JP3095434B2 - Sodium-cooled fast breeder reactor plant - Google Patents

Sodium-cooled fast breeder reactor plant

Info

Publication number
JP3095434B2
JP3095434B2 JP03046775A JP4677591A JP3095434B2 JP 3095434 B2 JP3095434 B2 JP 3095434B2 JP 03046775 A JP03046775 A JP 03046775A JP 4677591 A JP4677591 A JP 4677591A JP 3095434 B2 JP3095434 B2 JP 3095434B2
Authority
JP
Japan
Prior art keywords
steam
sodium
pressure
hydrogen
breeder reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03046775A
Other languages
Japanese (ja)
Other versions
JPH04283699A (en
Inventor
務 前川
直人 福山
清一 田辺
雄二 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP03046775A priority Critical patent/JP3095434B2/en
Publication of JPH04283699A publication Critical patent/JPH04283699A/en
Application granted granted Critical
Publication of JP3095434B2 publication Critical patent/JP3095434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,ナトリウム冷却高速増
殖炉プラントに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-cooled fast breeder reactor plant.

【0002】[0002]

【従来の技術】ナトリウム冷却高速増殖炉プラントは,
エネルギー抽出温度が500〜700℃である。一方,
商用で最も多く使用されている軽水炉冷却原子力プラン
トは,エネルギー抽出温度が200〜400℃であり,
ナトリウム冷却高速増殖炉プラントは,軽水炉冷却原子
力プラントに比べると,エネルギー抽出温度が高い。そ
のため,2次系のエキルギー変換効率も高くて,将来性
のある原子力プラントである。
2. Description of the Related Art A sodium-cooled fast breeder reactor plant is
The energy extraction temperature is 500-700 ° C. on the other hand,
The most commonly used light water reactor cooled nuclear power plant has an energy extraction temperature of 200 to 400 ° C,
The sodium-cooled fast breeder reactor plant has a higher energy extraction temperature than the light water reactor-cooled nuclear power plant. As a result, the secondary system has a high energy conversion efficiency and is a promising nuclear power plant.

【0003】次にこのナトリウム冷却高速増殖炉プラン
トの従来例を図7により説明すると,01がナトリウム
冷却高速増殖炉装置,02が高速増殖炉,03が1次系
/2次系ナトリウム/ナトリウム熱交換器,04が蒸気
発生器,06が給水ポンプで,ナトリウム冷却高速増殖
炉装置01が上記各機器02〜04,06により構成さ
れている。
Next, a conventional example of this sodium-cooled fast breeder reactor plant will be described with reference to FIG. 7. Reference numeral 01 denotes a sodium-cooled fast breeder reactor, 02 denotes a fast breeder reactor, and 03 denotes a primary / secondary sodium / sodium heat. An exchanger, 04 is a steam generator, 06 is a feedwater pump, and the sodium-cooled fast breeder reactor 01 is composed of the above-mentioned devices 02 to 04, 06.

【0004】また11が蒸気タービン式発電装置,12
が高圧蒸気タービン(13が低圧蒸気タービン),14
が高圧蒸気タービン12(及び低圧蒸気タービン13)
により駆動されるタービン式発電機,16が復水器,1
7が復水ポンプ,18が冷却水ポンプで,蒸気タービン
式発電装置11が上記各機器12〜18により構成され
ている。
[0004] Further, reference numeral 11 denotes a steam turbine type power generator,
Is a high-pressure steam turbine (13 is a low-pressure steam turbine), 14
Is the high-pressure steam turbine 12 (and the low-pressure steam turbine 13)
Generator driven by a turbine, 16 is a condenser, 1
Reference numeral 7 denotes a condensing pump, reference numeral 18 denotes a cooling water pump, and the steam turbine type power generator 11 is constituted by the devices 12 to 18 described above.

【0005】このナトリウム冷却高速増殖炉プラントで
は,核エネルギを500〜700℃の溶融ナトリウムの
熱エネルギに変換する。即ち,低温溶融ナトリウムを高
速増殖炉02へ導き,ここで核熱により500〜700
℃まで加熱,昇温させて,1次系/2次系ナトリウム/
ナトリウム熱交換器03へ導き,ここで2次系ナトリウ
ムを加熱,昇温させる一方,降温した1次系ナトリウム
を同ナトリウム/ナトリウム熱交換器03→ポンプ(図
示せず)へ導き,ここで昇圧させて,再び高速増殖炉0
2へ導く。
In this sodium-cooled fast breeder reactor plant, nuclear energy is converted into heat energy of molten sodium at 500 to 700 ° C. That is, the low-temperature molten sodium is led to the fast breeder reactor 02, where it is heated to 500-700 by nuclear heat.
Heat to ℃ and raise the temperature to the primary / secondary sodium /
It is led to the sodium heat exchanger 03, where the secondary sodium is heated and heated, while the cooled primary sodium is led to the sodium / sodium heat exchanger 03 → pump (not shown), where the pressure is raised. Then, fast breeder reactor 0
Lead to 2.

【0006】また上記ナトリウム/ナトリウム熱交換器
03により加熱,昇温させた2次系ナトリウムを蒸気発
生器04へ導き,ここで給水を400〜560℃程度ま
で加熱,昇温させて,水蒸気を発生させ,この水蒸気を
蒸気タービン式発電装置11の高圧蒸気タービン12→
低圧蒸気タービン13へ導き,これら蒸気タービン12
及び13によりタービン式発電機14を駆動して,熱エ
ネルギを電気エネルギに変換し,次いで水蒸気を復水器
16へ導いて,ここで凝縮させ,次いでこの凝縮水(給
水)を復水ポンプ17へ導き,ここで昇圧させて,再び
蒸気発生器04へ導く。一方,蒸気発生器04で給水に
熱を与えて,降温した2次系ナトリウムをポンプ(図示
せず)へ導き,ここで昇圧させて,再び1次系/2次系
ナトリウム/ナトリウム熱交換器03へ導く。
Further, the secondary sodium heated and heated by the sodium / sodium heat exchanger 03 is led to a steam generator 04, where the feed water is heated to about 400 to 560 ° C. and heated to remove steam. This steam is generated, and the high-pressure steam turbine 12 of the steam turbine power generator 11 →
The steam turbine 12 is led to the low-pressure steam turbine 13
And 13 drive a turbine generator 14 to convert heat energy to electrical energy, then guide steam to a condenser 16 where it condenses, and then condensed water (feed water) to a condensate pump 17 , Where the pressure is increased, and the steam is again guided to the steam generator 04. On the other hand, heat is applied to the feed water by the steam generator 04, and the temperature of the lowered secondary sodium is led to a pump (not shown), where the pressure is increased, and the primary / secondary sodium / sodium heat exchanger is returned again. Lead to 03.

