすくなって押出時の保型が困難になるほ
か、結晶化速度が著しく速くなるため溶融押出し後にい
くら急冷しても球晶の生成に基づく白化現象を抑えきれ
ず、透明性が損なわれるばかりか強度、深絞り成形性等
も低下する。 【0021】また、本発明においてポリブチレンテレフ
タレートフィルムを製造する際の熱固定条件としては、
温度が低いと結晶化度の増加が少ないために結晶融解熱
の大きいフィルムが得られにくく熱寸法安定性の悪化を
余儀なくされる一方、逆に高すぎても結晶部分が一部融
解したり分子配向が低下して前記結晶融解熱及び面配向
係数を維持できなくなることなどから、通常ポリブチレ
ンテレフタレートの融点をTmとした場合、(Tm−6
0)乃至(Tm−10)℃の温度とし、5乃至30%程
度の弛緩率のもとで熱固定するのが好ましい。 【0022】尚、本発明においてポリブチレンテレフタ
レートフィルムの厚さは、必要とされる深絞り度などに
よって異なるが、通常10乃至100μm、好ましくは
20乃至80μm程度がフィルム強度、破断伸び、印刷
適性、深絞り成形性などからみて好適である。また、か
かる本発明のインモールド転写用基材フィルムを用いて
図柄印刷される射出成形用の樹脂としては、基本的に射
出成形可能な樹脂であればいかなるものでもさしつかえ
ないが、通常アクリロニトリル/ブタジエン/スチレン
共重合樹脂、アクリロニトリル/スチレン共重合樹脂、
ポリプロピレン、ポリスチレン、ポリアミド、ポリカー
ボネート、ポリエチレン等が一般的である。 【0023】 【実施例】以下、本発明を実施例により更に詳しく説明
するが、本発明はこれらに限定されるものではない。 【0024】尚、本発明において行なった物性の測定法
及び評価方法は次の通りである。 (1)結晶融解熱(単位;cal/g) セイコー電子工業(株)製の差動走査熱量計DSC22
0Cを用い、昇温速度20℃/分にて試料を加熱した時
の結晶融解に伴う吸熱ピークの面積から下記の式により
算出した。 結晶融解熱=H・S/M 但し、H;同一条件でインジウムを測定した時の単位面
積当りの融解熱(cal/cm2) S;試料の結晶融解ピーク面積(cm2) M;試料の重量(g) (2)面配向係数 フィルム面内の長さ方向、幅方向及び厚さ方向の屈折率
から前記△Pとして算出した。尚、屈折率の測定はアタ
ゴ社製のアッペ屈折率計を使用し、ナトリウム光源下で
測定した。 (3)引張強度(単位;kg/mm2)、破断伸び(単
位;%) JIS C2318に準ずる方法で測定した。 (4)熱寸法安定性(単位;%) フィルムの長さ方向と平行になるよう縦、横100mm
の正方形に採取した試料フィルムを100℃熱風中に3
0分間吊り下げて放置し、次式により縦及び横方向の熱
寸法安定性を算出した。 熱寸法安定性=[(100−A)/100]×100 但し、A;熱風中30分放置後の縦又は横方向の長さ
(mm) (5)印刷適性 グラビア式印刷機を用い基材フィルム表面に離型層、図
柄層、接着層等を順次塗工した。塗工条件は各印刷機で
のフィルムテンションを15乃至25kg/cm2
し、乾燥温度をそれぞれ60乃至80℃に設定した。そ
の結果、フィルムの印刷適性として何等支障なく塗工で
きたものを(○)、フィルムが僅かに収縮したり伸びた
りして図柄に歪み、ずれ等が生じたものを(×)とし
た。 (6)深絞り成形性 図1の如く印刷面が樹脂側に当接するよう予め転写箔が
位置決めされた金型を用い、10cm角の大きさで、立
上がり10mm、コーナー部のRが3mmのトレー状成
形品を射出成形した。その際、成形用の樹脂にはABS
を用い、成形条件を樹脂温度220℃、金型温度55
℃、樹脂圧力約300kg/cm2とした。この評価方
法において深絞り成形性に何等問題なかったものを
(○)、転写箔が破れたりあるいは収縮して図柄に歪み
が生じたものを(×)とした。 【0025】実施例1 二塩基酸成分としてテレフタル酸、グリコール成分とし
て1,4−ブタンジオールよりなる固有粘度1.4のポ
リブチレンテレフタレート原料(融点;225℃)を、
その先端に環状ダイスが装着された口径65mmの押出
機を用いてスクリュー回転数約40rpm、シリンダー
及びダイ温度240乃至280℃の各条件で溶融押出し
た後、直ちに5℃の温度で水冷して折径約300mm、
厚さ約245μmのチューブ状未延伸フィルムを作製し
た。この未延伸フィルムを25℃の温度で予熱しながら
周速の異なる上下一対のニップロールに導き、延伸温度
60及至90℃のもと加圧空気を送り込んで延伸倍率が
縦2.5倍、横3.0倍になるようチューブラー同時二
軸延伸を行なった。引続きチューブ形状を保ったまま
縦、横方向にそれぞれ15乃至20%の弛緩を与えつつ
200℃にて3秒間熱固定した後、両端をカットして厚
さ45μm、幅750mmで、結晶融解熱10.8ca
l/g、面配向係数0.13の二軸延伸ポリブチレンテ
レフタレートフィルムを作製した。こうして得たフィル
ムの表面に離型層、図柄層、接着層等を順次塗工し、更
にインモールド成形試験により深絞り成形性の評価を行
なった結果を引張強度、破断伸び、熱寸法安定性等のフ
ィルム物性と共に表1に示した。 【0026】比較例1 市販の二軸延伸ポリエチレンテレフタレートフィルム
(厚さ38μm)をインモールド転写用基材フィルムと
して用いる以外は、上記実施例1と同様の方法で試験し
た結果を表1に示した。 【0027】 【表1】 【0028】表1の結果から、本発明の二軸延伸及び熱
固定されたポリブチレンテレフタレートフィルムをイン
モールド転写用の基材フィルムとして用いた場合は、従
来のポリエチレンテレフタレートフィルムに比べて破断
伸びが大きく、深絞り成形性に優れていることがわか
る。 【0029】実施例2 二塩基酸成分としてテレフタル酸、グルコール成分とし
て1,4−ブタンジオールよりなる固有粘度1.0のポ
リブチレンテレフタレート原料(融点;224℃)を用
いる以外は実施例1と同様の方法により厚さ45μm、
幅750mmで、結晶融解熱11.1cal/g、面配
向係数0.14の二軸延伸ポリブチレンテレフタレート
フィルムを作製した。このフィルムの引張強度、破断伸
び、熱寸法安定性、印刷適性、深絞り成形性等を表2に
示した。 【0030】実施例3 熱固定温度を210℃とする以外は上記実施例2と同様
の方法で結晶融解熱8.5cal/g、面配向係数0.
10の二軸延伸ポリブチレンテレフタレートフィルムを
作製した。このフィルムの引張強度、破断伸び、熱寸法
安定性、印刷適性、深絞り成形性等を表2に示した。 【0031】比較例2 二塩基酸成分としてテレフタル酸87.5モル%とイソ
