JPS62119873A - Waste heat recovering device for combined power generation plant - Google Patents

Waste heat recovering device for combined power generation plant

Info

Publication number
JPS62119873A
JPS62119873A JP60257818A JP25781885A JPS62119873A JP S62119873 A JPS62119873 A JP S62119873A JP 60257818 A JP60257818 A JP 60257818A JP 25781885 A JP25781885 A JP 25781885A JP S62119873 A JPS62119873 A JP S62119873A
Authority
JP
Japan
Prior art keywords
power generation
steam
fuel cell
plant
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257818A
Other languages
Japanese (ja)
Inventor
Kikuo Hamashima
浜島 紀久雄
Hiroshi Yoshida
弘 吉田
Masayoshi Hiramatsu
平松 正義
Koji Sakamoto
幸治 坂本
Shigeru Tajima
茂 田島
Akio Wakao
若尾 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP60257818A priority Critical patent/JPS62119873A/en
Publication of JPS62119873A publication Critical patent/JPS62119873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the overall thermal efficiency of a combined power plant, by recovering the waste heat of a fuel cell power generation plant into the boiler feed water system of a thermal power generation plant. CONSTITUTION:The waste heat from the waste heat generation part of a fuel cell power plant is introduced through a feed water heating steam control valve 41 into the boiler feed water system of a thermal power generation plant, into which boiler feed water is introduced through a boiler feed water flow rate control valve 53, so that the boiler feed water is heated. After that, the waste heat from the fuel cell power generation plant is recovered back into the system of the fuel cell power generation plant from a drain tank 45 through a drain tank water level control valve 50. As a result, the thermal efficiency of the fuel cell plant is greatly enhanced and the fuel consumption rate of the thermal power generation plant is much reduced so that the overall thermal efficiency of a combined power plant is heightened.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電プラントと火力発11i、fラン
トとからなる複合発電プラントにおいて、特に燃料電池
発電プラントの排熱を火力発電プラントのボイラ給水系
統へ熱回収して総合的な熱効率を向上させ得るようにし
た複合発電プラントの排熱回収装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a combined power generation plant consisting of a fuel cell power generation plant and a thermal power plant 11i, f. The present invention relates to an exhaust heat recovery device for a combined power generation plant that can improve overall thermal efficiency by recovering heat to the system.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換するものとして燃料な池が知られている。こ
の燃料電池は通常、電解質層を挾んで燃料極および酸化
剤極の一対の電極を配置すると共に、燃料極の背面に水
素等の燃料を接触させ、また酸化剤極の背面に空気等の
酸化剤を接触させ、このとき起こる電気化学的反応を利
用して上記一対の電極間から電気エネルギーを取り出し
、この燃料電池で発生した電気エネルギーを電力変換装
置にて負荷指令値に見合った電力に変換して負荷へ供給
するよ5にしたものであシ、上記燃料と酸化剤が供給さ
れている限υ高い変換効率で電気エネルギーを取出すこ
とができるものである。
Conventionally, fuel ponds have been known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually has a pair of electrodes, a fuel electrode and an oxidizer electrode, sandwiching an electrolyte layer, and a fuel such as hydrogen is brought into contact with the back of the fuel electrode, and an oxidizer such as air is placed in contact with the back of the oxidizer electrode. The electrical energy is extracted from between the pair of electrodes using the electrochemical reaction that occurs, and the electrical energy generated in the fuel cell is converted into electric power commensurate with the load command value using a power conversion device. Electrical energy can be extracted with high conversion efficiency as long as the above-mentioned fuel and oxidizer are supplied.

第3図は、この種の燃料電池を用いた燃料電池発電プラ
ントの構成例をブロック的に示したものである。図にお
いて、1は例えばメタンガスを主成分とする天然ガスを
水素〔H2〕主体のガスに改質する燃料処理装置、2は
空気中から酸素(02)を得る酸化剤処理装置としての
空気処理装置である。3は電解質層を挾んで燃料極およ
び酸化剤極の一対の電極を配置してなる燃料電池で、燃
料極には上記燃料処理装置1からの水素ガスを燃料とし
て、また酸化剤極には上記空気処理装置2からの酸素を
酸化剤として夫夫導入し、これらを白金等を触媒として
高圧下で電気化学的に反応させ各電極間から電気エネル
ギーである直流電力を取シ出すものである。
FIG. 3 is a block diagram showing an example of the configuration of a fuel cell power generation plant using this type of fuel cell. In the figure, 1 is a fuel processing device for reforming natural gas whose main component is, for example, methane gas into a gas mainly composed of hydrogen [H2], and 2 is an air processing device as an oxidizer processing device that obtains oxygen (02) from the air. It is. Reference numeral 3 designates a fuel cell comprising a pair of electrodes, a fuel electrode and an oxidizer electrode, with an electrolyte layer sandwiched between them. Oxygen from the air treatment device 2 is introduced as an oxidizing agent, and the oxygen is electrochemically reacted under high pressure using platinum or the like as a catalyst, and DC power, which is electrical energy, is extracted from between each electrode.

4は、上記燃料電池3で発生した直流電力を負荷指令値
に見合った交流電力に変換する電力変換装置としての直
交変換装置で、この交流電力を必要に応じて変換器用変
圧器5により昇圧し、し中断器6を介して電力系統7に
供給するようにしている。
Reference numeral 4 denotes an orthogonal converter as a power converter that converts the DC power generated by the fuel cell 3 into AC power commensurate with the load command value, and this AC power is boosted by a converter transformer 5 as necessary. , and is supplied to the power system 7 via the interrupter 6.

さてかかる燃料電池発電プラントは、天然ガス等の燃料
を改質して得られた水素と大気中の酸素とを電気化学的
に反応させて直接発電を行なう装置であることから、そ
の発電効率が40〜45チと高く、また定格出力より低
い部分負荷運転を行なっても効率の低下が少なく、さら
に硫黄酸化物、窒素酸化物などの公害物質の排出量が極
めて少ない。また、火力・原子力発電プラントに設置さ
れているような大形のタービンや発電機などの回転機器
がないことがら、振動や騒音が少ないな、ど環境上の立
地制約が少なく、需要地の周辺に設置することができる
ので送電設備が不要になシ送電損失を軽減することが可
能となる。
Since such a fuel cell power generation plant is a device that directly generates electricity by electrochemically reacting hydrogen obtained by reforming fuel such as natural gas with oxygen in the atmosphere, its power generation efficiency is high. The efficiency is as high as 40 to 45 inches, and there is little decrease in efficiency even when operating at a partial load lower than the rated output, and the amount of pollutants such as sulfur oxides and nitrogen oxides is extremely low. In addition, because there are no rotating equipment such as large turbines or generators installed in thermal or nuclear power plants, there are fewer environmental restrictions such as less vibration and noise, and there are fewer location restrictions near demand areas. This eliminates the need for power transmission equipment and reduces power transmission losses.

上述したように、燃料電池発電プラントは植種の利点を
有しているが下記の点で問題がある。
As mentioned above, fuel cell power plants have the advantages of seeding, but they have the following problems.

すなわち、燃料電池発電プラントでは発電の際に多量の
排熱を発生することである。燃料電池発電プラントにお
ける排熱の発生部所および排熱の質としては、第3図に
おいて燃料極大口蒸気凝縮器からの温水8、空気極出口
気水分離器からの温水9、燃料電池冷却系の蒸気分離器
からの蒸気10、燃料電池に酸素を供給するために設置
される空気圧縮機の駆動動力を軽減するために装備され
る空気圧縮機用中間冷却器からの温水1ノ、および空気
圧縮機を駆動させるために設置されるタービン排気12
等がある。そして、これらの排気のうち空気圧縮機駆動
用タービン排気12以外は、冷却塔によって直接的ある
いは間接的に蒸気や温水を低温とした後、排熱装置によ
り燃料電池発電プラント系統内に回収して(一部は回収
せずに系統外に排出する場合もある)循環再使用するよ
うにしている。
That is, a fuel cell power generation plant generates a large amount of waste heat during power generation. Figure 3 shows the locations where exhaust heat is generated and the quality of the exhaust heat in a fuel cell power plant: hot water 8 from the fuel large-mouth steam condenser, hot water 9 from the air-electrode outlet steam-water separator, and the fuel cell cooling system. steam from the steam separator of the fuel cell, hot water from the intercooler for the air compressor installed to reduce the driving power of the air compressor installed to supply oxygen to the fuel cell, and air. Turbine exhaust 12 installed to drive the compressor
etc. Of these exhaust gases, other than the air compressor drive turbine exhaust gas 12, steam and hot water are directly or indirectly cooled to a low temperature by a cooling tower, and then recovered into the fuel cell power generation plant system by a heat exhaust device. (Some of it may be discharged outside the system without being collected.) We try to recycle and reuse it.

第4図は、−例として上述の各種排熱のうち、燃料電池
冷却系の蒸気分離器からの蒸気1oの排熱回収装置の構
成例を示したものである。図において、2oは燃料′電
池冷却水戻シ管35によプ導かれる燃料電池3からの飽
和蒸気と温水を分離する蒸気分離器、36.37は蒸気
分離器20で分離された温水を再び燃料電池3の冷却水
として導入するための蒸気分離器ドレン管、21は蒸気
分離器20で分離された蒸気を導く蒸気管である。23
は蒸気凝縮器、27は冷却塔、29は冷却水循環ポンプ
であシ、これらは冷却塔冷却水管2B、30および31
にょ多接続され、蒸気分離器2oからの蒸気を冷却する
系統を構成している。22は蒸気凝縮器23に蒸気分離
器20からの蒸気を導く蒸気凝縮器蒸気管、24.26
は蒸気凝縮器23において凝縮・液化した水を燃料電池
3の冷却水として使用するための蒸気凝縮器ドレン管、
25はドレン流量を制御するドレン調整弁である。32
および34は改質用蒸気管、33はその改質蒸気流量調
整弁である。
FIG. 4 shows, as an example, a configuration example of an exhaust heat recovery device for steam 1o from a steam separator of a fuel cell cooling system among the various kinds of exhaust heat mentioned above. In the figure, 2o is a steam separator that separates hot water from the saturated steam from the fuel cell 3 guided by the fuel cell cooling water return pipe 35, and 36.37 is a steam separator that separates hot water from the steam separator 20. A steam separator drain pipe 21 is a steam pipe that guides the steam separated by the steam separator 20 to be introduced as cooling water to the fuel cell 3 . 23
is a steam condenser, 27 is a cooling tower, and 29 is a cooling water circulation pump, which are cooling tower cooling water pipes 2B, 30, and 31.
Multiple connections are made to form a system for cooling the steam from the steam separator 2o. 22 is a steam condenser steam pipe that guides the steam from the steam separator 20 to the steam condenser 23; 24.26
is a steam condenser drain pipe for using water condensed and liquefied in the steam condenser 23 as cooling water for the fuel cell 3;
25 is a drain regulating valve that controls the drain flow rate. 32
34 is a reforming steam pipe, and 33 is a reforming steam flow rate regulating valve.

かかる排熱回収装置においては燃料電池3の冷却に使用
され、−料電池3によジ加熱され約190℃程度まで昇
温された冷却水は、蒸気と温水の飽和状態で燃料電池冷
却水戻)管35により蒸気分離器20に導かれ、蒸気分
離器20で蒸気とドレンに分離される。分離された蒸気
の一部は、蒸気分離器蒸気管21、改質用蒸気管32.
34および改質蒸気流量調整弁33を通じて燃料処理装
置1に導かれ改質用蒸気として使用されるが、残シの蒸
気は全て排熱となる。
In such an exhaust heat recovery device, the cooling water used to cool the fuel cell 3 and heated by the fuel cell 3 to a temperature of about 190°C is returned to the fuel cell cooling water in a saturated state of steam and hot water. ) It is led to the steam separator 20 by the pipe 35, and is separated into steam and condensate in the steam separator 20. A part of the separated steam is transferred to the steam separator steam pipe 21, the reforming steam pipe 32.
34 and the reforming steam flow rate adjustment valve 33 to the fuel processing device 1 and used as reforming steam, all remaining steam becomes waste heat.

燃料電池発電プラント単独の場合においては、この排熱
蒸気は、蒸気凝縮器蒸気管22を通じて蒸気凝縮器23
に導かれ、冷却塔冷却水管30により導かれた冷却水に
より凝縮・液化し、蒸気凝縮器ドレン管24.26およ
びドレン調整弁25により燃料電池発電プラント系統内
に導かれ循環再使用されている。蒸気凝縮器23におい
て蒸気凝縮器蒸気管22によプ導かれた排熱蒸気により
加熱され高温となった冷却水は、冷却塔冷却水管31を
通して冷却塔27に導かれ冷却塔21において熱量を大
気に放出した後、冷却塔冷却水管28を通じて冷却木遣
mポンプ29に導かれ、この冷却水循環ポンプ29によ
って昇圧された冷却水は冷却塔冷却水管30を通じて再
び蒸気凝縮器23に導かれ循環再使用されている。一方
、ドレン調整弁25は蒸気分離器20の器内圧力、蒸気
分離器蒸気管21を通過する蒸気圧力をある一定の圧力
範囲に制御するためのものであシ、蒸気分離器20の器
内圧力が低下した場合には閉方向に、器内圧力が上昇し
た場合には開方向に作動して蒸気分離器20からの排熱
蒸気量、すなわち蒸気凝縮器23における蒸気凝縮量を
変化させることにより、蒸気分離器20の器内圧力をあ
る一定の圧力範囲に制御している。
In the case of a single fuel cell power plant, this waste heat steam is passed through the steam condenser steam pipe 22 to the steam condenser 23.
It is condensed and liquefied by the cooling water guided by the cooling tower cooling water pipe 30, and guided into the fuel cell power generation plant system by the steam condenser drain pipe 24, 26 and the drain regulating valve 25, where it is circulated and reused. . In the steam condenser 23, the cooling water heated to a high temperature by the exhaust heat steam guided through the steam condenser steam pipe 22 is led to the cooling tower 27 through the cooling tower cooling water pipe 31, and in the cooling tower 21, the amount of heat is transferred to the atmosphere. After being discharged to the steam condenser 23 through the cooling tower cooling water pipe 28, the cooling water is led to the cooling water pump 29 through the cooling tower cooling water pipe 28, and the pressure of the cooling water is increased by the cooling water circulation pump 29. ing. On the other hand, the drain regulating valve 25 is for controlling the internal pressure of the steam separator 20 and the pressure of steam passing through the steam separator steam pipe 21 within a certain pressure range. To change the amount of exhaust heat steam from the steam separator 20, that is, the amount of steam condensed in the steam condenser 23, by operating in the closing direction when the pressure decreases and in the opening direction when the internal pressure increases. As a result, the internal pressure of the steam separator 20 is controlled within a certain pressure range.

ところで、100腹級燃料電池発電グランドの100チ
負荷運転時における蒸気分離器20からの排熱蒸気蓋お
よび温度(蒸気凝縮器蒸気管22を通過する蒸気量およ
び温度)は約46X10 ゆ/h、約180℃の飽和蒸
気であシ、排水温度(蒸気凝縮器ドレン管24を通過す
る温度)は165℃程度であるので、蒸気凝縮器23で
の交換熱量すなわち冷却塔27より大気中に放出される
排熱量は約22.8 Xi O’ kcal / hと
な)、燃料電池発電プラントとしては比較的熱効率の低
いものである。
By the way, the exhaust heat steam lid and temperature (amount and temperature of steam passing through the steam condenser steam pipe 22) from the steam separator 20 when a 100-class fuel cell power generation ground is operated with a 100-chi load is approximately 46×10 Yu/h. The saturated steam is about 180°C, and the temperature of the waste water (the temperature at which it passes through the steam condenser drain pipe 24) is about 165°C, so the amount of heat exchanged in the steam condenser 23, that is, the amount of heat released from the cooling tower 27 into the atmosphere, is The amount of waste heat generated is approximately 22.8 Xi O' kcal/h), and the thermal efficiency is relatively low for a fuel cell power generation plant.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような事情を考慮して成されたもので、
その目的は燃料電池発電プラントの熱効率を飛躍的に高
めると同時に火力発電プラントの燃料消費率を著しく低
下させて総合的なプラント熱効率を向上させることが可
能な複合発電プラントの排熱回収装置を提供することに
ある。
The present invention was made in consideration of the above circumstances, and
The purpose is to provide an exhaust heat recovery device for combined cycle power plants that can dramatically increase the thermal efficiency of fuel cell power plants and at the same time significantly reduce the fuel consumption rate of thermal power plants and improve overall plant thermal efficiency. It's about doing.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、燃料処理装置で
得られた燃料を燃料極に導入すると共に酸化剤を酸化剤
極に導入し、これらを電気化学的に反応させて発電を行
なう燃料電池発電プラントと、ボイラ給水系統を有する
火力発電プラントからなる複合発電プラントにおいて、
第1の調整弁を介してボイラ給水が導入される前記火力
発電プラントのがイラ給水系統へ、前記燃料電池発電プ
ラントにおける排熱発生部からの排熱を第2の調整弁お
よび排熱熱交換器を介し導入してボイラ給水を加熱昇温
し、かつこの熱交換した後の前記燃料電池発電プラント
からの排熱をドレンタンクおよびドレンタンクより第3
の1I14!lII弁を介して再び前記燃料電池発電プ
ラントの系統内に熱回収する系統を構成し、前記排熱熱
交換器出口側のボイラ給水温度を設定温度と比較しその
比較結果に基づいて前記第1の調整弁の弁開度制御信号
を出力する機能、前記排熱発生部からの排熱圧力を設定
圧力と比較しその比較結果に基づいて前記第2の調整弁
の弁開度制御信号を出力する機能、および前記ドレンタ
ンクに貯えられた温水の水位を設定水位と比較しその比
較結果に基づいて前記第3の調整弁の弁開度制御信号を
出力する機能を有する制御装置を備えて、燃料電池発電
グランドより排出される熱量を火力発電プラントのボイ
ラ給水系統に熱回収して総合的なプラント熱効率を向上
させるようにしたことを特徴とする。
In order to achieve the above object, the present invention provides a fuel cell in which a fuel obtained in a fuel processing device is introduced into a fuel electrode, an oxidizer is introduced into an oxidizer electrode, and these are electrochemically reacted to generate electricity. In a combined power plant consisting of a power generation plant and a thermal power plant with a boiler water supply system,
The boiler feed water is introduced into the boiler water supply system of the thermal power plant through the first regulating valve, and the exhaust heat from the exhaust heat generating section in the fuel cell power plant is transferred to the second regulating valve and the exhaust heat exchanger. The exhaust heat from the fuel cell power generation plant after heating and temperature-raising the boiler feed water by introducing it through the drain tank and the drain tank is transferred from the drain tank to the drain tank.
1I14! A system is configured to recover heat back into the system of the fuel cell power generation plant via the II valve, and the temperature of the boiler feed water on the outlet side of the exhaust heat heat exchanger is compared with the set temperature, and based on the comparison result, the first A function of outputting a valve opening control signal for the regulating valve of the second regulating valve, comparing the exhaust heat pressure from the exhaust heat generating section with a set pressure, and outputting a valve opening control signal of the second regulating valve based on the comparison result. and a control device having a function of comparing the water level of the hot water stored in the drain tank with a set water level and outputting a valve opening control signal for the third regulating valve based on the comparison result, The present invention is characterized in that the amount of heat discharged from the fuel cell power generation gland is recovered to the boiler water supply system of the thermal power plant to improve overall plant thermal efficiency.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。第1図は、本発明による複合発電プラントの排熱回
収装置の構成例を示したもので、第4図と同一部分には
同一符号を付してその説明を省略し、ここでは異なる部
分についてのみ述べる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of the configuration of an exhaust heat recovery system for a combined cycle power plant according to the present invention. The same parts as in FIG. I will only describe it.

図において43は排熱熱交換器、40および42は排熱
蒸気管、41は給水加熱用蒸気調整弁であシ、これらを
通して前記蒸気分離器20からの蒸気を排熱熱交換器4
3へ導くようにしている。また、44は排熱熱交換器4
3からのドレンをドレンタンク45に導く排熱ドレン管
で147、ドレンタンク45に回収されたドレンはドレ
ンタンク48、ドレンタンク水位調整弁50および排熱
ドレン管47,49.51および蒸気分離器ドレン管3
8を通じて燃料発電プラント系統内に回収される。さら
に、46はドレンタンク45より排熱熱交換器43にフ
ラッジ、蒸気を導くフラッジ、蒸気回収管である。
In the figure, 43 is a waste heat heat exchanger, 40 and 42 are waste heat steam pipes, and 41 is a steam regulating valve for heating feed water, through which the steam from the steam separator 20 is transferred to the waste heat heat exchanger 4.
I'm trying to lead to 3. In addition, 44 is a waste heat heat exchanger 4
147, the drain collected in the drain tank 45 is transferred to the drain tank 48, the drain tank water level adjustment valve 50, the exhaust heat drain pipes 47, 49, 51, and the steam separator. Drain pipe 3
8 into the fuel power plant system. Further, numeral 46 denotes a fludge and a steam recovery pipe that guide steam from the drain tank 45 to the waste heat exchanger 43.

一方、ボイラ給水はゲイン給水流量側整弁53、がイラ
給水管52.54を通して排熱熱交換器43へ導き、こ
れよりボイラ給水管55を通して火力発電プラントのボ
イラ給水に熱回収するよ5Kしている。(また、100
は上記排熱量およびボイラ給水量を制御するその詳細を
後述する制御装置である。)   ゛ 第2図(A)〜(司は、第1図の如く構成された複合発
電プラントの排熱回収装置における制御装置100の構
成例をブロック的に示すものである。
On the other hand, the boiler feed water is guided to the waste heat heat exchanger 43 through the boiler water supply pipes 52 and 54 by the gain water flow regulating valve 53, and from there, the heat is recovered to the boiler feed water of the thermal power plant through the boiler water supply pipe 55. ing. (Also, 100
is a control device that controls the amount of exhaust heat and the amount of water supplied to the boiler, the details of which will be described later. 2(A) to 2(A) are block diagrams showing an example of the configuration of the control device 100 in the exhaust heat recovery device of a combined power generation plant configured as shown in FIG. 1.

〔表〕〔table〕

同図(a)及び表のA1の条件において、蒸気分離器2
0器内の圧力検出器56の出力信号(4〜20 mAD
c )を設定器57aに入力して圧力設定値に対する偏
差信号を得、PID調節計(比例+積分十微分回路を具
備したもの)58aにより制御信号(4〜20 mAD
c )は、蒸気分離器20の器内圧力検出56の信号を
71aの警報設定器に入力し蒸気分離器20の器内圧力
が規定値以下の時制御信号は、切替器59mで@−+d
に流れ、69の加算器を介して60hの電空交換器で空
気信号(0,2〜1.0 K97cm2fl )に変換
し20の蒸気分離器器内圧を設定器57mの圧力設定値
を基準にして蒸気分離器20の器内圧を規定値になる様
にドレン調整弁25を制御する。
Under the conditions of figure (a) and A1 in the table, the steam separator 2
The output signal of the pressure detector 56 in the 0 unit (4 to 20 mAD
c) is input to the setting device 57a to obtain a deviation signal for the pressure set value, and a control signal (4 to 20 mAD
c), the signal from the internal pressure detection 56 of the steam separator 20 is input to the alarm setting device 71a, and when the internal pressure of the steam separator 20 is below the specified value, the control signal is set to @-+d by the switch 59m.
is converted into an air signal (0.2 to 1.0 K97cm2fl) by an electro-pneumatic exchanger of 60h via an adder of 69, and the internal pressure of the steam separator of 20 is set based on the pressure setting value of a setting device of 57m. The drain regulating valve 25 is controlled so that the internal pressure of the steam separator 20 becomes a specified value.

次に表のA20条件において蒸気分離器2゜器内圧力検
出器56の信号が71mの警報設定器の設定値゛が規定
値以上の時(2)の接点動作信号は、59mの切替器に
より、58aのPID調節計の制御信号を@ −4p 
6に切替し、25のドレン調整弁の制御は、蒸気凝縮器
蒸気管22の流量検出器61のアナログ信号を開平演算
器62hKよりリニアにさせ57bの設定器に入力し、
ミニマム流量設定値と比較し偏差信号をPID調節計5
8bを介して制御信号(4〜20 mADc )は、切
替器59hの切替信号によりb−)dに流れ加算器69
を介して電空変換器60mで空気信号(0,2〜1.0
ゆ/錆I)に変換し25のドレンFj4整弁をミニマム
流量設定値に基づいて制御する。
Next, under the A20 condition in the table, when the signal from the steam separator 2° internal pressure detector 56 is greater than the set value of the alarm setting device at 71m, the contact operation signal in (2) is set by the switch at 59m. , the control signal of the PID controller of 58a @ -4p
6, and the drain adjustment valve 25 is controlled by making the analog signal of the flow rate detector 61 of the steam condenser steam pipe 22 linear by the square root calculator 62hK and inputting it to the setting device 57b.
Compare the minimum flow rate setting value and send the deviation signal to the PID controller 5.
8b, the control signal (4 to 20 mADc) flows to the adder 69b-)d by the switching signal of the switching device 59h.
Air signal (0,2~1.0
25 drain Fj4 regulating valve is controlled based on the minimum flow rate set value.

更に、排熱回収熱交換器43の圧力検出器68の信号を
警報設定器71bに入力し、設定値圧力以下すなわち排
熱回収熱交換器器内圧低でかつ蒸気分離器20器門の圧
力検出器56(i号が警報設定器71hの設定値に対し
て規定値以上(2)のとき、蒸気分離器20器内の圧力
制御は、設定器571で圧力設定値に対する偏差信号を
得、PID調節計58mによ)制御信号は、切替器59
&でa−+c IIC流れ、更に切替器59bの切替条
件である警報設定器71bの条件が設定値以下の時制御
信号は、c−+fに流れ更に切替器59eでf−+hに
流れ、電空変換器60bで電気信号(4〜20 mAD
c )を空気信号(0゜2〜1、0ψ/cnt’fi)
に変換して41の給水加熱蒸気弁を制御して排熱回収熱
交換器43に供給し1Mイラ給水と熱交換し有効利用を
行っている。
Furthermore, the signal from the pressure detector 68 of the exhaust heat recovery heat exchanger 43 is input to the alarm setting device 71b, and the pressure in the steam separator 20 is detected when the internal pressure of the exhaust heat recovery heat exchanger is lower than the set value pressure, that is, the internal pressure of the exhaust heat recovery heat exchanger is low. When the value of the device 56 (i) is equal to or higher than the specified value (2) with respect to the setting value of the alarm setting device 71h, the pressure control in the steam separator 20 is performed by obtaining a deviation signal from the pressure setting value with the setting device 571 and using the PID The control signal (from the controller 58m) is sent to the switch 59.
When the condition of the alarm setter 71b, which is the switching condition of the switch 59b, is below the set value, the control signal flows to c-+f, further flows to f-+h at the switch 59e, and the control signal flows to f-+h at the switch 59e. An electric signal (4 to 20 mAD
c) as air signal (0°2~1, 0ψ/cnt'fi)
The waste heat is converted to 1M, and the feed water heating steam valve 41 is controlled to supply the waste heat to the exhaust heat recovery heat exchanger 43, where it exchanges heat with the 1M Ira feed water for effective utilization.

表の43に於いて、蒸気分離器20器内の圧力検出器5
6検出信号が警報設定器71aに対して規定圧力以下の
時、57&の設定器で圧力設定値に対する偏差信号をP
IDFI節計58aの制御信号は切替器59hで1−*
dに流れ加算器69を介して電空変換器60mで電気信
号(4〜20mADC)を空気信号(0,2〜1.0 
kli/cm211 )に変換し、蒸気分離器20器内
の圧力を設定器51aの設定値に基づいて規定圧力にな
るようドレンIA整弁25を制御している。
In Table 43, the pressure detector 5 in the steam separator 20
6 When the detection signal is below the specified pressure for the alarm setting device 71a, the deviation signal for the pressure setting value is set to P using the setting device 57&.
The control signal of the IDFI meter 58a is set to 1-* by the switch 59h.
d, an electric signal (4 to 20 mADC) is converted to an air signal (0.2 to 1.0
kli/cm211), and the drain IA regulating valve 25 is controlled so that the pressure in the steam separator 20 becomes a specified pressure based on the setting value of the setting device 51a.

更に排熱回収熱交換器43の圧力検出器68の信号を警
報設定器7Jbで設定値に比較して設定値以上(すなわ
ち排熱回収熱交換器器内高)の時、設定器571の圧力
設定偏差信号をPID調節計581の制御信号は、切替
器59cでg→hに流れ電空変換器60bで電気信号(
4〜20 mADc )を空気信号(0,2〜1.0 
kg152N ) ic変換し排熱回収熱交換器43の
器内圧を規定値以下となる機船水加熱蒸気弁4ノを制御
している。
Furthermore, the signal of the pressure detector 68 of the exhaust heat recovery heat exchanger 43 is compared with the set value by the alarm setting device 7Jb, and when the signal is equal to or higher than the set value (i.e., the internal height of the exhaust heat recovery heat exchanger), the pressure of the setting device 571 is set. The control signal of the PID controller 581 converts the setting deviation signal into an electric signal (
4 to 20 mADc) to the air signal (0,2 to 1.0
kg152N) IC is converted to control the water heating steam valve 4 of the vessel so that the internal pressure of the exhaust heat recovery heat exchanger 43 becomes below the specified value.

表のA40条件において、蒸気分離器20器内圧力が警
報設定器11&で設定値以上(すなわち蒸気分離器2内
圧高)(1)の条件でかつ排熱回収熱交換器43器内圧
力が警報設定器7Jbで設定値以上(すなわち排熱回収
熱交換器器内圧扁)の条件のとき、蒸気分離器20の器
内圧力検出信号は、設定器57aで圧力設定値に対する
偏差信号は、PID調節計58&の制御信号は切替器5
9aでa→Cに流れ切替器59bでC−+@に切替えし
、信号増幅器70を介して、加算器69で蒸気凝縮器蒸
気管22の流量検出信号61の信号を開平演算器62&
でIJ ニアにし設定器57bでミニマム流量設定信号
に対する偏差を得、 PID調節計58bの制御信号は
切替器591Lでl) −* dに流れ加算器69で加
算された制御信号を電空変換器60&で′α電気信号 
4〜20 mADC)を空気信号(0,2〜1.0に/
cm2g )に変換し蒸気分離器20の器内圧を規定値
になる様ドレン調整弁25を制御している。
Under the A40 condition in the table, the internal pressure of the steam separator 20 is higher than the value set by the alarm setting device 11 & (i.e. the internal pressure of the steam separator 2 is high) (1), and the internal pressure of the exhaust heat recovery heat exchanger 43 is alarmed. When the condition is equal to or higher than the set value by the setter 7Jb (that is, the internal pressure of the exhaust heat recovery heat exchanger), the internal pressure detection signal of the steam separator 20 is determined by the setter 57a, and the deviation signal from the pressure set value is determined by the PID adjustment. A total of 58 & control signals are provided by switch 5.
At 9a, the flow is switched from a to C and at C-+@ at the flow switch 59b.
The deviation from the minimum flow rate setting signal is obtained using the IJ near setter 57b, and the control signal of the PID controller 58b is sent to the electro-pneumatic converter by adding the control signal added by the flow adder 69 to l)-*d using the switch 591L. 60&′α electric signal
4~20 mADC) to air signal (0,2~1.0/
cm2g), and the drain regulating valve 25 is controlled so that the internal pressure of the steam separator 20 becomes a specified value.

次に同図軸)において、改質用蒸気管34の流量は、燃
料電池の発電負荷【より規定量必要な為、改質用蒸気管
34に設置した流量検出器63の出力信号〔4〜20 
mADC)を開平演算器62bによりリニアし、設定器
57cに信号を出力して負荷設定値に対する偏差信号を
得、PID調節計5FIetg−より制御信号(4〜2
0 mADc )を電空変換器60eで所定(0,2〜
1.0ゆ/伽2g)の空気信号に変換し、改質蒸気流量
制御弁33を設定器57cの負荷設定値を基準にして改
質用蒸気管34の流量を規定値になる様制御する。
Next, in the figure axis), the flow rate of the reforming steam pipe 34 is determined by the output signal of the flow rate detector 63 installed in the reforming steam pipe 34 [4 to 20
mADC) is linearized by the square root calculator 62b, a signal is output to the setting device 57c to obtain a deviation signal with respect to the load setting value, and a control signal (4 to 2
0 mADc) to a predetermined value (0,2~
The reforming steam flow rate control valve 33 is controlled so that the flow rate of the reforming steam pipe 34 becomes a specified value based on the load setting value of the setting device 57c. .

また同図(、)において、排熱蒸気管42を流れる蒸気
は排熱熱交換器43に供給し、ここでボイラ給水管52
より供給した給水と熱交換させ、排熱熱交換器43出口
に設置した温度検出器64゛の電圧信号を温度変換器6
5で所定(4〜20mADc )の信号に変換し、設定
器57dへ出力して温度設定値に対する偏差信号を得、
PID藺節計58dにより制御信号(4〜20 mAD
C)を電空変換器60rlを介して所定の空気信号(0
,2〜1. OV;−9/cm2g )に変換し、ボイ
ラ給水流量調整弁53を設定器57dの温度設定値を基
準にしてボイラ給水管55の出口温度を規定値になる様
制御する。
In addition, in the same figure (,), the steam flowing through the waste heat steam pipe 42 is supplied to the waste heat heat exchanger 43, where the boiler water supply pipe 52
The voltage signal from the temperature sensor 64 installed at the outlet of the waste heat heat exchanger 43 is transferred to the temperature converter 6.
5 converts it into a predetermined (4 to 20 mADc) signal and outputs it to the setting device 57d to obtain a deviation signal with respect to the temperature setting value,
A control signal (4 to 20 mAD
C) to a predetermined air signal (0
, 2-1. -9/cm2g), and the boiler feed water flow rate regulating valve 53 is controlled so that the outlet temperature of the boiler feed water pipe 55 becomes a specified value based on the temperature setting value of the setting device 57d.

さらに同図(d)において、排熱交換器43で熱交換し
た温水はドレンタンク45に貯えられる。
Furthermore, in FIG. 4(d), the hot water heat-exchanged by the exhaust heat exchanger 43 is stored in a drain tank 45.

このドレンタンク45に貯えられた温水の過剰分は、ド
レンタンク45に設置した水位検出器66の(4〜20
 mADC)なる出力信号を設定器、 576に出力し
て水位設定値に対する偏差信号を得、HD調節計586
によ)制御信号(4〜20 mADc )を制限器(上
下限リミッタ)67を介して電空変換器60eにょシ所
定の空気信号(0,2〜1. Ok17cm21/ )
 K信号変換して、ドレンタンク水位調整弁5oを設定
器57eの水位設定値を基準にしてドレンタンク45の
水位ヲ規定値になる機制御する。
The excess amount of hot water stored in this drain tank 45 is detected by a water level detector 66 installed in the drain tank 45 (4 to 20
mADC) is output to the setting device 576 to obtain a deviation signal from the water level set value, and the HD controller 586
The control signal (4 to 20 mADc) is sent to the electro-pneumatic converter 60e via the limiter (upper and lower limiter) 67 to a predetermined air signal (0.2 to 1.0 mADc).
By converting the K signal, the drain tank water level adjusting valve 5o is controlled to bring the water level of the drain tank 45 to a specified value based on the water level set value of the setting device 57e.

次に、かかる構成の複合発電プラントの作用および効果
について述べる。まず、従来火力発電プラントにおいて
は、復水器より抽出されたゲイン給水は低圧ヒーターに
て蒸気タービンからの加熱蒸気により加熱・昇温して脱
気器に流入させているのに対して1本実施例では第1図
に示す如く蒸気タービンからの加熱蒸気を使用せず(つ
まり火力発電プラント側の加熱用蒸気弁および低圧ヒー
タードレン弁を全閉とする)に、燃料電池発電プラント
の排熱を使用してボイラ給水の温度を上昇させる。
Next, the functions and effects of the combined power generation plant with this configuration will be described. First, in conventional thermal power plants, the gain water extracted from the condenser is heated and raised in temperature by the heated steam from the steam turbine in a low-pressure heater, and then flows into the deaerator. In this example, as shown in Fig. 1, the exhaust heat of the fuel cell power generation plant is used without using the heated steam from the steam turbine (that is, the heating steam valve and the low-pressure heater drain valve on the thermal power plant side are fully closed). is used to increase the temperature of the boiler feed water.

すなわち、燃料電池発電プラントの排熱(蒸気)ヲ火力
発電プラントのボイラ給水系統に熱回収するに際しては
、まずゲイン給水流量調整弁53を開操作して、ゲイン
給水管52.54を通じて排熱熱交換器43にボイラ給
水を流した後、給水加熱用蒸気弁41を開操作し燃料電
池発電プラントの排熱蒸気を排熱蒸気管40.42を通
じて排熱熱交換器43に導き凝縮・液化させる。この液
化したドレンは排熱ドレン管44によりドレンタンク4
54C回収した後、排熱ドレン管47を通じてドレンポ
ンf4Bに導き、ドレンポンプ48で昇圧した後にドレ
ンタンク水位調整弁50および排熱ドレン管49.51
および蒸気分離器ドレン管38を通じて燃料電池発電プ
ラント系統内に回収し循環再使用する。なお、蒸気分離
器20で分離された蒸気は、前述の如く飽和蒸気であシ
排熱熱交換器43にはほぼ飽和蒸気の状態で流入するた
め、排熱熱交換器43においてゲイン給水により凝縮・
液化したドレンもほぼ飽和液となっている。従りて、ド
レンタンク45に流入するドレンからは排熱ドレン管4
4を通過する時の圧力損失によりフラッシュ蒸気が発生
するため、本実施例ではフラッジ、蒸気回収管46を設
けてフラッシュ蒸気を排熱熱交換器43に回収し、ボイ
ラ給水により再液化させている。また、ゲイン給水管5
4により排熱熱交換器43に導かれたゲイン給水は排熱
蒸気管42により導かれた蒸気分離器20からの排熱蒸
気により加熱・昇温されて火力発電プラントのゲイン給
水に熱回収される。
That is, when recovering waste heat (steam) from a fuel cell power plant to the boiler water supply system of a thermal power plant, first open the gain water supply flow rate adjustment valve 53 and transfer the waste heat through the gain water supply pipes 52 and 54. After the boiler feed water flows through the exchanger 43, the feed water heating steam valve 41 is opened and the waste heat steam of the fuel cell power generation plant is guided to the waste heat heat exchanger 43 through the waste heat steam pipes 40 and 42, where it is condensed and liquefied. . This liquefied drain is transferred to the drain tank 4 through the exhaust heat drain pipe 44.
After recovering 54C, it is led to the drain pump f4B through the exhaust heat drain pipe 47, and after increasing the pressure with the drain pump 48, the drain tank water level adjustment valve 50 and the exhaust heat drain pipe 49.51
Then, it is recovered into the fuel cell power generation plant system through the steam separator drain pipe 38 and recycled for reuse. Note that the steam separated by the steam separator 20 is saturated steam as described above, and since it flows into the waste heat heat exchanger 43 in a substantially saturated steam state, it is condensed in the waste heat heat exchanger 43 by the gain water supply.・
The liquefied drain is also almost a saturated liquid. Therefore, from the drain flowing into the drain tank 45, the exhaust heat drain pipe 4
4, flash steam is generated due to pressure loss when passing through the boiler, so in this embodiment, a flood and steam recovery pipe 46 are provided to recover the flash steam to the waste heat exchanger 43 and reliquefy it with boiler feed water. . In addition, the gain water supply pipe 5
The gain feed water led to the waste heat heat exchanger 43 by the waste heat heat exchanger 43 is heated and heated by the waste heat steam from the steam separator 20 led by the waste heat steam pipe 42, and the heat is recovered to the gain feed water of the thermal power plant. Ru.

この時、蒸気凝縮′器23には燃料電池発電プラントか
らの排熱(蒸気)は減少するので、冷却塔270図示し
ないファン駆動用電動機および冷却水循環ボンデ29は
その運転を停止させてよいことから、その分だけ所内動
力を低減することができる。
At this time, since the exhaust heat (steam) from the fuel cell power plant decreases in the steam condenser 23, the operation of the cooling tower 270, the fan drive motor (not shown) and the cooling water circulation bond 29 may be stopped. , the in-house power can be reduced accordingly.

一方、100j#級燃料電池発電プラントにおいて M
気の形での排熱量は約22.8X10’kcal/hで
あることは前述したが、例えば220MW〜700MW
級火力発電プラントのボイラ給水系統にこの排熱を全量
回収した場合について、年間における火力発電プラント
の燃料費の低減分について試算すると、仮に火力発電プ
ラントに設置されているボイラの効率を90係、プラン
トの負荷率を100チ、プラントの利用率を70%とす
ると、年間における火力発’11!fラントノ燃料消費
鈑は約3.7 XI Okcal (約3,000トン
)減少する。ここで、燃料費を6円7103kcal 
 と仮定すると、年間における燃料費の低減分を算出す
ると約2.2億円となる。
On the other hand, in a 100j# class fuel cell power plant, M
As mentioned above, the amount of waste heat in the form of air is about 22.8 x 10' kcal/h, but for example, 220 MW to 700 MW.
When calculating the annual reduction in fuel costs for a thermal power plant when all of this waste heat is recovered in the boiler water supply system of a thermal power plant, it is assumed that the efficiency of the boiler installed in the thermal power plant is 90%, Assuming that the plant load factor is 100ch and the plant utilization rate is 70%, the annual thermal power generation will be '11! The fuel consumption of the engine decreases by approximately 3.7 x I Okcal (approximately 3,000 tons). Here, the fuel cost is 6 yen 7103 kcal
Assuming this, the annual reduction in fuel costs will be approximately 220 million yen.

以上から、100 MW級燃料電池発電プラントにおい
て蒸気および温水の形での全排熱を、火力発電プラント
の♂イラ給水系統に熱回収した場合には、ゲインで燃焼
する燃料費は年間約2.2億円だけ節約することができ
る。そして当然の事ながら、燃料電池発電プラントの規
模が大きくなればなる程、その規模に比例して排熱量が
増加して火力発電プラントへの熱回収量も増加すること
になるので、火力発電プラントの燃料消費率が低下して
年間燃料費の低減分は大きくなる。また、100Mw級
燃料電池発電ノラントの発電のみによる場合の熱効率は
約46%であるが、蒸気の形での全排熱量を火力発電プ
ラントに熱回収した場合には、燃料電池発電プラントの
熱効率は約58%となる。すなわち、燃料電池発電プラ
ントの熱効率を高めると同時に、火力発電プラントの燃
料消費率を低下させて熱効率を高めることができ、結果
的に複合発電プラント全体の総合的なプラント熱効率を
向上させて省エネルギー化に寄与することが可能となる
プラントを得ることができる。
From the above, if all the waste heat in the form of steam and hot water in a 100 MW class fuel cell power plant is recovered to the female water supply system of the thermal power plant, the cost of fuel burned at a gain will be approximately 2. You can save only 200 million yen. Naturally, as the scale of a fuel cell power generation plant increases, the amount of exhaust heat increases in proportion to the scale, and the amount of heat recovered to the thermal power plant also increases. As the fuel consumption rate decreases, the reduction in annual fuel costs increases. In addition, the thermal efficiency of the 100Mw class fuel cell power generation plant using only power generation is approximately 46%, but if the total amount of waste heat in the form of steam is recovered to the thermal power plant, the thermal efficiency of the fuel cell power generation plant will be approximately 46%. This is approximately 58%. In other words, it is possible to increase the thermal efficiency of a fuel cell power generation plant and at the same time reduce the fuel consumption rate of a thermal power generation plant, thereby increasing the thermal efficiency.As a result, the overall plant thermal efficiency of the entire combined cycle power plant is improved, resulting in energy savings. It is possible to obtain a plant that can contribute to

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても同様に実施することができるものである
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be similarly implemented in the following manner.

(a)  上記実施例では、燃料電池発電プラントの排
熱蒸気を火力発電プラントの低圧ヒーター1台に熱回収
したが、排熱蒸気量が多い場合には複数台の低圧ヒータ
ーあるいは高圧ヒーターに熱回収するようにしてもよい
(a) In the above example, exhaust heat steam from a fuel cell power generation plant is recovered to one low-pressure heater of a thermal power plant. However, if the amount of exhaust heat steam is large, multiple low-pressure heaters or high-pressure heaters are used to recover heat. It may be collected.

伽)上記実施例では、既設設備である火力発電プラント
の低圧ヒーターに直接排熱蒸気な熱回収したが、既設設
備をバイパスする位置に熱交換器を新設して間接的に熱
回収するようにしてもよい。
伽) In the above example, heat was recovered directly from waste heat steam to the low-pressure heater of the thermal power plant, which is the existing equipment, but a new heat exchanger was installed in a position that bypassed the existing equipment to recover heat indirectly. It's okay.

その他1本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
Other 1 The present invention can be implemented with various modifications without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、第1の調整弁を介
してボイラ給水が導入される前記火力発電プラントのボ
イラ給水系統へ、前記燃料電池発電プラントにおける排
熱発生部からの排熱を第2の調整弁および排熱熱交換器
を介し導入してボイラ給水を加熱昇温し、かつこの熱交
換した後の前記燃料電池発電プラントからの排熱をドレ
ンタンクおよびドレンタンクより第3の調整弁を介して
再び前記燃料電池発電プラントの系統内に熱回収する系
統を構成し、前記排熱熱交換器出口側のがイラ給水温度
を設定°温度と比較しその比較結果に基づいて前記第1
の調整弁の弁開度制御信号を出力する機能、前記排熱発
生部からの排熱圧力を設定圧力と比較しその比較結果に
基づいて前記第2の調整弁の弁開度制御信号を出力する
機能、および前記ドレンタンクに貯えられた温水の水位
を設定水位と比較しその比較結果に基づいて前記第3の
調整弁の弁開度制御信号を出力する機能を有する制御装
置を備えて構成したので、燃料電池発電プラントの熱効
率を飛躍的に高めると同時に火力発電グランドの燃料消
費率を著しく低下させて総合的なプラント熱効率を向上
させ省エネルギー化に寄与することが可能な複合発電プ
ラントの排熱回収装置が提供できる。
As explained above, according to the present invention, exhaust heat from the exhaust heat generation section in the fuel cell power plant is transferred to the boiler water supply system of the thermal power plant, into which boiler feed water is introduced via the first regulating valve. The boiler feed water is heated and heated through the second regulating valve and the exhaust heat exchanger, and the exhaust heat from the fuel cell power generation plant after the heat exchange is transferred from the drain tank to the third drain tank. A system is configured to recover heat back into the system of the fuel cell power generation plant via a regulating valve, and the temperature of the feed water on the outlet side of the waste heat heat exchanger is compared with the set temperature, and based on the comparison result, the 1st
A function of outputting a valve opening control signal for the regulating valve of the second regulating valve, comparing the exhaust heat pressure from the exhaust heat generating section with a set pressure, and outputting a valve opening control signal of the second regulating valve based on the comparison result. and a control device having a function of comparing the water level of the hot water stored in the drain tank with a set water level and outputting a valve opening control signal for the third regulating valve based on the comparison result. Therefore, we have developed an exhaust system for combined cycle power generation plants that can dramatically increase the thermal efficiency of fuel cell power generation plants and at the same time significantly reduce the fuel consumption rate of thermal power generation glands, improving overall plant thermal efficiency and contributing to energy savings. Heat recovery equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図(−)
〜(d)は第1図における制御装置の詳細を示すブロッ
ク図、第3図は燃料電池発電プラントを示す構成図、第
4図は従来の燃料電池発電プラントの排熱回収装置を示
す構成図である。 1・・・燃料処理装置、2・・・空気処理装置、3・・
・燃料電池、4・・・直交変換装置、5・・・変換器用
変圧器、6・・・しゃ断器、7・・・電力系統、8,9
゜11・・・温水排熱、10・・・蒸気排熱、12・・
・タービン排気、20・・・蒸気分離器、21・・・蒸
気分離器蒸気管、22・・・蒸気凝縮器蒸気管、23・
・・蒸気凝縮器、24.26・・・蒸気凝縮器ドレン管
、25・・・ドレン調整弁、27・・・冷却塔、28゜
30.31・・・冷却塔冷却水管、29・・・冷却水循
環タンク、32.34・・・改質用蒸気管、33・・・
改質蒸気流量調整弁、35・・・燃料電池冷却水戻り管
、36.37.38・・・蒸気分離器ドレン管、40.
42・・・排熱蒸気管、41・・・給水加熱用蒸気調整
弁、43・・・排熱熱交換器、44.47゜49.51
・・・排熱ドレン管、45・・・ドレンタンク、46・
・・フラッシュ蒸気回収管、48・・・ドレンタンク、
50・・・ドレンタンク水位?Aa弁。 52.54.55・・・ボイラ給水管、53・・・ボイ
ラ給水流量調整弁、56.68・・・圧力検出器、57
 a 、 57 b 、 57 c 、 57 d 、
 57 ’Y”’fll定器、5B&、58b、58c
 、511d 、58e。 SSt・・・PID調節計、59h、59b、59c・
・・切替器、60*、60b、60e、6ow。 60.・・・電空変換器、61.63・・・流量検出器
、62m、62b・・・開平演算器、64・・・温度検
出器、65・・・温度変換器、66・・・水位検出器、
67・・・制限器、69・・・加算器、70・・・信号
増幅器、71 a 、 7 l b ・・−警報設定器
、100 ・・・制御装置。 出願人代理人  弁理士 鈴 江 武 彦(b)   
       (C)       (d)第2図 第3図 第4図
Figure 1 is a configuration diagram showing one embodiment of the present invention, Figure 2 (-)
- (d) are block diagrams showing details of the control device in Fig. 1, Fig. 3 is a block diagram showing a fuel cell power generation plant, and Fig. 4 is a block diagram showing an exhaust heat recovery device of a conventional fuel cell power generation plant. It is. 1... Fuel processing device, 2... Air processing device, 3...
・Fuel cell, 4... Orthogonal conversion device, 5... Converter transformer, 6... Breaker, 7... Power system, 8, 9
゜11...Hot water exhaust heat, 10...Steam exhaust heat, 12...
- Turbine exhaust, 20... Steam separator, 21... Steam separator steam pipe, 22... Steam condenser steam pipe, 23...
...Steam condenser, 24.26...Steam condenser drain pipe, 25...Drain adjustment valve, 27...Cooling tower, 28°30.31...Cooling tower cooling water pipe, 29... Cooling water circulation tank, 32.34...Steam pipe for reforming, 33...
Reforming steam flow rate adjustment valve, 35...Fuel cell cooling water return pipe, 36.37.38...Steam separator drain pipe, 40.
42...Exhaust heat steam pipe, 41...Steam regulating valve for heating water supply, 43...Exhaust heat heat exchanger, 44.47°49.51
...Exhaust heat drain pipe, 45...Drain tank, 46.
...Flash steam recovery pipe, 48...Drain tank,
50...Drain tank water level? Aa valve. 52.54.55...Boiler water supply pipe, 53...Boiler water supply flow rate adjustment valve, 56.68...Pressure detector, 57
a, 57 b, 57 c, 57 d,
57 'Y'''full gauge, 5B&, 58b, 58c
, 511d, 58e. SSt...PID controller, 59h, 59b, 59c.
...Switcher, 60*, 60b, 60e, 6ow. 60. ...Electro-pneumatic converter, 61.63...Flow rate detector, 62m, 62b...Square root calculator, 64...Temperature detector, 65...Temperature converter, 66...Water level detection vessel,
67...Limiter, 69...Adder, 70...Signal amplifier, 71a, 7lb...-Alarm setting device, 100...Control device. Applicant's agent Patent attorney Takehiko Suzue (b)
(C) (d) Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 燃料処理装置で得られた燃料を燃料極に導入すると共に
酸化剤を酸化剤極に導入し、これらを電気化学的に反応
させて発電を行なう燃料電池発電プラントと、ボイラ給
水系統を有する火力発電プラントからなる複合発電プラ
ントにおいて、第1の調整弁を介してボイラ給水が導入
される前記火力発電プラントのボイラ給水系統へ、前記
燃料電池発電プラントにおける排熱発生部からの排熱を
第2の調整弁および排熱熱交換器を介し導入してボイラ
給水を加熱昇温し、かつこの熱交換した後の前記燃料電
池発電プラントからの排熱をドレンタンクおよびドレン
ポンプより第3の調整弁を介して再び前記燃料電池発電
プラントの系統内に熱回収する系統を構成し、前記排熱
熱交換器出口側のボイラ給水温度を設定温度と比較しそ
の比較結果に基づいて前記第1の調整弁の弁開度制御信
号を出力する機能、前記排熱発生部からの排熱圧力を設
定圧力と比較しその比較結果に基づいて前記第2の調整
弁の弁開度制御信号を出力する機能、および前記ドレン
タンクに貯えられた温水の水位を設定水位と比較しその
比較結果に基づいて前記第3の調整弁の弁開度制御信号
を出力する機能を有する制御装置を備えて成ることを特
徴とする複合発電プラントの排熱回収装置。
A fuel cell power generation plant in which fuel obtained from a fuel processing device is introduced into the fuel electrode and an oxidizer is introduced into the oxidizer electrode, and these are electrochemically reacted to generate electricity. Thermal power generation has a boiler water supply system. In a combined power generation plant consisting of a plant, exhaust heat from the exhaust heat generating section in the fuel cell power generation plant is transferred to the boiler water supply system of the thermal power plant into which boiler feed water is introduced via a first regulating valve. The boiler feed water is heated and raised in temperature by being introduced through a regulating valve and an exhaust heat heat exchanger, and the exhaust heat from the fuel cell power generation plant after this heat exchange is passed through a drain tank and a drain pump to a third regulating valve. A system for recovering heat is configured in the system of the fuel cell power generation plant again through the system, and the boiler feed water temperature on the outlet side of the waste heat heat exchanger is compared with a set temperature, and based on the comparison result, the first regulating valve a function of outputting a valve opening control signal for the second regulating valve; a function of comparing the exhaust heat pressure from the exhaust heat generating section with a set pressure and outputting a valve opening control signal for the second regulating valve based on the comparison result; and a control device having a function of comparing the water level of the hot water stored in the drain tank with a set water level and outputting a valve opening control signal for the third regulating valve based on the comparison result. Exhaust heat recovery equipment for combined cycle power generation plants.
JP60257818A 1985-11-19 1985-11-19 Waste heat recovering device for combined power generation plant Pending JPS62119873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257818A JPS62119873A (en) 1985-11-19 1985-11-19 Waste heat recovering device for combined power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257818A JPS62119873A (en) 1985-11-19 1985-11-19 Waste heat recovering device for combined power generation plant

Publications (1)

Publication Number Publication Date
JPS62119873A true JPS62119873A (en) 1987-06-01

Family

ID=17311549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257818A Pending JPS62119873A (en) 1985-11-19 1985-11-19 Waste heat recovering device for combined power generation plant

Country Status (1)

Country Link
JP (1) JPS62119873A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225954A (en) * 1975-08-19 1977-02-26 Tsuentoraarinui N Itsusureedow Steam gas turbine generating
JPS5828176A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation system
JPS6035469A (en) * 1983-08-05 1985-02-23 Fuji Electric Corp Res & Dev Ltd Cooling method of stacked fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225954A (en) * 1975-08-19 1977-02-26 Tsuentoraarinui N Itsusureedow Steam gas turbine generating
JPS5828176A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation system
JPS6035469A (en) * 1983-08-05 1985-02-23 Fuji Electric Corp Res & Dev Ltd Cooling method of stacked fuel cell

Similar Documents

Publication Publication Date Title
Sun et al. Coordinated control strategies for fuel cell power plant in a microgrid
US9885257B2 (en) Flexibly operable power plant and method for the operation thereof
JPS6026107A (en) Power generation plant with multistage turbine
Dong Dynamical modeling and coordinated control design of a multimodular nuclear power-hydrogen cogeneration plant
KR20190057212A (en) A system that efficiently recovers thermal circulation water from a fuel cell power plant
CN114810249B (en) Thermoelectric decoupling system and method for heat supply unit
Ahn et al. Performance enhancement of a molten carbonate fuel cell/micro gas turbine hybrid system with carbon capture by off-gas recirculation
JPS60195880A (en) Power generation system using solid electrolyte fuel cell
US11867092B2 (en) System having a combustion power plant and an electrolysis unit, and method for operating a system of this type
KR101897486B1 (en) Fuel cell system with heat exchager using burner off gas
JPH02168570A (en) Method of generating
Roberts et al. Development of controls for dynamic operation of carbonate fuel cell-gas turbine hybrid systems
JPS62119873A (en) Waste heat recovering device for combined power generation plant
JPS62278764A (en) Fuel cell power generating plant
JP3095434B2 (en) Sodium-cooled fast breeder reactor plant
Rokni et al. Dynamic modeling of Wärtsilä 5 kW SOFC system
JP4622244B2 (en) Operation control method of fuel cell power generator
KR102258808B1 (en) An electric power generating system
JP2002056879A (en) Water electrolysis device and phosphoric acid type fuel cell generating system
JPS61106029A (en) Recovery device for waste heat from composite generating plant
JPS62119872A (en) Waste heat recovery device for combined power generation plant
KR20230070163A (en) Electrolyzer system with steam generation and method of operating same
Tauveron et al. Hydrogen Production by High Temperature Steam Electrolysis Coupled With a Small Modular Reactor: Cross-Comparison Between Various Thermal Architectures
JP3467759B2 (en) Control method of outlet temperature of reformer
JPS62138794A (en) Nuclear reactor feedwater-temperature controller