【0007】[0007]

【発明が解決しようとする課題】前記図7に示す従来の
ナトリウム冷却高速増殖炉プラントでは,核エネルギを
電気エネルギに変換するため,電気の需要端での負荷変
動の影響を直接に受ける。従って多数あるナトリウム冷
却高速増殖炉プラントの一部は,需要の少ない夜間など
には停止する必要がある。
In the conventional sodium-cooled fast breeder reactor plant shown in FIG. 7, since nuclear energy is converted into electric energy, it is directly affected by the load fluctuation at the demand end of electricity. Therefore, some of the sodium-cooled fast breeder reactor plants need to be shut down at night when demand is low.

【0008】通常,負荷変動への追従は,蒸気タービン
への流入蒸気,言い換えれば,蒸気発生器04への2次
系ナトリウムの温度,圧力,流量,及び1次系/2次系
ナトリウム/ナトリウム熱交換器03への1次系ナトリ
ウムの温度,圧力,流量,及び核熱を適切に制御するこ
とで対応可能であるが,プラントを停止させるとなる
と,多大な労力を要するため,負荷変動幅を小さくせざ
るを得ないという問題がある。
[0010] Normally, the follow-up of the load fluctuation is performed by the steam flowing into the steam turbine, in other words, the temperature, pressure and flow rate of the secondary sodium to the steam generator 04, and the primary / secondary sodium / sodium. This can be handled by appropriately controlling the temperature, pressure, flow rate, and nuclear heat of the primary sodium into the heat exchanger 03. However, when the plant is shut down, a great deal of labor is required. Has to be reduced.

【0009】また上記のように各系統のナトリウムの温
度,圧力,流量,及び核熱を適切に制御するには,多大
の労力を要し,専ら一定負荷で運用するように計画せざ
るを得ないという問題がある。即ち,純粋なナトリウム
は,融点が98℃,沸点が881℃(1気圧の状態で)
であり,プラントの停止時にもナトリウムの凝固を防止
するためには,ナトリウムの系統を約200℃以上に保
温する必要がある。これが軽水炉と異なり発停に多大な
労力を要する要因になっている。
Further, as described above, it takes a great deal of effort to properly control the temperature, pressure, flow rate, and nuclear heat of sodium in each system, and it is necessary to plan to operate exclusively with a constant load. There is no problem. That is, pure sodium has a melting point of 98 ° C and a boiling point of 881 ° C (at 1 atm).
In order to prevent sodium coagulation even when the plant is stopped, it is necessary to keep the temperature of the sodium system at about 200 ° C. or higher. This is a factor that requires a lot of labor to start and stop unlike the light water reactor.

【0010】本発明は前記の問題点に鑑み提案するもの
であり, その目的とする処は, 電力需要の変動に対応し
易い、また水素を効率的に製造できる、さらにプラント
の製造コストを低減できるナトリウム冷却高速増殖炉プ
ラントを提供しようとする点にある。
The present invention is proposed in view of the above-mentioned problems, and its object is to easily respond to fluctuations in power demand, to efficiently produce hydrogen, and to further reduce plant production costs. Another object of the present invention is to provide a sodium-cooled fast breeder reactor plant that can be used.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに,本発明のナトリウム冷却高速増殖炉プラントは,
ナトリウム冷却高速増殖炉装置の水蒸気系に設けた熱交
換器から送られる高圧・高温水蒸気により駆動される蒸
気タービン式発電装置と,前記蒸気タービン式発電装置
の排気を前記熱交換器により再加熱して得られた低圧・
高温水蒸気を原料とする水蒸気電解式水素製造装置とを
具えていることを特徴とする。
In order to achieve the above object, a sodium-cooled fast breeder reactor plant according to the present invention comprises:
A steam turbine power generator driven by high pressure and high temperature steam sent from a heat exchanger provided in a steam system of a sodium-cooled fast breeder reactor, and an exhaust gas of the steam turbine power generator is reheated by the heat exchanger. Low pressure
A steam electrolysis-type hydrogen production apparatus using high-temperature steam as a raw material.

【0012】[0012]

【作用】本発明のナトリウム冷却高速増殖炉プラントは
前記のように構成されており,高速増殖炉の核熱により
加熱,昇温させた高温溶融ナトリウムと給水とを熱交換
器(蒸気発生器)で熱交換して,高圧・高温蒸気を発生
させる。(1)そして電力需要の多い昼間等には,水素
製造装置側の蒸気切換弁を閉じ,発電装置側の蒸気切換
弁を開いて,上記熱交換器からの水蒸気の略全量を蒸気
タービン式発電装置の蒸気タービンへ導く。(2)また
電力需要の少ない深夜等には,発電装置側の蒸気切換
弁を閉じ,水素製造装置側の蒸気切換弁を開いて,上記
熱交換器からの水蒸気の略全量を水蒸気電解式水素製造
装置の水蒸気電解装置へ導くか,蒸気タービン式発電
装置の排気をナトリウム冷却高速増殖炉プラントの水蒸
気系に設けた熱交換器へ導き,ここで再加熱して,その
結果得られた低圧・高温蒸気を同水蒸気電解装置へ導
き,同水蒸気電解装置では,水素極と酸素極との間に電
力を印加して,水蒸気に電気化学反応を生じさせ,水素
ガスと酸素ガスとを発生させて,水素ガスを水素貯槽に
貯える。
The sodium-cooled fast breeder reactor plant according to the present invention is configured as described above, and heat exchangers (steam generators) are used for hot molten sodium heated and heated by nuclear heat of the fast breeder reactor and feed water. Heat exchange to generate high-pressure, high-temperature steam. (1) During the daytime when power demand is high, the steam switching valve on the hydrogen production device side is closed, and the steam switching valve on the power generation device side is opened, so that almost all of the steam from the heat exchanger is used for steam turbine power generation. Guide to the equipment steam turbine. (2) At midnight when power demand is low, the steam switching valve on the power generator side is closed and the steam switching valve on the hydrogen production side is opened, and almost the entire amount of steam from the heat exchanger is used for steam electrolysis hydrogen. It is led to the steam electrolyzer of the manufacturing equipment, or the exhaust gas of the steam turbine power generator is led to the heat exchanger provided in the steam system of the sodium-cooled fast breeder reactor plant, where it is reheated and the resulting low-pressure The high-temperature steam is led to the steam electrolyzer, where electric power is applied between the hydrogen electrode and the oxygen electrode to cause an electrochemical reaction in the steam to generate hydrogen gas and oxygen gas. , Hydrogen gas is stored in a hydrogen storage tank.