フタル酸12.5モル%、グリコール成分として1,4
−ブタンジオールよりなるコポリエステル原料(融点;
205℃)をシリンダー及びダイ温度230乃至260
℃にて溶融押出し、更に熱固定時の温度を180℃とす
る以外は実施例2と同様の方法により結晶融解熱7.4
cal/g、面配向係数0.13の二軸延伸フィルムを
作製した。このフィルムの引張強度、破断伸び、熱寸法
安定性、印刷適性、深絞り成形性等を表2に示した。 【0032】 【表2】 表中において、△Pとは面配向係数である。 【0033】表2の結果から、結晶融解熱が本発明の範
囲外にあるものは熱寸法安定性が悪く、図柄印刷に歪み
が生じるなど、印刷適性と深絞り成形性に劣っていた。 【0034】実施例4〜6、比較例3〜4 溶融押出時のスクリュー回転数を変える以外は実施例1
と同様の方法によって、折径約300mmで厚さが約6
(比較例3)、105(実施例4)、170(実施例
5)、295(実施例6)、490μm(比較例4)
種々異なるチューブ状未延伸フィルムを作製した。この
未延伸フィルムを20℃の温度で予熱しながら周速の異
なる上下一対のニップロールに導き、延伸温度50乃至
100℃のもと加圧空気を送り込んで延伸倍率が上記未
延伸フィルムの厚さの薄い順から縦横同じ倍率で、それ
ぞれ1.4倍(比較例3)、1.8倍(実施例4)
2.3倍(実施例5)、3.0倍(実施例6)、3.9
(比較例4)になるようチューブラー同時二軸延伸を
行った。引続き該チューブ状延伸フィルムの両端をカッ
トした後、テンターを用いて横方向に約7%の弛緩を与
えつつ180乃至210℃の温度で10秒間熱固定する
ことによって厚さ35μm一定で、面配向係数が0.0
6乃至0.17の範囲で種々異なる5種類の二軸延伸ポ
リブチレンテレフタレートフィルムを作製した。こうし
て得たフィルムの表面にコロナ放電処理を施したのち、
該処理面に離型層、図柄層、接着層等を順次塗工し、更
にインモールド成形試験により深絞り成形の評価を行な
った結果を引張強度、破断伸び、熱寸法安定性等のフィ
ルム物性と共に表3に示した。 【0035】 【表3】表中において、△Pとは面配向係数である。 【0036】表3より明らかなように、面配向係数が
0.07未満のものは図柄層等の塗工工程でフィルムに
僅かな伸びが認められ印刷ずれが発生したのに対し、面
配向係数が0.16より大きいものはインモールド成形
時にフィルムが破れ転写箔として機能しないものであっ
た。 【0037】 【発明の効果】以上の如き本発明のインモールド転写用
基材フィルムは、固有粘度0.7以上のポリブチレンテ
レフタレートを縦横それぞれ1.5乃至3.8倍となる
ように、チューブラー法によって同時二軸延伸及び熱固
定されたインモールド転写用基材フィルムであって、
晶融解熱が8.5乃至11.1cal/gで、かつ面配
向係数が0.07乃至0.16であるポリブチレンテレ
フタレートフィルムで構成したものであるため、表面平
滑でしかも強度、耐熱性、透明性、非汚染性等に優れる
ことはもちろん、従来のポリエチレンテレフタレートよ
りなる基材フィルムにはみられなかった優れた深絞り成
形性をも兼備することから、とりわけ深絞り度の高いプ
ラスチック成形品のインモールド転写用基材フィルムと
して好適で、併せてかかる転写印刷の簡素化によるコス
トダウンにも大きく貢献するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base film for in-mold transfer, that is, a transfer foil used for pattern printing on the surface of a molded product simultaneously with injection molding. The present invention relates to a base film. [0002] In recent years, household appliances, automobile interior parts,
Plastic products used in kitchenware, cosmetic containers, toys, etc. tend to require a surface finish with a three-dimensional curved surface structure with a high degree of deep drawing due to diversification of consumer needs related to design and livability. It is getting stronger. Under these circumstances, as a method of printing a pattern on the surface of a plastic molded product having a high degree of deep drawing, a printing layer such as a release layer, a pattern layer, and an adhesive layer is formed on the surface of the base film 4 as shown in FIG. A so-called in-mold transfer method is generally used, in which a transfer foil 3 coated sequentially with 5 is pre-positioned between the molds 1, and thereafter, a resin is press-fitted by an injection molding machine 2 to perform pattern printing simultaneously with molding. Many are adopted. According to this in-mold transfer method, the base film after transfer can be peeled off from the molded product or can be left as it is to be integrated with the molded product, so that excellent surface characteristics are exhibited, and the conventional Compared to the method of printing after molding, various advantages are obtained, such as drastic cost reduction by simplification of the process and further, extremely accurate printing on a two-dimensional or three-dimensional curved surface. Things. Japanese Patent Application Laid-Open Nos. 64-45699, 3-253317, and 3-288699 disclose a biaxially stretched polyethylene terephthalate film as a substrate film for in-mold transfer. Japanese Patent Application Laid-Open No. 3-288700 proposes a method using a polyvinyl chloride film. [0005] Of these, polyethylene terephthalate biaxially stretched film is widely used as this kind of film because it has excellent properties such as strength, heat resistance, surface smoothness, and non-staining property. Terephthalate is highly crystallized by stretching and heat setting, etc., so its elongation at break is small, and when it becomes a complicated shape with a high degree of deep drawing of 8R or less, the film breaks during in-mold molding and cannot function as a transfer foil. Had the problem that On the other hand, a polyvinyl chloride film can increase the elongation at break by adding a plasticizer, and can follow a complicated shape having a high degree of deep drawing relatively well. This film was also unsatisfactory because of the serious problem that the plasticizer bleed out and stained the transfer surface. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. It is an object of the present invention to form a film having a high degree of deep drawing such that a film is torn or wrinkled during in-mold molding. An object of the present invention is to provide a base film for in-mold transfer which is most suitable for obtaining a resin molded product having a beautiful appearance with no distortion and little distortion such as a design. Means for Solving the Problems To achieve the above object, the present inventors have studied the relationship between the inherent film properties and the deep drawability of various heat-resistant resins in a comprehensive manner. As a result of diligent studies, polybutylene terephthalate film biaxially stretched under specific conditions has a smooth surface, excellent transparency and non-staining properties, and is excellent based on a unique crystal structure in which α-type crystals and β-type crystals coexist. The strength and the relatively high elongation at break, which were not found in conventional polyethylene terephthalate films. If the specific film is used as the base film for the in-mold transfer foil, it is as high as about 3R. It has been found that the film follows the film very well without breaking even at a deep drawing degree, and the present invention has been completed. [0009] That is, the present invention relates to a polymer having an intrinsic viscosity of 0.7 or more.
1.5 to 1.5 times each of rib-butylene terephthalate
Simultaneous simultaneous by the tubular method so that 3.8 times
Axial stretched and heat-set base material for in-mold transfer
A beam, crystal fusion heat of 8.5 to 11.1Cal /
g and a poly (butylene terephthalate) film having a plane orientation coefficient of 0.07 to 0.16. Hereinafter, the base film for in-mold transfer of the present invention will be described in detail. In the present invention, polybutylene terephthalate is a polyester having butylene terephthalate as a main repeating unit, and specifically, 1,4-butanediol as a glycol component, or an ester-forming derivative thereof, and a dibasic acid It is a homo- or copolyester obtained by condensing terephthalic acid or an ester-forming derivative thereof as a main component. The polybutylene terephthalate of the present invention may contain other polyesters such as polyethylene terephthalate, poly (ethylene terephthalate / ethylene isophthalate), polycarbonate and the like as long as the properties are not impaired. And, if necessary, suitable lubricants, anti-blocking agents, inorganic extenders, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, plasticizers, coloring agents, crystallization inhibitors, crystallization accelerators, etc. Additives can be added. The substrate film for in-mold transfer of the present invention is a film made of such polybutylene terephthalate and having a heat of crystal fusion of more than 8 cal / g, preferably 9 cal / g or more. Here, the heat of crystal fusion is obtained from the area of the heat absorption peak accompanying the crystal melting when the sample is heated at a heating rate of 20 ° C./min using a differential scanning calorimeter. Since the higher the value is, the higher the crystallinity tends to be and the higher the heat resistance tends to be. When the heat of crystal fusion is 8 cal / g or less, the crystallinity is reduced and the heat resistance is poor, and the thermal dimensional stability is good. A film cannot be obtained, and the film shrinks in the coating step of the pattern layer or the like or the in-mold forming step, and the pattern is distorted, so that precise transfer printing becomes difficult. Although there is no particular upper limit for the heat of crystal fusion, the heat of crystal fusion of a polybutylene terephthalate homopolymer composed of 1,4-butanediol and terephthalic acid is generally about 13 cal / g, and therefore, less than about 13 cal / g is generally used. It is a target. Further, the substrate film for in-mold transfer of the present invention has a biaxially stretched and heat-set poly film having a plane orientation coefficient of 0.07 to 0.16, preferably 0.09 to 0.15. It is composed of a butylene terephthalate film. In the present invention, the reason why the base film for in-mold transfer is constituted by such a specific biaxially stretched and heat-fixed film is that the film simply has a higher strength and a higher Young's modulus to improve printability. In addition to this, considering the unique properties of polybutylene terephthalate that the glass transition temperature is as low as about 40 ° C. and the crystallization rate is high, heat resistance is poor as it is in an unstretched film, and ordinary inflation film Because of the disadvantage of whitening and loss of transparency during molding, biaxial stretching is required to combine the excellent heat resistance and transparency while maintaining the strength and deep drawability required for in-mold transfer. And the conclusion that heat fixation is essential. Here, the plane orientation coefficient ΔP is defined as the refractive index in the length direction, width direction and thickness direction in the film plane, respectively.
When x, Ny, and Nz are set, ΔP = (Nx + Ny) / 2
When the plane orientation coefficient is less than 0.07, the thickness unevenness is large due to insufficient stretching, and the release layer, the pattern layer, the adhesive layer, etc. due to insufficient heat resistance and Young's modulus. In the coating step, the film is easily stretched, and so-called printing misregistration occurs. On the other hand, when the plane orientation coefficient is larger than 0.16, stretching at a high magnification is required. Therefore, the transparency is lost when trying to thicken the film, and the elongation is too small when trying to improve the transparency. Thus, it is difficult to achieve both transparency and deep drawability, for example, the deep drawability is reduced and the film is easily broken during in-mold formation. In the film of the present invention, the birefringence determined from the difference between the refractive indices in the length direction and the width direction is preferably 0.05 or less. And the deep drawability decreases. In order to produce the polybutylene terephthalate film of the present invention, first, a polybutylene terephthalate raw material having a heat of crystal fusion of more than 8 cal / g is melt-extruded at a temperature of 240 to 290 ° C. And a transparent unstretched film is formed at a temperature of 40 ° C. to obtain a transparent unstretched film, followed by a biaxial stretching and heat setting through a preheating step of 40 ° C. or less.
At that time, Ji Yubura simultaneous biaxial stretching method is used as a method of biaxial stretching. In a resin having a high crystallization rate such as polybutylene terephthalate, the stretching rate is high,
Moreover, the tubular stretching method in which stretching is performed simultaneously in the longitudinal and transverse directions is preferable in that oriented crystallization in the stretching process is suppressed and uniform and stable stretching can be performed. Here, specific examples of stretching conditions in the tubular simultaneous biaxial stretching method include a stretching zone designed so that the time from the start to the end of stretching is within 5 seconds, the thickness of the unstretched film, The film is stretched so that the plane orientation coefficient becomes 0.07 to 0.16 under the conditions of a temperature of 50 to 140 ° C. and a vertical and horizontal magnification of 1.5 to 3.8 times according to the degree of chemical conversion. In the case of polybutylene terephthalate, it is also important to keep the preheating temperature at 40 ° C or less before leading to the stretching zone. If the preheating temperature is higher than 40 ° C, stretching in the vertical and horizontal directions becomes unbalanced or uniform stretching is difficult. become. The intrinsic viscosity of polybutylene terephthalate subjected to such tubular simultaneous biaxial stretching is 0.7
Are those described above, except that the shape retention during extrusion makes it easier to draw down low melt viscosity is difficult is less than 0.7, no matter how rapid cooling after melt extrusion for crystallization rate is significantly faster spherulites Cannot suppress the whitening phenomenon due to the formation of, and not only the transparency is impaired, but also the strength, the deep draw formability and the like are reduced. In the present invention, the heat setting conditions for producing a polybutylene terephthalate film include:
When the temperature is low, the increase in crystallinity is small, and it is difficult to obtain a film with a large heat of crystal fusion, which inevitably deteriorates the thermal dimensional stability. Ordinarily, when the melting point of polybutylene terephthalate is Tm, (Tm−6)
It is preferable to set the temperature at 0) to (Tm-10) ° C. and heat-set at a relaxation rate of about 5 to 30%. In the present invention, the thickness of the polybutylene terephthalate film varies depending on the required degree of deep drawing, but it is usually 10 to 100 μm, preferably about 20 to 80 μm, and the film strength, elongation at break, printability, It is suitable from the viewpoint of deep drawing formability and the like. In addition, as the resin for injection molding to be printed by using the substrate film for in-mold transfer of the present invention, basically any resin can be used as long as it is an injection moldable resin, but it is usually acrylonitrile / butadiene. / Styrene copolymer resin, acrylonitrile / styrene copolymer resin,
Polypropylene, polystyrene, polyamide, polycarbonate, polyethylene and the like are common. EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The methods for measuring and evaluating physical properties performed in the present invention are as follows. (1) Heat of crystal fusion (unit: cal / g) Differential scanning calorimeter DSC22 manufactured by Seiko Electronic Industry Co., Ltd.
Using 0C, the following equation was used to calculate the area of the endothermic peak accompanying the crystal melting when the sample was heated at a heating rate of 20 ° C./min. Heat of crystal fusion = H · S / M where H: Heat of fusion per unit area when measuring indium under the same conditions (cal / cm 2 ) S: Crystal melting peak area of sample (cm 2 ) M: Sample Weight (g) (2) Plane orientation coefficient ΔP was calculated from the refractive index in the length direction, width direction and thickness direction in the plane of the film. The refractive index was measured under a sodium light source using an Atpe refractometer. (3) Tensile strength (unit: kg / mm 2 ), elongation at break (unit:%) Measured by a method according to JIS C2318. (4) Thermal dimensional stability (unit:%) 100 mm vertically and horizontally so as to be parallel to the length direction of the film
The sample film sampled in a square of
The sample was suspended for 0 minutes and allowed to stand, and the thermal dimensional stability in the vertical and horizontal directions was calculated by the following equation. Thermal dimensional stability = [(100−A) / 100] × 100 where A is the length in the vertical or horizontal direction (mm) after being left in hot air for 30 minutes (5) Printability Substrate using gravure printing machine A release layer, a design layer, an adhesive layer, and the like were sequentially applied to the film surface. The coating conditions were such that the film tension in each printing machine was 15 to 25 kg / cm 2 and the drying temperature was 60 to 80 ° C., respectively. As a result, the film which could be applied without any trouble as the printability of the film was evaluated as ()), and the film which contracted or expanded slightly due to the film shrinking or expanding was evaluated as (×). (6) Deep drawing formability As shown in FIG. 1, using a mold in which the transfer foil is positioned in advance so that the printing surface is in contact with the resin side, a tray having a size of 10 cm square, a rise of 10 mm, and a corner radius of 3 mm. The molded article was injection molded. At that time, ABS for molding resin
The molding conditions were set at a resin temperature of 220 ° C. and a mold temperature of 55.
C. and a resin pressure of about 300 kg / cm 2 . In this evaluation method, a pattern having no problem in deep drawing formability was indicated by ()), and a pattern in which the transfer foil was torn or shrunk to cause distortion in the design was indicated as (x). Example 1 A polybutylene terephthalate raw material (melting point: 225 ° C.) having an intrinsic viscosity of 1.4, comprising terephthalic acid as a dibasic acid component and 1,4-butanediol as a glycol component,
Using a 65 mm diameter extruder equipped with an annular die at the tip, melt extrusion was performed under each condition of a screw rotation speed of about 40 rpm, a cylinder and a die temperature of 240 to 280 ° C, and then immediately cooled with water at a temperature of 5 ° C and folded. About 300mm in diameter,
A tubular unstretched film having a thickness of about 245 μm was produced. The unstretched film is guided to a pair of upper and lower nip rolls having different peripheral speeds while being preheated at a temperature of 25 ° C., and is supplied with pressurized air at a stretching temperature of 60 to 90 ° C. to have a stretching ratio of 2.5 times in length and 3 times in width. Tubular simultaneous biaxial stretching was performed so as to be 0.0 times. Subsequently, the tube shape was maintained at 200 ° C. for 3 seconds while giving 15 to 20% relaxation in each of the vertical and horizontal directions, and then both ends were cut to a thickness of 45 μm, a width of 750 mm, and a heat of crystal fusion of 10%. .8ca
1 / g and a biaxially stretched polybutylene terephthalate film having a plane orientation coefficient of 0.13 were produced. A release layer, a pattern layer, an adhesive layer, and the like were sequentially applied to the surface of the obtained film, and the deep drawability was evaluated by an in-mold molding test. The results were tensile strength, elongation at break, and thermal dimensional stability. Table 1 shows the physical properties of the film. Comparative Example 1 Table 1 shows the results of a test conducted in the same manner as in Example 1 except that a commercially available biaxially oriented polyethylene terephthalate film (thickness: 38 μm) was used as the base film for in-mold transfer. . [Table 1] From the results shown in Table 1, when the biaxially stretched and heat-set polybutylene terephthalate film of the present invention is used as a base film for in-mold transfer, the elongation at break is lower than that of a conventional polyethylene terephthalate film. It can be seen that they are large and have excellent deep drawability. Example 2 Same as Example 1 except that a polybutylene terephthalate raw material having an intrinsic viscosity of 1.0 (melting point: 224 ° C.) comprising terephthalic acid as a dibasic acid component and 1,4-butanediol as a glycol component was used. 45 μm thick by the method of
A biaxially stretched polybutylene terephthalate film having a width of 750 mm, a heat of crystal fusion of 11.1 cal / g, and a plane orientation coefficient of 0.14 was produced. Table 2 shows tensile strength, elongation at break, thermal dimensional stability, printability, deep drawability, and the like of this film. Example 3 Except that the heat-setting temperature was 210 ° C., the heat of crystal fusion was 8.5 cal / g and the plane orientation coefficient was 0.
Ten biaxially stretched polybutylene terephthalate films were prepared. Table 2 shows tensile strength, elongation at break, thermal dimensional stability, printability, deep drawability, and the like of this film. Comparative Example 2 87.5 mol% of terephthalic acid and 12.5 mol% of isophthalic acid as dibasic acid components and 1,4 as a glycol component
A copolyester raw material comprising butanediol (melting point;
205 ° C.) with cylinder and die temperatures of 230 to 260
C. and extruded at a temperature of 180.degree. C. in the same manner as in Example 2, except that the heat of crystal fusion was 7.4.
A biaxially stretched film having a cal / g of 0.13 and a plane orientation coefficient of 0.13 was produced. Table 2 shows tensile strength, elongation at break, thermal dimensional stability, printability, deep drawability, and the like of this film. [Table 2] In the table, ΔP is a plane orientation coefficient. From the results shown in Table 2, those having a heat of crystal fusion outside the range of the present invention were inferior in printability and deep drawability, such as poor thermal dimensional stability and distortion in pattern printing. Examples 4 to 6 and Comparative Examples 3 and 4 Example 1 except that the screw speed during melt extrusion was changed.
By the same method as described above, the folded diameter is about 300 mm and the thickness is about 6 mm.
5 (Comparative Example 3) , 105 (Example 4) , 170 (Example
5) 295 (Example 6) , 490 μm (Comparative Example 4), and various different tubular unstretched films were produced. The unstretched film is guided to a pair of upper and lower nip rolls having different peripheral speeds while being preheated at a temperature of 20 ° C., and is supplied with pressurized air at a stretching temperature of 50 to 100 ° C., so that the stretching ratio is equal to the thickness of the unstretched film. At the same magnification in the vertical and horizontal directions from the thinner order , 1.4 times (Comparative Example 3) , 1.8 times (Example 4) ,
2.3 times (Example 5) , 3.0 times (Example 6) , 3.9
The tube was simultaneously biaxially stretched so as to be twice (Comparative Example 4) . Subsequently, after cutting both ends of the tubular stretched film, the film is heat-set at a temperature of 180 to 210 ° C. for 10 seconds while giving about 7% relaxation in the transverse direction using a tenter, so that the thickness of the film is constant at 35 μm, Coefficient is 0.0
Five different types of biaxially stretched polybutylene terephthalate films in the range of 6 to 0.17 were produced. After subjecting the surface of the film thus obtained to corona discharge treatment,
A release layer, a pattern layer, an adhesive layer, and the like are sequentially applied to the treated surface, and the deep drawing is evaluated by an in-mold molding test. The results are shown in Table 3. [Table 3] In the table, ΔP is a plane orientation coefficient. As is clear from Table 3, in the case where the plane orientation coefficient was less than 0.07, slight elongation was observed in the film in the coating step of the design layer and the like, and printing displacement occurred. In the case where is larger than 0.16, the film was broken during in-mold molding and did not function as a transfer foil. As described above, the base film for in-mold transfer of the present invention has a polybutylene having an intrinsic viscosity of 0.7 or more.
1.5 to 3.8 times the height and width of phthalate
As described above, simultaneous biaxial stretching and heat-setting
A constant has been in-mold transfer base material film, crystal fusion heat is 8.5 to 11.1cal / g, and plane orientation coefficient is constituted by a polybutylene terephthalate film is 0.07 to 0.16 It has excellent surface smoothness and excellent strength, heat resistance, transparency, non-staining properties, etc., as well as excellent deep drawability not found in conventional base films made of polyethylene terephthalate. Since it is also used, it is particularly suitable as a base film for in-mold transfer of a plastic molded article having a high degree of deep drawing, and greatly contributes to cost reduction by simplifying such transfer printing.

【図面の簡単な説明】 【図1】インモールド転写法の概略を示すための説明図
である。 【符号の説明】 1 金型 2 射出成形機 3 転写箔 4 基材フィルム 5 印刷層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an outline of an in-mold transfer method. [Description of Signs] 1 Mold 2 Injection molding machine 3 Transfer foil 4 Base film 5 Print layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08J 5/18 CFD C08J 5/18 CFD (72)発明者 田中 住典 香川県仲多度郡多度津町道福寺200−37 (72)発明者 福永 秀樹 香川県坂出市江尻町1210 (72)発明者 美藤 真人 香川県綾歌郡宇多津町231 (72)発明者 白井 雅文 香川県丸亀市津森町738−1 (56)参考文献 特開 平1−297287(JP,A) 特開 平2−248300(JP,A) 特開 平3−92319(JP,A) 特開 平3−96321(JP,A) 特開 平3−182321(JP,A) 特開 平3−247427(JP,A) 特開 平4−113900(JP,A) 特開 昭53−79969(JP,A) 特開 昭60−155427(JP,A) 特開 昭64−40400(JP,A) 特開 昭64−45699(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 55/00 - 55/30 B29C 45/00 - 45/84 B44C 1/00 - 7/08 B32B 27/00 - 35/00 C08J 5/18 ──────────────────────────────────────────────────の Continuing on the front page (51) Int.Cl. 7 Identification code FI C08J 5/18 CFD C08J 5/18 CFD (72) Inventor Suminori Tanaka 200-37, Dopukuji, Tadotsu-cho, Nakatado-gun, Kagawa Prefecture (72) Inventor Hideki Fukunaga 1210 Ejiri-cho, Sakaide-shi, Kagawa (72) Inventor Masato Mito 231 (72) Inventor Masafumi Shirai 738-1 Tsumori-cho, Marugame-shi, Kagawa (56) References JP JP-A-1-297287 (JP, A) JP-A-2-248300 (JP, A) JP-A-3-92319 (JP, A) JP-A-3-96321 (JP, A) JP-A-3-182321 (JP) JP-A-3-247427 (JP, A) JP-A-4-113900 (JP, A) JP-A-53-79969 (JP, A) JP-A-60-155427 (JP, A) JP-A-60-155427 64-40400 (JP, A) JP-A-64-45699 (JP, A) (58) Field (Int.Cl. 7, DB name) B29C 55/00 - 55/30 B29C 45/00 - 45/84 B44C 1/00 - 7/08 B32B 27/00 - 35/00 C08J 5/18

Claims (1)

(57)【特許請求の範囲】 【請求項1】 固有粘度0.7以上のポリブチレンテレ
フタレートを縦横それぞれ1.5乃至3.8倍となるよ
うに、チューブラー法によって同時二軸延伸及び熱固定
されたインモールド転写用基材フィルムであって、結晶
融解熱が8.5乃至11.1cal/gで、且つ面配向
係数が0.07乃至0.16であるポリブチレンテレフ
タレートフィルムよりなることを特徴とするインモール
ド転写用基材フィルム。
(57) [Claims] [Claim 1] Polybutylene tele having an intrinsic viscosity of 0.7 or more
The phthalate will be 1.5 to 3.8 times each in the vertical and horizontal directions
As described above, simultaneous biaxial stretching and heat setting by the tubular method
A base film for in-mold transfer , comprising a polybutylene terephthalate film having a heat of crystal fusion of 8.5 to 11.1 cal / g and a plane orientation coefficient of 0.07 to 0.16. Characteristic base film for in-mold transfer.
JP10359792A 1992-03-30 1992-03-30 Base film for in-mold transfer Expired - Fee Related JP3486692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10359792A JP3486692B2 (en) 1992-03-30 1992-03-30 Base film for in-mold transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10359792A JP3486692B2 (en) 1992-03-30 1992-03-30 Base film for in-mold transfer

Publications (2)

Publication Number Publication Date
JPH05269843A JPH05269843A (en) 1993-10-19
JP3486692B2 true JP3486692B2 (en) 2004-01-13

Family

ID=14358178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10359792A Expired - Fee Related JP3486692B2 (en) 1992-03-30 1992-03-30 Base film for in-mold transfer

Country Status (1)

Country Link
JP (1) JP3486692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030246B1 (en) 2006-06-19 2011-04-22 나카모토팍쿠스가부시키가이샤 Method of making heat-resistant transparent container

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501186B2 (en) * 1999-10-21 2010-07-14 東レ株式会社 Biaxially stretched polyethylene terephthalate film for window pasting
JP2002011788A (en) * 2000-04-26 2002-01-15 Toray Ind Inc Polyester film for lamination
JP4496601B2 (en) * 2000-05-15 2010-07-07 東レ株式会社 Biaxially stretched film for laminating rubber and laminate
JP2006335851A (en) * 2005-06-01 2006-12-14 Teijin Dupont Films Japan Ltd Polyester film for automobile interior material
JP2006335852A (en) * 2005-06-01 2006-12-14 Teijin Dupont Films Japan Ltd Polyester film for automobile interior material
JP2007203571A (en) * 2006-02-01 2007-08-16 Teijin Dupont Films Japan Ltd Polyester film for simultaneous molding and decoration
JP2007237714A (en) * 2006-03-13 2007-09-20 Nippon Purai Kk Transfer molding film
JP2008080719A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Decorative sheet
JP6032780B2 (en) * 2010-12-09 2016-11-30 興人フィルム&ケミカルズ株式会社 Biaxially stretched polybutylene terephthalate film
JP5956115B2 (en) * 2011-04-01 2016-07-20 興人フィルム&ケミカルズ株式会社 Retort packaging material containing biaxially stretched polybutylene terephthalate film
JP6050574B2 (en) * 2011-09-08 2016-12-21 興人フィルム&ケミカルズ株式会社 Press-through pack packaging material for cold forming containing biaxially stretched polybutylene terephthalate film
JP2016104565A (en) * 2015-12-01 2016-06-09 興人フィルム&ケミカルズ株式会社 Biaxial oriented polybutylene terephthalate-based film and battery case packaging material for cold molding using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030246B1 (en) 2006-06-19 2011-04-22 나카모토팍쿠스가부시키가이샤 Method of making heat-resistant transparent container

Also Published As

Publication number Publication date
JPH05269843A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP3486692B2 (en) Base film for in-mold transfer
JP3829353B2 (en) Heat-shrinkable polyester film
WO2021199896A1 (en) Biaxially stretched film
JP6588720B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
JP2022063244A (en) Heat-shrinkable film, packaging material, molding or container
JPH0368634A (en) Heat-shrinkable polyester film
EP0402043A2 (en) Process for producing thermoformable polypropylene films and sheets
JP3852979B2 (en) Polyester film for transfer foil
JP2001096616A (en) Heat-shrinkable polyester film
JP5450941B2 (en) Biaxially stretched laminated polyester film for molding
JPH0368635A (en) Heat-shrinkable polyester film
JP6217202B2 (en) Polyester film with excellent folding retention that can be used in place of paper, and film-made articles for paper replacement
JP2004122669A (en) Polyester film for molding member
JP7501048B2 (en) Biaxially oriented film
JP5127295B2 (en) Polyester film for molded simultaneous transfer foil
JP3053245B2 (en) Polyester sheet for thermoforming, thermoformed product thereof and production method thereof
WO1998001285A1 (en) Compression roll oriented film for use in in-mold label applications
JP3150441B2 (en) Polybutylene terephthalate resin composition for tubular biaxially oriented film with excellent stretching stability
JP2692310B2 (en) Biaxially oriented polyester film for molding
JP2001064415A (en) Polyamide film improved in sliding property and production of the same film
JP3049802B2 (en) Heat-shrinkable polyester film
JPH07329170A (en) Rolling polyester sheet, its thermal molding and manufacture thereof
JP2943183B2 (en) Laminated molding
JPH0545412B2 (en)
WO2016002488A1 (en) Polyester film with fold retention, low shrinkage and excellent concealment properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees