JPS6212070A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPS6212070A
JPS6212070A JP60150236A JP15023685A JPS6212070A JP S6212070 A JPS6212070 A JP S6212070A JP 60150236 A JP60150236 A JP 60150236A JP 15023685 A JP15023685 A JP 15023685A JP S6212070 A JPS6212070 A JP S6212070A
Authority
JP
Japan
Prior art keywords
cooler
battery
power generation
fuel cell
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60150236A
Other languages
Japanese (ja)
Other versions
JPH0690929B2 (en
Inventor
Toshiaki Takemoto
嶽本 俊明
Kenzo Ishii
石井 謙蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60150236A priority Critical patent/JPH0690929B2/en
Publication of JPS6212070A publication Critical patent/JPS6212070A/en
Publication of JPH0690929B2 publication Critical patent/JPH0690929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To utilize the heat produced in the battery for vaporization and reformation of the fuel by introducing part of a mixture of alcohol and water into a reformer through a cooler installed in the battery. CONSTITUTION:Alcohol 14 used as the original fuel and water 15 are fed into a line 20 through pumps 13a and 13b and mixed in the line 20. Part of the mixture is introduced into the cooler of a battery 1 through a bypass line 9 and the remaining part is introduced into an evaporator 4b. The amount of the mixture introduced into the cooler 2 is controlled, according to output and temperature levels determined by an output detector 5 and a temperature detector 6 installed in the battery 1, by controlling the opening of a flow control valve 8 to adjust the temperature of the battery 1 to an intended level by using a controller 7. The liquid mixture introduced into the cooler 2 vaporises and the battery 1 is cooled by both heating and the heat of vaporization. The resulting vapor of the liquid mixture is introduced into the heating part 3b of an alcohol reformer 3 and supplies reaction heat.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はアルコール燃料から水素を得る改質器を有する
燃料電池発電システムに係シ、特に熱の有効利用に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell power generation system having a reformer for producing hydrogen from alcohol fuel, and more particularly to effective use of heat.

〔発明の背景〕[Background of the invention]

メタノール等のアルコール燃料の水蒸気改質反応は吸熱
反応であるため、その熱を利用して電池本体を冷却する
改質器内R型燃料電池が提案されている(特開昭58−
119167号)。第2図はその説明図であるが、以下
に漿要を説明する。電池本体lは、燃料極31%電解質
層32及び空気極33から成る単位電池をそれぞれ燃料
及び空気を分離供給するための溝を有する分離板34を
介在させて積層したものである。原燃料であるアルコー
ルと水の混合物は燃料供給管35から供給され、燃料マ
ニホールド36に導かれる。そしてこのマニホールド3
6から分離板34に設けられた貫通孔37に導かれ、貫
通孔37に充填された改質触媒38の表面で改質反応を
起こし、水素リッチなガスに変換され、この改質ガスは
入口側マニホールド41を経て電池本体1の燃料極31
に供給され、ここで電気化学的反応を起こす。そして、
使用済み改質ガスは出口側マニホールド40に集められ
、排出管39より排出される。
Since the steam reforming reaction of alcohol fuels such as methanol is an endothermic reaction, an R-type fuel cell in a reformer that uses the heat to cool the cell body has been proposed (Japanese Patent Application Laid-Open No. 1983-1999).
No. 119167). FIG. 2 is an explanatory diagram thereof, and the main points will be explained below. The battery body 1 is a stack of unit cells each consisting of a fuel electrode 31% electrolyte layer 32 and an air electrode 33 with a separation plate 34 interposed therebetween having grooves for separately supplying fuel and air. A mixture of alcohol and water as raw fuel is supplied from a fuel supply pipe 35 and guided to a fuel manifold 36. And this manifold 3
6 to the through hole 37 provided in the separation plate 34, a reforming reaction occurs on the surface of the reforming catalyst 38 filled in the through hole 37, and the reformed gas is converted into hydrogen-rich gas. Fuel electrode 31 of battery main body 1 via side manifold 41
, where an electrochemical reaction occurs. and,
The used reformed gas is collected in the outlet side manifold 40 and discharged from the discharge pipe 39.

この種の改質器内蔵型燃料電池では、触媒を充填した特
殊な分離板34を必要とし、ガスシール技術が難しく、
又、改質反応に充分な空間速度を得ようとすると、該分
離板が厚くなってしまい、必要とする電池出力を得るた
めの積層高さが高くなるという問題点があった。更に又
、改質反応の吸熱と電池の発熱の熱交換が改質触媒充填
層を介して行われるために熱抵抗が大きいという問題点
があった。
This type of fuel cell with a built-in reformer requires a special separation plate 34 filled with catalyst, and gas sealing technology is difficult.
Furthermore, if an attempt is made to obtain a sufficient space velocity for the reforming reaction, the separation plate becomes thicker, resulting in the problem that the height of stacking to obtain the required battery output becomes higher. Furthermore, since heat exchange between the heat absorption of the reforming reaction and the heat generated by the battery is performed through the reforming catalyst packed bed, there is a problem in that the thermal resistance is large.

また、アルコール改質器を独立させて発電システム中に
置く場合は第3図のような構成となる。
Furthermore, when the alcohol reformer is placed independently in the power generation system, the configuration is as shown in FIG. 3.

原燃料であるアルコール14と水15は、それぞれポン
プ13 a、  13 bによりライン2oに送出混合
されて熱媒油加熱炉4aに導入され、ここで気化される
。そして熱交換器12を経てアルコール改質器3の反応
部3aに導入され改質反応が行われる。改質されたガス
は冷却器22で冷却されて未反応のアルコールが凝縮さ
れ、分離器11にで改質ガスと未反応アルコールと九分
離され、改質ガスはライン16により電池本体の燃料極
(図示せず)へ導入されて電気化学反応を起こす。一方
、未反応アルコールはライン18、ポンプ13Cを経て
原燃料ライン20に戻される。アルコール改質器3の加
熱部3bは反応に必要な熱を熱媒油加熱炉4aからポン
プ13d1ライン19を経て供給される。熱媒油加熱炉
4aには燃焼器1oが設けられており、外部から燃料用
アルコールが供給される。従って、この発電システムで
は改質器の加熱及び原燃料の気化に必要を熱はすべてア
ルコールの燃焼により供給され、アルコール(燃料)消
費量が多くなるという欠点があった。
Alcohol 14 and water 15, which are raw fuels, are sent to a line 2o and mixed by pumps 13a and 13b, respectively, and introduced into a thermal oil heating furnace 4a, where they are vaporized. Then, it is introduced into the reaction section 3a of the alcohol reformer 3 via the heat exchanger 12, where a reforming reaction is performed. The reformed gas is cooled in a cooler 22 to condense unreacted alcohol, and is separated into reformed gas and unreacted alcohol in a separator 11, and the reformed gas is passed through a line 16 to the fuel electrode of the battery body. (not shown) to cause an electrochemical reaction. On the other hand, unreacted alcohol is returned to the raw fuel line 20 via line 18 and pump 13C. The heating section 3b of the alcohol reformer 3 is supplied with heat necessary for the reaction from the heat medium oil heating furnace 4a through the pump 13d1 line 19. The thermal oil heating furnace 4a is provided with a combustor 1o, and fuel alcohol is supplied from the outside. Therefore, in this power generation system, all the heat required for heating the reformer and vaporizing the raw fuel is supplied by combustion of alcohol, which has the drawback of increasing alcohol (fuel) consumption.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、改質器を燃料電池本体から独立させた
燃料電池発電システムにおいて、燃料の気化および/ま
たは改質釦必要な熱を発生するための燃料消費量を節減
することにある。
An object of the present invention is to reduce the amount of fuel consumed to generate the heat necessary for fuel vaporization and/or reforming button in a fuel cell power generation system in which the reformer is independent from the fuel cell main body.

〔発明の概要〕[Summary of the invention]

本発明は、アルコールと水の混合液の一部が電池本体に
設けた冷却器を通ってから改質器に導入されるように構
成することKより、電池本体に発生した熱を燃料の気化
と改質に利用したことを特徴とする。
The present invention is configured such that a portion of the alcohol and water mixture passes through a cooler provided in the battery body before being introduced into the reformer, so that the heat generated in the battery body is used to vaporize the fuel. It is characterized by its use in modification.

〔発明の実施例〕[Embodiments of the invention]

燃料電池本体は1kW発電時に約0.6kWの熱を発生
する。これに対して、1kWの発電に要するメタノール
と水の混合液の気化に必要な気化熱は約Z4kW、また
1kWの発電に要するメタノールガスの改質反応熱は約
0.15kWである。従って、電池本体からの発熱を有
効に利用すれば、改質反応熱のすべてと気化熱の一部を
まかなうことができる。
The fuel cell itself generates approximately 0.6kW of heat when generating 1kW of power. On the other hand, the heat of vaporization required to vaporize the mixture of methanol and water required to generate 1 kW of power is approximately Z4 kW, and the heat of reforming reaction of methanol gas required to generate 1 kW of power is approximately 0.15 kW. Therefore, if the heat generated from the battery body is effectively utilized, all of the reforming reaction heat and part of the vaporization heat can be covered.

以下、本発明の実施例を第1図により説明する。Embodiments of the present invention will be described below with reference to FIG.

原燃料であるアルコ′−ル14と水15はそれぞれポン
プ13a、13bによりライン20に送出されて混合さ
れる。この混合液の一部はバイパスライン9を経て電池
本体1の冷却器2へ導かれ、残りは気化器4へ導かれる
。冷却器2へ導かれる量は、電池本体1に設けられた出
力検出器5及び温度検出器6により検出された出力デー
タおよび温度データをもとに、制御装置7で流調弁8の
開度を制御し、電池温度が規定レベルになるように調節
される。なお図中の破線は電気信号を示す。冷却器2へ
導かれた前記混合液は気化し、このときの気化熱と加温
で電池本体1を冷却し、アルコール改質器3の加熱部3
bへ導かれて反応熱を供給する。
Alcohol 14 and water 15, which are raw fuels, are sent to line 20 by pumps 13a and 13b, respectively, and mixed. A part of this liquid mixture is led to the cooler 2 of the battery main body 1 via the bypass line 9, and the rest is led to the vaporizer 4. The amount guided to the cooler 2 is determined by controlling the opening degree of the flow control valve 8 by the control device 7 based on the output data and temperature data detected by the output detector 5 and temperature detector 6 provided in the battery body 1. is controlled so that the battery temperature is at a specified level. Note that the broken lines in the figure indicate electrical signals. The liquid mixture led to the cooler 2 is vaporized, and the heat of vaporization and heating at this time cools the battery body 1, and the heating part 3 of the alcohol reformer 3
b to supply reaction heat.

気化器4へ導かれた前記残りの混合液は気化されて、改
質器3の加熱部3bから排出された混合気と合流し、改
質器3の反応部3aに導かれて水素リッチな改質ガスと
なる。この改質ガスは熱交換器12で冷却され、分離器
11で改質ガスと未反応アルコールに分離される。改質
ガスはライン16を経て電池本体lの燃料極C図示せず
)に導かれ、未反応アルコールはライン18とポンプ1
3eを経て気化器4のバーナ10に導かれる。
The remaining mixed liquid led to the vaporizer 4 is vaporized, merges with the air-fuel mixture discharged from the heating section 3b of the reformer 3, and is led to the reaction section 3a of the reformer 3, where it is hydrogen-rich. Becomes reformed gas. This reformed gas is cooled by a heat exchanger 12, and separated into reformed gas and unreacted alcohol by a separator 11. The reformed gas is led to the fuel electrode C of the battery main body L (not shown) through line 16, and unreacted alcohol is led to line 18 and pump 1.
3e and is led to the burner 10 of the vaporizer 4.

電池本体1の空気極(図示せず)には別途設けられた供
給系(図示せず)よりライン17を経て空気が供給され
て改質ガスとともに電気化学的反応を起こし、電気出力
を発生するものである。
Air is supplied to the air electrode (not shown) of the battery body 1 through a line 17 from a separately provided supply system (not shown), causing an electrochemical reaction with the reformed gas to generate electrical output. It is something.

以上の構成によれば、電池本体の構造は従来と全く同じ
もので良く、特殊な分離板を必要としない。又、原燃料
の気化熱の一部及び改質反応熱を電池本体1の発電で供
給するため、バーナ10からの熱供給を最小限に出来る
などの効果がある。
According to the above configuration, the structure of the battery main body may be exactly the same as the conventional one, and no special separation plate is required. Further, since a part of the heat of vaporization of the raw fuel and the heat of the reforming reaction are supplied by the power generation of the battery main body 1, there is an effect that the heat supply from the burner 10 can be minimized.

又、本実施例においては未反応アルコールを気化器4a
の熱源であるバーナ10の燃料として用いているため、
さらに効率の良い熱利用が得られる。
In addition, in this embodiment, unreacted alcohol is removed from the vaporizer 4a.
Because it is used as fuel for the burner 10, which is the heat source of
More efficient heat utilization can be achieved.

また、この気化器4aのバーナ10の燃料には電池本体
1から排出される未反応水素を用いることも可能である
Further, it is also possible to use unreacted hydrogen discharged from the cell main body 1 as fuel for the burner 10 of this vaporizer 4a.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電池本体の発熱を、改質反応熱(吸熱
)及び原燃料の気化熱(吸熱)に利用するため、独立し
て改質器を設けた従来の燃料電池発電システムに比べて
熱の有効利用が可能となり1燃料消費量を節減すること
ができる。また、電池本体としては2相冷却方式となる
ため、より均一な温度分布が得られる効果がある。
According to the present invention, the heat generated by the battery body is used for the reforming reaction heat (endothermic) and the vaporization heat (endothermic) of the raw fuel, so compared to the conventional fuel cell power generation system that is equipped with an independent reformer. This makes it possible to use heat effectively and reduce fuel consumption. Furthermore, since the battery body uses a two-phase cooling method, a more uniform temperature distribution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すシステム系統図、第2
図は従来装置の電池本体の断面図、第3図は従来装置の
システム系統図である。 1・・・電池本体、2・・・冷却器、3・・・アルコー
ル改質器、4b・・・気化器、9・・・バイパスライン
Fig. 1 is a system diagram showing one embodiment of the present invention;
The figure is a sectional view of the battery main body of the conventional device, and FIG. 3 is a system diagram of the conventional device. 1... Battery body, 2... Cooler, 3... Alcohol reformer, 4b... Vaporizer, 9... Bypass line.

Claims (1)

【特許請求の範囲】 1、積層した複数の単位電池と、冷媒流路を有する冷却
器を備えた電池本体と、原燃料であるアルコールと水の
混合液を気化する気化器と、気化した混合気を改質して
電池に供給する改質器とを備えた燃料電池発電システム
において、前記アルコールと水の混合液の一部が前記冷
却器を通ってから前記改質器に導入されるように構成し
たことを特徴とする燃料電池発電システム。 2、特許請求の範囲第1項において、前記混合液の一部
を冷却器に導く手段は、前記混合液を気化器に導くライ
ンから混合液の一部を前記冷却器へ分流するバイパスラ
インと、流調弁及びこれらを制御する装置と、電池本体
に設けられた出力検出器及び温度検出器と、該検出器で
検出された出力及び温度に応じて前記流調弁を制御する
制御系統とを備え、前記冷却器で気化した混合気は改質
器の加熱部へ導入するように構成したことを特徴とする
燃料電池発電システム。 3、特許請求の範囲第1項において、前記改質器の下流
に未反応メタノール回収装置を設け、回収したメタノー
ルを前記気化器の燃料として供給するように構成したこ
とを特徴とする燃料電池発電システム。
[Claims] 1. A battery body including a plurality of stacked unit cells, a cooler having a coolant flow path, a vaporizer that vaporizes a mixture of alcohol and water as raw fuel, and a vaporized mixture. In a fuel cell power generation system equipped with a reformer that reformes air and supplies it to the battery, a portion of the alcohol and water mixture passes through the cooler and then is introduced into the reformer. A fuel cell power generation system characterized by having the following configuration. 2. In claim 1, the means for guiding a portion of the mixed liquid to the cooler includes a bypass line that diverts a portion of the mixed liquid to the cooler from a line that leads the mixed liquid to the vaporizer. , a flow control valve and a device for controlling these, an output detector and a temperature detector provided in the battery body, and a control system that controls the flow control valve according to the output and temperature detected by the detector. 1. A fuel cell power generation system comprising: a fuel cell power generation system comprising: a fuel cell power generation system comprising: a mixture vaporized in the cooler; 3. The fuel cell power generation according to claim 1, characterized in that an unreacted methanol recovery device is provided downstream of the reformer, and the recovered methanol is supplied as fuel to the vaporizer. system.
JP60150236A 1985-07-10 1985-07-10 Fuel cell power generation system Expired - Lifetime JPH0690929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150236A JPH0690929B2 (en) 1985-07-10 1985-07-10 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150236A JPH0690929B2 (en) 1985-07-10 1985-07-10 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS6212070A true JPS6212070A (en) 1987-01-21
JPH0690929B2 JPH0690929B2 (en) 1994-11-14

Family

ID=15492530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150236A Expired - Lifetime JPH0690929B2 (en) 1985-07-10 1985-07-10 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0690929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129087U (en) * 1991-05-09 1992-11-25 松下冷機株式会社 Freezer refrigerator
WO2002049135A1 (en) * 2000-12-15 2002-06-20 Sit La Precisa S.P.A. A method and a device for controlling fuel cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199183A (en) * 1981-06-01 1982-12-07 Mitsui Toatsu Chem Inc Power generation with fuel cell and its equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199183A (en) * 1981-06-01 1982-12-07 Mitsui Toatsu Chem Inc Power generation with fuel cell and its equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129087U (en) * 1991-05-09 1992-11-25 松下冷機株式会社 Freezer refrigerator
WO2002049135A1 (en) * 2000-12-15 2002-06-20 Sit La Precisa S.P.A. A method and a device for controlling fuel cells

Also Published As

Publication number Publication date
JPH0690929B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JP4515253B2 (en) Fuel cell system
US5187024A (en) Fuel cell generating system
JP4325181B2 (en) Fuel cell system
BRPI0617890A2 (en) electrolysis
JPH1064568A (en) Method for simultaneously forming electrical energy and heat for heating, and plant for carrying out the method
CA2343262A1 (en) Fuel cell system having thermally integrated, isothermal co-cleansing subsystem
US11196059B2 (en) Fuel cell system
US3677823A (en) Fuel saturator for low temperature fuel cells
US6805721B2 (en) Fuel processor thermal management system
RU2443040C2 (en) Fuel elements system
JP3263129B2 (en) Fuel cell system
JPS6212070A (en) Fuel cell power generation system
JPH08124587A (en) Fuel cell power generating plant
JPS6139369A (en) Fuel cell power generation plant
JPS6134865A (en) Fuel cell power generating system
JPH065298A (en) Fuel cell power generating apparatus
JPH08293314A (en) Fuel cell generating device
JPH08339815A (en) Fuel cell power generation device
JPH0815092B2 (en) Fuel cell
JP3555441B2 (en) Operating method of reformer for fuel cell power generator
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JPH0773896A (en) Fuel cell power generator
JP3670467B2 (en) Fuel cell power generation system
JP2000173632A (en) Fuel cell power generation system
JPH0845522A (en) Combustion system