【0013】[0013]

【実施例】次に本発明のナトリウム冷却高速増殖炉プラ
ントを図1に示す第1実施例により説明する。このナト
リウム冷却高速増殖炉プラントを大別すると,ナトリウ
ム冷却高速増殖炉装置01の系統と,蒸気タービン式発
電装置11の系統と,水蒸気電解式水素製造装置21の
系統の3つになる。
Next, a sodium-cooled fast breeder reactor plant according to the present invention will be described with reference to a first embodiment shown in FIG. This sodium-cooled fast breeder reactor plant is roughly classified into three systems: a system of the sodium-cooled fast breeder reactor 01, a system of the steam turbine power generator 11, and a system of the steam electrolysis hydrogen generator 21.

【0014】その作用は次の通りである。即ち,低温溶
融ナトリウムを高速増殖炉02へ導き,ここで核熱によ
り500〜700℃まで加熱,昇温させて,1次系/2
次系ナトリウム/ナトリウム熱交換器03へ導き,ここ
で2次系ナトリウムを加熱,昇温させる一方,降温した
1次系ナトリウムを同ナトリウム/ナトリウム熱交換器
03→ポンプ(図示せず)へ導き,ここで昇圧させて,
再び高速増殖炉02へ導く。
The operation is as follows. That is, the low-temperature molten sodium is led to the fast breeder reactor 02, where it is heated to 500 to 700 ° C. by nuclear heat and heated to a primary system / 2.
It is led to the secondary sodium / sodium heat exchanger 03, where the secondary sodium is heated and heated, while the cooled primary sodium is led to the same sodium / sodium heat exchanger 03 → pump (not shown). , Let's raise the pressure here,
It is led to the fast breeder reactor 02 again.

【0015】また蒸気ナトリウム/ナトリウム熱交換器
03により加熱,昇温させた2次系ナトリウムを蒸気発
生器04へ導き,ここで給水を400〜560℃程度ま
で加熱,昇温させて,水蒸気を発生させる。なお蒸気発
生器04は,高温ガス炉のような800〜1000℃レ
ベルの熱交換器ではないので,この蒸気発生器04に高
温ガスのような高価な耐熱材料を使用する必要がない。
Further, the secondary sodium heated and heated by the steam sodium / sodium heat exchanger 03 is led to the steam generator 04, where the feedwater is heated to about 400 to 560 ° C. and the temperature is raised to remove steam. generate. Since the steam generator 04 is not a heat exchanger at a level of 800 to 1000 ° C. like a high temperature gas furnace, it is not necessary to use an expensive heat-resistant material such as a high temperature gas for the steam generator 04.

【0016】そして電力需要の多い昼間等には,蒸気切
換弁52を閉じ,蒸気切換弁51を開いて,上記蒸気発
生器04からの水蒸気の略全量を蒸気タービン式発電装
置11の高圧蒸気タービン12→低圧蒸気タービン13
へ導き,これら蒸気タービン12及び13によりタービ
ン式発電機14を駆動して,熱エネルギーを電気エネル
ギーに変換し,次いで復水器16へ導いて,ここで凝縮
させ,次いでこの凝縮水(給水)を復水ポンプ17へ導
き,ここで昇圧させ,さらに給水ポンプ06で昇圧させ
て,給水供給管53→蒸気発生器04へ再度導く。一
方,蒸気発生器04で給水に熱を与えて,降温した2次
系ナトリウムをポンプ(図示せず)へ導き,ここで昇圧
させて,再び1次系/2次系ナトリウム/ナトリウム熱
交換器03へ導く。
In the daytime when power demand is high, the steam switching valve 52 is closed and the steam switching valve 51 is opened, so that almost all of the steam from the steam generator 04 is supplied to the high-pressure steam turbine of the steam turbine power generator 11. 12 → Low pressure steam turbine 13
The steam turbines 12 and 13 drive a turbine generator 14 to convert thermal energy into electrical energy, and then to a condenser 16 where it is condensed and then condensed water (feed water) To the condensate pump 17, where the pressure is increased, and further increased by the water supply pump 06, and then again to the water supply pipe 53 → the steam generator 04. On the other hand, heat is applied to the feed water by the steam generator 04, and the temperature of the lowered secondary sodium is led to a pump (not shown), where the pressure is increased, and the primary / secondary sodium / sodium heat exchanger is returned again. Lead to 03.

【0017】以上は電力需要の多い昼間時等の作用であ
るが,電力需要の少なくなる深夜等には,蒸気切換弁5
1を閉じ,蒸気切換弁52を開いて,上記蒸気発生器0
4からの水蒸気の略全量を水蒸気電解式水素製造装置2
1の水蒸気熱交換器31へ導き,ここで昇温させて,図
2に示すように水蒸気電解装置22へ導き,ここで電力
調整装置42から給電線24を経て送られてくる電力を
水素極23bと酸素極23cとの間に印加し,水蒸気に
後記式の電気化学反応を生じさせて,水素極側マニホ
ールド26側に水素ガス(なおこの水素ガスは水蒸気と
水素との混合ガスであり,水素リツチガスと呼ばれる)
を発生させるとともに,酸素極側マニホールド27側に
酸素ガス(なおこの酸素ガスは空気と酸素との混合ガス
であり,酸素リツチガスと呼ばれる)を発生させる。
The operation described above is performed during the daytime when power demand is high. At midnight when power demand is low, the steam switching valve 5 is used.
1, the steam switching valve 52 is opened, and the steam generator 0 is closed.
Almost all of the steam from the steam generator 4
2, the temperature is increased here, and then the steam is fed to a steam electrolyzer 22 as shown in FIG. The hydrogen gas is applied between the hydrogen electrode 23b and the oxygen electrode 23c to cause the following electrochemical reaction in the water vapor, and the hydrogen gas is supplied to the hydrogen electrode side manifold 26 side (this hydrogen gas is a mixed gas of water vapor and hydrogen; Called hydrogen hydrogen gas)
And oxygen gas (this oxygen gas is a mixed gas of air and oxygen and is called oxygen rich gas) on the oxygen electrode side manifold 27 side.

【0018】 H2O→H2 +1/2O2 ・・・・・・・・・・・・・・・・・・・・・ そして水素極側マニホールド26に発生した水素ガスを
ガス出口26b→水蒸気熱交換器31の出口管内部→水
素リツチガスエキスパンダ32→ガス精製器33→水素
貯槽34へ導いて,この水素貯槽34に貯える。このと
き,水蒸気電解装置22内では,供給した水蒸気の一部
しか上記式の電気化学反応に寄与しないので,水素極
側マニホールド26のガス出口26bから出てゆくガス
は,純水素でなく,水素リツチガス(水蒸気と水素との
混合ガス)になる。
H 2 O → H 2 + 1 / 2O 2..., And the hydrogen gas generated in the hydrogen electrode side manifold 26 is supplied to a gas outlet 26 b → a steam heat exchanger. The inside of the outlet pipe 31 → the hydrogen rich gas expander 32 → the gas purifier 33 → the hydrogen storage tank 34, and is stored in the hydrogen storage tank 34. At this time, in the steam electrolyzer 22, only a part of the supplied steam contributes to the electrochemical reaction of the above formula, so that the gas flowing out from the gas outlet 26b of the hydrogen electrode side manifold 26 is not pure hydrogen but hydrogen. It becomes a rich gas (mixed gas of steam and hydrogen).

【0019】またこのとき,酸素極23c側では,上記
式の電気化学反応を促進するため,発生した酸素を積
極的に系外へ排出するようにしている。即ち,大気を空
気フイルター48→空気圧縮機46→空気側熱交換器4
5の入口管内部→水蒸気電解装置22のガス入口27a
→酸素極側マニホールド27へ導いて,電解酸素に合流
させた後,ガス出口27b→空気側熱交換器45の出口
管内部→酸素リツチガスエキスパンダ47を通じて系外
へ排出される。以上一日を通じてみると,発電と水素製
造とは図6のようになる。
At this time, on the oxygen electrode 23c side, generated oxygen is positively discharged out of the system in order to promote the electrochemical reaction of the above formula. In other words, the atmosphere is changed from the air filter 48 to the air compressor 46 to the air-side heat exchanger 4.
5 → inlet pipe → gas inlet 27a of steam electrolysis device 22
→ After being guided to the oxygen electrode side manifold 27 to be combined with the electrolytic oxygen, it is discharged out of the system through the gas outlet 27 b → inside the outlet tube of the air side heat exchanger 45 → through the oxygen rich gas expander 47. Throughout the day, power generation and hydrogen production are as shown in FIG.

【0020】図2は,上記水蒸気電解装置22の詳細を
示している。23が反応3層膜で,同反応3層膜23
は,電解質23aと,水素極23bと,酸素極23cと
により構成されている。そして電解質23aの構成材料
には,イツトリア安定化ジルコニア(YSZ)が使用さ
れ,水素膜23bの構成材料には,ニツケル多孔質板が
使用され,酸素極23cには,ランタンマンガナイト
(LaMnO3 )多孔質板が使用される。また24が上
記水素膜23bと上記酸素極23cとに接触した給電
線,26が上記水素膜23b側に形成した水素極側マニ
ホールド,27が上記酸素極23c側に形成した酸素極
側マニホールド,26aが上記水蒸気熱交換器31の入
口管内部に接続した水素極側マニホールド26のガス入
口,26bが上記水蒸気熱交換器31の出口管内部に接
続した水素極側マニホールド26のガス出口,27aが
上記空気側熱交換器45の出口管内部に接続した酸素極
側マニホークド27のガス入口,27bが上記水蒸気熱
交換器31の入口管内部に接続した酸素極側マニホール
ド27のガス出口である。
FIG. 2 shows the details of the steam electrolyzer 22. Reference numeral 23 denotes a reaction three-layer film.
Is composed of an electrolyte 23a, a hydrogen electrode 23b, and an oxygen electrode 23c. The electrolyte 23a is made of yttria-stabilized zirconia (YSZ), the hydrogen film 23b is made of a nickel porous plate, and the oxygen electrode 23c is made of lanthanum manganite (LaMnO3). A board is used. Reference numeral 24 denotes a power supply line in contact with the hydrogen film 23b and the oxygen electrode 23c, reference numeral 26 denotes a hydrogen electrode-side manifold formed on the hydrogen film 23b side, reference numeral 27 denotes an oxygen electrode-side manifold formed on the oxygen electrode 23c side, 26a Is the gas inlet of the hydrogen electrode side manifold 26 connected to the inside of the inlet tube of the steam heat exchanger 31, 26b is the gas outlet of the hydrogen electrode side manifold 26 connected to the inside of the outlet tube of the steam heat exchanger 31, and 27a is the gas outlet. The gas inlet of the oxygen electrode side manifold 27 connected to the inside of the outlet tube of the air side heat exchanger 45 is the gas outlet of the oxygen electrode side manifold 27 connected to the inside of the inlet tube of the steam heat exchanger 31.

【0021】次に本発明のナトリウム冷却高速増殖炉プ
ラントを図3,4に示す第2実施例により説明する。こ
の実施例も,大別すると,図3に示すように3つの系
統,即ち,ナトリウム冷却高速増殖炉装置01の系統
と,蒸気タービン式発電装置11の系統と,水蒸気電解
式水素製造装置21の系統とにより,構成されている
が,次の点で第1実施例と異なっている。 (1)2次系ナトリムウムを熱源とする蒸気発生器04
が高圧蒸気発生部と低圧蒸気発生部に2分されている。 (2)上記(1)項に対応して,高圧蒸気タービン12
の排気を蒸気発生器04に設けた低圧蒸気発生部へ導
き,高温再熱蒸気にして,低圧蒸気タービン13へ導
く。 (3)上記(1)(2)項に対応して,蒸気切換弁5
1,52を圧力の低い高温再熱蒸気ライン(水蒸気供給
管)54b,54cに設けており,高圧蒸気ライン54
には,蒸気切換弁51,52を設けていない。 (4)水蒸気電解装置22の操作圧力の低下に伴い出口
側の水素リツチガス系統中のガスエキスパンダ(図1の
32参照)を廃止して,その代わりにコンデンサー38
を設けて,水素リツチガス中の水分を効果的に除去す
る。なお冷却水としては蒸気タービン発電装置11の冷
却水設備の冷却水を一部利用している。 (5)上記(4)項と同じく操作圧力の低下に伴い酸素
極側マニホールド27内のガス圧力を低下させることが
望ましいので,コンプレツサー(図1の45参照)によ
る押し込みを中止して,その代わりに真空ポンプ49を
設けるとともに,貯槽40を設けて,同貯槽40にO2
を貯える。
Next, a sodium-cooled fast breeder reactor plant according to the present invention will be described with reference to a second embodiment shown in FIGS. This embodiment can also be roughly classified into three systems as shown in FIG. 3, that is, a system of a sodium-cooled fast breeder reactor 01, a system of a steam turbine power generator 11, and a system of a steam electrolysis hydrogen generator 21. Although it is constituted by a system, it differs from the first embodiment in the following points. (1) Steam generator 04 using secondary sodium as heat source
Is divided into a high-pressure steam generator and a low-pressure steam generator. (2) According to the above item (1), the high-pressure steam turbine 12
The exhaust gas is guided to a low-pressure steam generation section provided in the steam generator 04, converted into high-temperature reheated steam, and guided to the low-pressure steam turbine 13. (3) According to the above items (1) and (2), the steam switching valve 5
1 and 52 are provided in high-temperature reheat steam lines (steam supply pipes) 54b and 54c having a low pressure.
Are not provided with the steam switching valves 51 and 52. (4) As the operating pressure of the steam electrolyzer 22 decreases, the gas expander (see 32 in FIG. 1) in the hydrogen-rich gas system on the outlet side is abolished, and the condenser 38 is used instead.
Is provided to effectively remove moisture in the hydrogen rich gas. As the cooling water, a part of the cooling water of the cooling water facility of the steam turbine power generator 11 is used. (5) Since it is desirable to lower the gas pressure in the oxygen electrode side manifold 27 with a decrease in the operating pressure as in the above item (4), the pressing by the compressor (see 45 in FIG. 1) is stopped, and Is provided with a vacuum pump 49 and a storage tank 40, and O2 is stored in the storage tank 40.
To save.

【0022】以上(1)〜(5)項の相違点により,こ
の第2実施例では,電力需要の少ない夜間等に,圧力の
低い高温再熱蒸気ライン(水蒸気供給管)54b,54
cにある蒸気切換弁51,52のみを操作するので,給
水供給管53→蒸気発生器04→高圧蒸気タービン13
の系統の発電は,停止されることになる。なお蒸気切換
弁52を通って送る低圧高温蒸気を水蒸気電解式水素製
造装置21の熱交換器31へ導いて,加熱,昇温し,次
いで水蒸気電解装置22へ導いて,水素リツチガスに
し,熱交換器31→熱交換器32→コンデンサー38→
コンプレツサー36→H2貯槽34へ導いて,ここに貯
える。
Due to the differences in the above items (1) to (5), in the second embodiment, the high-temperature reheat steam lines (steam supply pipes) 54b, 54 having a low pressure are used during nighttime when power demand is small.
c, only the steam switching valves 51 and 52 are operated, so that the water supply pipe 53 → the steam generator 04 → the high pressure steam turbine 13
The power generation in this system will be stopped. The low-pressure high-temperature steam sent through the steam switching valve 52 is led to the heat exchanger 31 of the steam electrolysis-type hydrogen production apparatus 21, heated and heated, and then led to the steam electrolysis apparatus 22, where it is converted into a hydrogen rich gas and heat exchanged. Vessel 31 → heat exchanger 32 → condenser 38 →
The compressor 36 is guided to the H2 storage tank 34 and stored therein.

【0023】図4は,前記蒸気発生器04の詳細を示し
ている。この蒸気発生器04は,略同様の5台の蒸気発
生器04a,04b,04c,04d,04eにより構
成されている。電力需要の多い昼間等には,弁57,5
8を開き,弁59,60を閉じ,2台の蒸気発生器04
a,04bで高圧蒸気を得て,これを高圧蒸気タービン
12へ導くとともに,残り3台の蒸気発生器04c,0
4d,04eで低圧蒸気を得て,これを低圧蒸気タービ
ン13へ導くことにより,高圧蒸気タービン12及び低
圧蒸気タービン13の負荷バランスを適正に保持する。
FIG. 4 shows the details of the steam generator 04. This steam generator 04 is composed of substantially the same five steam generators 04a, 04b, 04c, 04d, and 04e. During the daytime when power demand is high, valves 57 and 5
8, the valves 59 and 60 are closed, and two steam generators 04
a and 04b, high-pressure steam is obtained and guided to the high-pressure steam turbine 12, and the remaining three steam generators 04c and 0b
By obtaining low-pressure steam at 4d and 04e and guiding the low-pressure steam to the low-pressure steam turbine 13, the load balance of the high-pressure steam turbine 12 and the low-pressure steam turbine 13 is properly maintained.

【0024】一方,電力需要の少ない夜間等には,水蒸
気電解装置22の操作圧力と低圧蒸気タービン13の入
口圧力との違いにより,弁57,58,59,60を開
閉操作する。即ち,水蒸気電解装置22の操作圧力と低
圧蒸気タービン13の入口圧力とが同じであれば,弁5
7〜60は基本的に操作不要で,分岐した水蒸気供給管
54b,54cに設けた蒸気切換弁51,52の開閉操
作により,低圧蒸気タービン13を停止し,水蒸気電解
装置22を作動させるようにする。
On the other hand, at night or the like when power demand is small, the valves 57, 58, 59 and 60 are opened and closed due to the difference between the operating pressure of the steam electrolysis device 22 and the inlet pressure of the low-pressure steam turbine 13. That is, if the operating pressure of the steam electrolysis device 22 and the inlet pressure of the low-pressure steam turbine 13 are the same, the valve 5
7 to 60 do not basically require any operation. The low-pressure steam turbine 13 is stopped and the steam electrolysis device 22 is operated by opening and closing the steam switching valves 51 and 52 provided in the branched steam supply pipes 54b and 54c. I do.

【0025】また水蒸気電解装置22の操作圧力の方が
低圧蒸気タービン13の入口圧力よりも低い場合には,
弁57,58を閉じ,弁59,60を開く。これにより
高圧蒸気系統の熱入力が下がるため,蒸気流量の減少,
若しくは蒸気温度の低下のどちらかを選択して,適切に
操作することになる。一方,低圧蒸気系統は,蒸気発生
器4の個数増加(3→4)に伴う伝熱面積の増加はある
が,蒸気圧力の低下による熱伝達率の低下もあり,昼間
と略同じレベルの温度の蒸気が水蒸気電解装置22に送
られることになる。
When the operating pressure of the steam electrolyzer 22 is lower than the inlet pressure of the low-pressure steam turbine 13,
The valves 57 and 58 are closed, and the valves 59 and 60 are opened. This reduces the heat input to the high-pressure steam system, reducing the steam flow,
Alternatively, one of the two methods, that is, lowering the steam temperature, is selected, and the operation is appropriately performed. On the other hand, in the low-pressure steam system, although the heat transfer area increases with the increase in the number of steam generators 4 (3 → 4), the heat transfer coefficient also decreases due to the decrease in steam pressure. Is sent to the steam electrolysis device 22.

【0026】高圧蒸気タービン12で発生した電力は,
水蒸気電解式水素製造装置21が必要とする電力の一部
に充当してもよい。なお上記図3,4の第2実施例で
は,蒸気発生器4が5台の蒸気発生器04a〜04eに
より構成されているが,蒸気発生器は2台以上あればよ
い。また蒸気発生器04は,各蒸気発生器04a〜04
eの仕様が異なっているもので構成されていてもよい。
The power generated by the high-pressure steam turbine 12 is
It may be applied to part of the electric power required by the steam electrolysis-type hydrogen production apparatus 21. In the second embodiment shown in FIGS. 3 and 4, the steam generator 4 is composed of five steam generators 04a to 04e, but it is sufficient if there are two or more steam generators. Each of the steam generators 04a to 04a
e may have different specifications.

【0027】次に本発明のナトリウム冷却高速増殖炉プ
ラントを図5に示す第3実施例により説明する。この実
施例も,大別すると,3つの系統,即ち,ナトリウム冷
却高速増殖炉装置1の系統と,蒸気タービン発電装置1
1の系統と,水蒸気電解式水素製造装置21の系統とに
より,構成されているが,次の点で第2実施例と異なっ
ている。 (1)電力需要の変動にかかわらず,水素を製造するこ
とを第1の目的としたプラントである。 (2)蒸気タービン発電装置11を背圧式蒸気タービン
12のみにより構成し且つ発電機に直流発電機を使用
し,その電力を水蒸気電解装置22へ直接供給するよう
に電力ケーブルを有機的に接続した。また背圧式蒸気タ
ービン12と水素ガスコンプレツサー36とを機械的に
結合した。 (3)蒸気発生器04への給水を予熱するのに,水蒸気
電解式水素製造装置21からのガスの保有熱を利用でき
るように熱交換器32,45と給水ラインとを有機的に
結合した。
Next, a sodium-cooled fast breeder reactor plant of the present invention will be described with reference to a third embodiment shown in FIG. This embodiment can also be roughly classified into three systems, namely, a system of the sodium-cooled fast breeder reactor 1 and a system of the steam turbine power generator 1.
1 and the system of the steam electrolysis-type hydrogen production apparatus 21, but differ from the second embodiment in the following points. (1) A plant whose primary purpose is to produce hydrogen regardless of fluctuations in power demand. (2) The steam turbine generator 11 is composed of only the back-pressure steam turbine 12, a DC generator is used as a generator, and a power cable is organically connected so as to directly supply the power to the steam electrolyzer 22. . Further, the back pressure steam turbine 12 and the hydrogen gas compressor 36 were mechanically connected. (3) The heat exchangers 32 and 45 and the water supply line are organically connected so as to use the retained heat of the gas from the steam electrolytic hydrogen production apparatus 21 for preheating the water supply to the steam generator 04. .

【0028】このナトリウム冷却高速増殖炉プラントで
は,常時一定量の高圧蒸気を蒸気タービン式発電装置1
1へ供給して,発電するとともに,その排気の全量を蒸
気発生器04で再加熱した後,熱交換器31→水蒸気電
解装置22へ導き,ここでの直流電力により水素を発生
させて,水素リツチガスとし,この水素リツチガスをコ
ンデンサー38へ導き,ここで水分を除去して,コンプ
レツサー36へ導き,ここで昇圧させ,次いでH2貯槽
34へ導いて,ここに貯える。なお水素発生時に同時に
発生する酸素は,熱交換器45及び真空ポンプ49を介
してO2貯槽40へ導いて,ここに貯える。
In this sodium-cooled fast breeder reactor plant, a fixed amount of high-pressure steam is constantly supplied to the steam turbine power generator 1.
1 to generate electricity, and the entire amount of the exhaust gas is reheated by the steam generator 04, then led to the heat exchanger 31 → the steam electrolysis device 22, where the DC power generates hydrogen to generate hydrogen. The hydrogen rich gas is led to a condenser 38 where water is removed, guided to a compressor 36, where the pressure is increased, and then guided to an H2 storage tank 34 where it is stored. Oxygen generated simultaneously with the generation of hydrogen is led to the O2 storage tank 40 via the heat exchanger 45 and the vacuum pump 49 and stored therein.

【0029】なお前記各実施例の水素を製造する水蒸気
電解式水素製造装置21は,昼間等の電力需要が多いと
きは,発電機(燃料電池)として使用してもよい。また
前記各実施例では,高速増殖炉02の1次,2次系媒体
がナトリウムであるが,ナトリウムの代わりに,ナトリ
ウムとカリウムとの混合物,またはカリウムを使用して
もよい。
The steam electrolytic hydrogen production apparatus 21 for producing hydrogen according to each of the above embodiments may be used as a generator (fuel cell) when power demand is large, such as during the daytime. In each of the above embodiments, the primary and secondary medium of the fast breeder reactor 02 is sodium, but a mixture of sodium and potassium or potassium may be used instead of sodium.

【0030】[0030]

【発明の効果】本発明のナトリウム冷却高速増殖炉プラ
ントは前記のように高速増殖炉の核熱により加熱,昇温
させた高温溶融ナトリウムと給水とを熱交換器(蒸気発
生器)で熱交換して,高圧・高温蒸気を発生させる。
(1)そして電力需要の多い昼間等には,水素製造装置
側の蒸気切換弁を閉じ,発電装置側の蒸気切換弁を開い
て,上記熱交換器からの水蒸気の略全量を蒸気タービン
式発電装置の蒸気タービンへ導く。(2)また電力需要
の少ない深夜等には,発電装置側の蒸気切換弁を閉
じ,水素製造装置側の蒸気切換弁を開いて,上記熱交換
器からの水蒸気の略全量を水蒸気電解式水素製造装置の
水蒸気電解装置へ導くか,蒸気タービン式発電装置の
排気をナトリウム冷却高速増殖炉プラントの水蒸気系に
設けた熱交換器へ導き,ここで再加熱して,その結果得
られた低圧・高温蒸気を同水蒸気電解装置へ導き,同水
蒸気電解装置では,水素極と酸素極との間に電力を印加
して,水蒸気に電気化学反応を生じさせ,水素ガスと酸
素ガスとを発生させて,水素ガスを水素貯槽に貯えるの
で,次の効果を達成できる。即ち, (a)電力需要の変動に対応し易い。 (b)またナトリウム冷却高速増殖炉装置と蒸気タービ
ン式発電装置と水蒸気電解式水素製造装置とを有機的に
結合しており,水素を効率的に製造できる。 (c)また従来は高温ガス冷却原子炉を熱源としていた
水蒸気電解式水素製造装置を本プラントの下流側に配置
することで,原子炉と水素製造装置とを繋ぐ蒸気配管の
設定温度を大幅に低下させることができ,そのため,水
蒸気電解式水素製造プラントにより,水素の製造コスト
をさらに一層低減できる。 (d)水蒸気電解式水素製造装置側からみたとき,遠く
離れた熱源装置側との間に設けられる熱輸送配管は熱源
がHTGRのときは高価な耐熱材料を必要としていた
が,本発明では,より安価な材料を使用できるので,プ
ラントの製作コストを低減できる効果がある。
As described above, the sodium-cooled fast breeder reactor plant of the present invention heat-exchanges the high-temperature molten sodium heated and heated by the nuclear heat of the fast breeder reactor and the feed water with a heat exchanger (steam generator). To generate high-pressure, high-temperature steam.
(1) During the daytime when power demand is high, the steam switching valve on the hydrogen production device side is closed, and the steam switching valve on the power generation device side is opened, so that almost all of the steam from the heat exchanger is used for steam turbine power generation. Guide to the equipment steam turbine. (2) At midnight when power demand is low, the steam switching valve on the power generator side is closed and the steam switching valve on the hydrogen production side is opened, and almost the entire amount of steam from the heat exchanger is used for steam electrolysis hydrogen. It is led to the steam electrolyzer of the manufacturing equipment, or the exhaust gas of the steam turbine power generator is led to the heat exchanger provided in the steam system of the sodium-cooled fast breeder reactor plant, where it is reheated and the resulting low-pressure The high-temperature steam is led to the steam electrolyzer, where electric power is applied between the hydrogen electrode and the oxygen electrode to cause an electrochemical reaction in the steam to generate hydrogen gas and oxygen gas. Since the hydrogen gas is stored in the hydrogen storage tank, the following effects can be achieved. (A) It is easy to respond to fluctuations in power demand. (B) In addition, the sodium-cooled fast breeder reactor, the steam turbine-type power generator, and the steam electrolysis-type hydrogen production system are organically connected, so that hydrogen can be produced efficiently. (C) In addition, a steam electrolysis-type hydrogen production system, which used to be a high-temperature gas-cooled nuclear reactor as a heat source, is located downstream of this plant, so that the set temperature of the steam pipe connecting the reactor and the hydrogen production system can be greatly increased. Therefore, the cost of producing hydrogen can be further reduced by the steam electrolytic hydrogen production plant. (D) When viewed from the steam electrolysis type hydrogen production apparatus side, the heat transport pipe provided between the distant heat source apparatus side requires an expensive heat-resistant material when the heat source is HTGR. Since less expensive materials can be used, there is an effect that the manufacturing cost of the plant can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わるナトリウム冷却高速増殖炉
プラントの第1実施例を示す系統図である。
FIG. 1 is a system diagram showing a first embodiment of a sodium-cooled fast breeder reactor plant according to the present invention.

【図2】 同第1実施例の水蒸気電解式水素製造装置
の詳細を示す縦断側面図である。
FIG. 2 is a vertical sectional side view showing details of the steam electrolytic hydrogen production apparatus of the first embodiment.

【図3】 第2実施例を示す系統図である。FIG. 3 is a system diagram showing a second embodiment.

【図4】 同第2実施例の熱交換器の詳細を示す縦断
側面図である。
FIG. 4 is a vertical sectional side view showing details of the heat exchanger of the second embodiment.

【図5】 第3実施例を示す系統図である。FIG. 5 is a system diagram showing a third embodiment.

【図6】 第1実施例における一日の発電と水素製造
との様子を示す説明図である。
FIG. 6 is an explanatory diagram showing a state of daily power generation and hydrogen production in the first embodiment.

【図7】 従来のナトリウム冷却高速増殖炉プラント
を示す系統図である。
FIG. 7 is a system diagram showing a conventional sodium-cooled fast breeder reactor plant.

【符号の説明】[Explanation of symbols]

01 ナトリウム冷却高速増殖炉装置 02 高速増殖炉 03 1次系/2次系ナトリウム/ナトリウム熱交換
器 04 熱交換器(蒸気発生器) 11 蒸気タービン式発電装置 12 高圧蒸気タービン 13 低圧蒸気タービン 21 水蒸気電解式水素製造装置 51 蒸気切換弁(切換手段) 52 蒸気切換弁(切換手段) 53 給水供給管 54a 熱交換器04の水蒸気出口側 54b 水蒸気供給管 54c 水蒸気供給管(第2の水蒸気供給管)
01 sodium-cooled fast breeder reactor 02 fast breeder reactor 03 primary / secondary sodium / sodium heat exchanger 04 heat exchanger (steam generator) 11 steam turbine power generator 12 high-pressure steam turbine 13 low-pressure steam turbine 21 steam Electrolytic hydrogen production apparatus 51 Steam switching valve (switching means) 52 Steam switching valve (switching means) 53 Feedwater supply pipe 54a Steam outlet side of heat exchanger 04 54b Steam supply pipe 54c Steam supply pipe (second steam supply pipe)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田辺 清一 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (72)発明者 時田 雄二 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社 長崎研究所内 審査官 長井 真一 (56)参考文献 特開 昭58−96296(JP,A) 特開 昭59−48696(JP,A) 福山直人他「高温水蒸気電解法を用い た水素エネルギーシステム」電気学会 新・省エネルギー研究会資料,ESC− 90(1990)p.55−65 (58)調査した分野(Int.Cl.7,DB名) G21D 9/00 C25B 1/04 C25B 9/00 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Seiichi Tanabe 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Heavy Industries, Ltd. (72) Inventor Yuji Tokita 1-1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Shinichi Nagai, Examiner, Nagasaki Research Laboratory, Kogyo Co., Ltd. (56) References JP-A-58-96296 (JP, A) JP-A-59-48696 (JP, A) Naoto Fukuyama et al. “Hydrogen energy using high-temperature steam electrolysis method” System, IEICE New Energy Conservation Study Group, ESC-90 (1990) p. 55-65 (58) Field surveyed (Int. Cl. 7 , DB name) G21D 9/00 C25B 1/04 C25B 9/00 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ナトリウム冷却高速増殖炉装置の水蒸気
系に設けた熱交換器から送られる高圧・高温水蒸気によ
り駆動される蒸気タービン式発電装置と,前記蒸気ター
ビン式発電装置の排気を前記熱交換器により再加熱して
得られた低圧・高温水蒸気を原料とする水蒸気電解式水
素製造装置とを具えていることを特徴とするナトリウム
冷却高速増殖炉プラント。
1. A steam turbine power generator driven by high pressure and high temperature steam sent from a heat exchanger provided in a steam system of a sodium-cooled fast breeder reactor, and an exhaust gas of the steam turbine power generator is subjected to the heat exchange. A fast-breeding sodium-cooled breeder reactor, comprising: a steam electrolysis-type hydrogen production apparatus using low-pressure, high-temperature steam obtained by reheating with a vessel.
JP03046775A 1991-03-12 1991-03-12 Sodium-cooled fast breeder reactor plant Expired - Fee Related JP3095434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03046775A JP3095434B2 (en) 1991-03-12 1991-03-12 Sodium-cooled fast breeder reactor plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03046775A JP3095434B2 (en) 1991-03-12 1991-03-12 Sodium-cooled fast breeder reactor plant

Publications (2)

Publication Number Publication Date
JPH04283699A JPH04283699A (en) 1992-10-08
JP3095434B2 true JP3095434B2 (en) 2000-10-03

Family

ID=12756706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03046775A Expired - Fee Related JP3095434B2 (en) 1991-03-12 1991-03-12 Sodium-cooled fast breeder reactor plant

Country Status (1)

Country Link
JP (1) JP3095434B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635205B2 (en) * 2006-02-14 2011-02-23 独立行政法人 日本原子力研究開発機構 Nuclear power generation system that can handle load fluctuations
JP6587460B2 (en) * 2015-08-31 2019-10-09 関西電力株式会社 Hydrogen production facility and hydrogen production method
JP2022183885A (en) * 2021-05-31 2022-12-13 株式会社日立製作所 Nuclear power plant and hydrogen production method for nuclear power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福山直人他「高温水蒸気電解法を用いた水素エネルギーシステム」電気学会新・省エネルギー研究会資料,ESC−90(1990)p.55−65

Also Published As

Publication number Publication date
JPH04283699A (en) 1992-10-08

Similar Documents

Publication Publication Date Title
US4004947A (en) Pressurized fuel cell power plant
CA1043856A (en) Pressurized fuel cell power plant with steam flow through the cells
US4001041A (en) Pressurized fuel cell power plant
CA1043861A (en) Pressurized fuel cell power plant
US8064566B2 (en) Electricity and steam generation from a helium-cooled nuclear reactor
JP2942999B2 (en) Molten carbonate fuel cell power generator
Wen et al. Design and analysis of biomass-to-ammonia-to-power as an energy storage method in a renewable multi-generation system
CN114142791B (en) Multi-energy complementary all-weather light-heat-electricity combined supply system for ship
CN109686998A (en) Association circulating power generation system based on the cooling fuel cell of gas turbine
Souleymane et al. Efficient utilization of waste heat from molten carbonate fuel cell in parabolic trough power plant for electricity and hydrogen coproduction
CN115395047A (en) Methane-electricity-hydrogen reversible solid oxide fuel cell system with shared system components
JP3095434B2 (en) Sodium-cooled fast breeder reactor plant
CN1151574C (en) Combined electric generator system integrating fuel battery of carbonate with turbine
CN209266502U (en) Association circulating power generation system based on the cooling fuel cell of gas turbine
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
CN116779921A (en) High-energy-efficiency fuel cell cogeneration device and method
Krumdieck et al. Solid oxide fuel cell architecture and system design for secure power on an unstable grid
JPH05203792A (en) Power plant equipment and operation thereof
Herring et al. Hydrogen production through high-temperature electrolysis in a solid oxide cell
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
KR102258808B1 (en) An electric power generating system
CN219610494U (en) SOFC power generation system suitable for underwater environment
JP2002056879A (en) Water electrolysis device and phosphoric acid type fuel cell generating system
US20230378493A1 (en) Hydrogen powered fuel cell system including condenser and method of operating the same using pressure control
US20240170692A1 (en) Enhancing Efficiencies Of Oxy-Combustion Power Cycles

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees