JPS6035469A - Cooling method of stacked fuel cell - Google Patents

Cooling method of stacked fuel cell

Info

Publication number
JPS6035469A
JPS6035469A JP58143423A JP14342383A JPS6035469A JP S6035469 A JPS6035469 A JP S6035469A JP 58143423 A JP58143423 A JP 58143423A JP 14342383 A JP14342383 A JP 14342383A JP S6035469 A JPS6035469 A JP S6035469A
Authority
JP
Japan
Prior art keywords
cooling
cooling medium
pipe
gas
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58143423A
Other languages
Japanese (ja)
Other versions
JPH0414471B2 (en
Inventor
Atsuo Watanabe
敦夫 渡辺
Tomoyoshi Kamoshita
友義 鴨下
Ko Kondo
香 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58143423A priority Critical patent/JPS6035469A/en
Publication of JPS6035469A publication Critical patent/JPS6035469A/en
Publication of JPH0414471B2 publication Critical patent/JPH0414471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make uniform temperature distribution within a cell stack by gathering cooling media of gas and liquid mixture from each cooling body in a common gathering compartment, and commonly applying gas pressure in the compartment to cooling media in each cooling body. CONSTITUTION:Cooling bodies 3 in each of which a cooling pipe 4 is buried are arranged in a fuel cell. Each cooling pipe 4 is connected to a common inlet gathering pipe line 6 through pipe 4b, and connected to a common outlet gathering pipe line 16 through pipe 4c. Liquid medium 5a within a cooling medium reservoir 18 is supplied to each cooling pipe 4 with a pump 8 through the inlet gathering pipe 6. Two phase mixed media of gas and liquid generated by boiling are supplied to the outlet gathering pipe 16, and liquid phase is sent to the reservoir 18 and gas phase is to a vapor exhaust pipe 17. Since operating temperature of each cooling body 3 is set by only pressure of gas phase of the outlet gathering pipe 16, temperature of each part is uniformly kept even if the number of stacks of the cell is increased.

Description

【発明の詳細な説明】 〔発明の屈する技術分野〕 本発明は単位電池を積層、とくに上下方向に積層してな
る電池積層体の積層方向の複数個所に分布して冷却体を
介装し、該冷却体内に冷却媒体を並列的に通流させて電
池積層体を冷却するようにした積層燃料電池の冷却方法
に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention provides a battery stack in which unit batteries are stacked, particularly in the vertical direction, and a cooling body is interposed at a plurality of locations in the stacking direction. The present invention relates to a method for cooling a stacked fuel cell, in which a cooling medium is caused to flow in parallel through the cooling body to cool a battery stack.

1〔従来技術とその問題点〕 周知のように実用的な燃料電池は、多数個の単位電池が
積層された電池積層体として構成されるが、発電運転を
行なうと各単位電池内で若干の熱が発生するので、燃料
電池を適正な運転温度で動作させるために、かかる発生
熱を取シ除いてやる必要がある。とくに多数個の単位電
池を積層したものでは、積層体の中央部の温度が高くな
シやすいので、板状の冷却体を積層個所に分布させて介
装し、この冷却体内に冷却媒体を流すことによって電池
積層体を冷却することが必要になる。この冷却体に流す
冷却媒体としては空気や水など、気体状のものでも液体
状のものでもよいが、冷却能力の点からは液状の媒体が
望ましく、かつ発生熱を顕熱の形で除去するよシは潜熱
の形で除去するものの方が有利である。かかる潜熱を利
用する冷却媒体としても、電池の運転温度に適したもの
を選ぶ必要があるが、最近の実用的な燃料電池の運転温
度が180度前後のものに対しては、水が′Iコストの
点からも蒸気圧の点からも有利である。
1 [Prior art and its problems] As is well known, a practical fuel cell is constructed as a battery stack in which a large number of unit cells are stacked, but during power generation operation, some amount of energy is generated within each unit cell. Heat is generated and must be removed in order to operate the fuel cell at a proper operating temperature. In particular, in the case of stacking a large number of unit cells, the temperature in the center of the stack tends to be high, so plate-shaped cooling bodies are distributed and interposed between the stacked parts, and a cooling medium is allowed to flow through the cooling bodies. This makes it necessary to cool the battery stack. The cooling medium flowing through this cooling body may be either gaseous or liquid, such as air or water, but from the viewpoint of cooling capacity, a liquid medium is preferable, and the generated heat is removed in the form of sensible heat. It is more advantageous to remove heat in the form of latent heat. It is necessary to select a cooling medium that is suitable for the operating temperature of the battery to utilize such latent heat, but since the operating temperature of recent practical fuel cells is around 180 degrees, water is It is advantageous both in terms of cost and steam pressure.

第1図はかかる考え方に基づ〈従来の燃料電池の冷却方
法を示すものである。図中1で示された電池積層体は多
数個の単位電池2と積層体中の要所に介装された冷却体
3とを積層した上、図示しない上下に配された締結手段
により締め合わされてなる。各冷却体3にはそれぞれ複
数個の冷却管4が埋め込みまたは挿通されておシ、その
内部に冷却媒体5が矢印の方向に通流される1、各冷却
体の入口部は共通の入口集合配管6に接続されておシ、
ポンプ8により付勢された冷却媒体5例えば水がこの入
口集合配管6を介して各冷却体3の冷却管4に並列的に
供給される。
Figure 1 shows a conventional fuel cell cooling method based on this idea. The battery stack indicated by 1 in the figure is made by stacking a large number of unit batteries 2 and cooling bodies 3 interposed at key points in the stack, and then fastening them together by fastening means (not shown) disposed above and below. It becomes. A plurality of cooling pipes 4 are embedded or inserted into each of the cooling bodies 3, and a cooling medium 5 is passed through them in the direction of the arrow. If connected to 6,
A cooling medium 5, for example water, energized by a pump 8 is supplied in parallel to the cooling pipes 4 of each cooling body 3 via this inlet collection pipe 6.

冷却管4内の冷却媒体5は、冷却体3が単位電池2から
受けた熱によシ温度上昇し、その一部が蒸発する沸騰状
態に達する。図では純液相の冷却媒体は5aで示されて
おり、冷却管4内で一部が蒸気化して液相の一部に気相
の蒸気泡を含むに至った冷却媒体が5bで示されている
。かかる気液混合状態の冷却媒体5bは、各冷却管4の
出口に共通に接続された出口集合配管7に入り、該出口
集合配管7を通って気液分離器9に上方から入)、どの
気液分離器9内で気相と液相に分離し、液相の冷却媒体
5aは気液分離器9の下部9aに溜まり、気相の冷却媒
体50つまシ冷却媒体の蒸気は上方の配管中の制御弁1
0を通って冷却系の外部に出る。気液分離分離器9の下
部に溜まる冷却媒体は前述のポンプ8によシ付勢されて
再び電池積層体1の冷却に用いられるが、電池積層体1
中の発生熱は主に気相の冷却媒体5C中の潜熱となって
いるので、前述の制御弁10から出た冷却媒体5Cは、
図示し力い熱交換器によυ熱回収されると同時に凝縮さ
れて液相の冷却媒体5aに戻り、補給用の冷却媒体12
として気液分離器9の下部9aに注入される。
The temperature of the cooling medium 5 in the cooling pipe 4 rises due to the heat received by the cooling body 3 from the unit battery 2, and reaches a boiling state where a part of the cooling medium 5 evaporates. In the figure, the coolant in a pure liquid phase is indicated by 5a, and the coolant that has partially vaporized in the cooling pipe 4 and has come to contain vapor bubbles in a part of the liquid phase is indicated by 5b. ing. The cooling medium 5b in the gas-liquid mixed state enters the outlet collecting pipe 7 commonly connected to the outlet of each cooling pipe 4, passes through the outlet collecting pipe 7, and enters the gas-liquid separator 9 from above). It is separated into a gas phase and a liquid phase in the gas-liquid separator 9, and the liquid phase cooling medium 5a is collected in the lower part 9a of the gas-liquid separator 9. Control valve 1 inside
0 and exits the cooling system. The cooling medium accumulated in the lower part of the gas-liquid separator 9 is energized by the pump 8 mentioned above and used again to cool the battery stack 1.
Since the heat generated inside is mainly latent heat in the gas phase cooling medium 5C, the cooling medium 5C coming out from the aforementioned control valve 10 is
As shown in the figure, heat is recovered by the high-power heat exchanger, and at the same time, it is condensed and returned to the liquid phase cooling medium 5a, and the replenishing cooling medium 12
The gas is injected into the lower part 9a of the gas-liquid separator 9 as a liquid.

さて、このように構成された冷却系内の圧力は、容易に
わかるように気液分離器9の上部9b内の気相の冷却媒
体5Cのもつ圧力によってほぼ決まるので、この冷却系
内の支配圧力を所定値に保つように圧力制御器11が設
けられ、気液分離器9の上部配管内の冷却媒体の圧力を
検出してその圧力が一定に々るよう、例えば前述の制御
弁10の開度を調節する。また、前述の気液二相混合状
態の冷却媒体5bの温度は冷却媒体の飽和蒸気圧線図中
の前記冷却系の系統圧力に対応する温度になるから、前
述の圧力制御器11が保つ所定圧力値はとりもなおさず
電池積層体1の運転温度を決めていることになる。
Now, as is easily understood, the pressure within the cooling system configured as described above is approximately determined by the pressure of the gas-phase cooling medium 5C in the upper part 9b of the gas-liquid separator 9, so the pressure within the cooling system A pressure controller 11 is provided to keep the pressure at a predetermined value, and detects the pressure of the cooling medium in the upper pipe of the gas-liquid separator 9, and controls the control valve 10 described above so that the pressure remains constant. Adjust the opening. In addition, since the temperature of the cooling medium 5b in the gas-liquid two-phase mixed state is a temperature corresponding to the system pressure of the cooling system in the saturated vapor pressure diagram of the cooling medium, the pressure controller 11 maintains a predetermined temperature. The pressure value determines the operating temperature of the battery stack 1.

しかし、このようにして電池の運転温度が決定されるこ
とは、電池積層体1内の各部分がすべて同一温度で運転
されることをなんら保証するものではない。す々わち、
第1図に示された電池積層体1内の最上部の冷却体3と
最下部の冷却体3との間の高低差りは、実用的な燃料電
池において数力定数)だけの圧力差が最高部の冷却管4
と最底部冷却管4との間に発生し、かかる圧力差に相当
する温度差が面冷却管の間に、従ってその付近の電池積
層体内の部分間に生じるからである。かかる原因に基づ
いて生じる電池積層体1内の運転温度分布の上下の温度
差は、前述のように電池の積層高さが数mにもカリ、冷
却媒体として水を使用し、運転温度を180度C前後に
選んだ場合2〜3度Cになって、この値自体は大きくな
いようにも思えるが、燃料電池の効率がこの付近の運転
温度で1度Cあたり0.1チ以上変化することを考える
と、決して無視することができない量である。以上説明
のように従来の冷却方法とくに上述のような沸騰冷却を
用いる方法は、冷却容量の点では十分な能力をもってい
るが、積層数の大な燃料電池の冷却に適用した場合は積
層体内の温度分布を十分に均一化できない欠点を有する
However, determining the operating temperature of the battery in this way does not guarantee that all parts within the battery stack 1 will be operated at the same temperature. Suwachi,
The height difference between the top cooling body 3 and the bottom cooling body 3 in the cell stack 1 shown in FIG. Top cooling pipe 4
This is because a temperature difference corresponding to the pressure difference generated between the surface cooling pipes and the bottommost cooling pipe 4 occurs between the surface cooling pipes, and thus between the parts in the battery stack in the vicinity thereof. The temperature difference between the top and bottom of the operating temperature distribution within the battery stack 1 caused by such causes can be explained by the fact that, as mentioned above, the height of the battery stack is several meters, water is used as a cooling medium, and the operating temperature is lowered to 180 degrees. If the temperature is chosen around 2 to 3 degrees Celsius, this value itself may not seem large, but the efficiency of the fuel cell changes by more than 0.1 inches per 1 degree C at operating temperatures around this range. Considering this, it is an amount that cannot be ignored. As explained above, conventional cooling methods, especially methods using boiling cooling as described above, have sufficient cooling capacity, but when applied to cooling fuel cells with a large number of stacked layers, It has the disadvantage that the temperature distribution cannot be made sufficiently uniform.

〔発明の目的〕[Purpose of the invention]

本発明は従来の冷却方法をさらに改良して、積層数の大
な燃料電池に適用しても、積層体内の温度分布を十分に
均一化できる積層燃料電池の冷却方法を得ることにある
An object of the present invention is to further improve the conventional cooling method to obtain a cooling method for stacked fuel cells that can sufficiently homogenize the temperature distribution within the stack even when applied to fuel cells with a large number of stacked layers.

〔発明の要旨〕[Summary of the invention]

上述の目的を達成するため、本発明においてはまず各冷
却体内における冷却条件を従来よりさらに進んだ沸騰冷
却条件にする。冷却媒体が被冷却体との境界面付近で局
部沸騰するいわゆる沸騰冷却域は、周知のように純液相
状態で冷却媒体に熱が伝達されるいわゆる対流伝達域よ
りも冷却面積当たりの熱伝達が極めて高い利点があるが
、本発明においてはいわゆる核沸騰域中の気相分が比較
的高い領域での沸騰冷却条件を採用する。核沸騰状態が
進むと熱伝達率が上昇し、冷却媒体のほぼ60%が気相
になる状態では熱伝達率が最大に達するから、気相分の
高い領域の沸騰冷却条件を採用することは熱伝達率の上
からいっても有利である。しかし、さらに沸騰冷却条件
を進めて局部膜沸騰ないしけ膜沸騰の条件を採用するこ
とは、熱伝達率の上で必ずしも有利でないし、冷却体の
沸騰冷却条件を長期に亘って安定に維持する上からもあ
まシ望ましくない。また、沸騰冷却条件は冷却体への冷
却媒体の入口部と出口部とでは当然具なってきて、入口
部から出口部に向けて進むことになるが、本発明の冷却
方法においては、出口部付近で冷却媒体中のり相が支配
的になシ、従って出口部伺近の冷却媒体中の圧力が気相
によシ決定されるように沸騰冷却条件を選ぶことが信イ
底必要である。
In order to achieve the above object, the present invention first sets the cooling conditions in each cooling body to boiling cooling conditions that are more advanced than conventional ones. As is well known, the so-called boiling cooling region, where the cooling medium boils locally near the interface with the cooled object, has a higher heat transfer rate per cooling area than the so-called convective transfer region, where heat is transferred to the cooling medium in a pure liquid phase. However, in the present invention, boiling cooling conditions in a region where the gas phase content in the so-called nucleate boiling region is relatively high are adopted. As the nucleate boiling state progresses, the heat transfer coefficient increases, and the heat transfer coefficient reaches its maximum when approximately 60% of the cooling medium is in the gas phase, so it is not possible to adopt boiling cooling conditions in the region where the gas phase content is high. This is also advantageous in terms of heat transfer coefficient. However, advancing the boiling cooling conditions further and adopting local film boiling or barge film boiling conditions is not necessarily advantageous in terms of heat transfer coefficient, and it is difficult to maintain stable boiling cooling conditions for the cooling body over a long period of time. It is also undesirable from above. Further, the boiling cooling condition naturally occurs at the inlet and outlet of the cooling medium to the cooling body, and progresses from the inlet to the outlet, but in the cooling method of the present invention, the cooling medium at the outlet It is absolutely necessary to choose boiling cooling conditions such that the gaseous phase in the cooling medium is predominant in the vicinity, and therefore the pressure in the cooling medium in the vicinity of the outlet is determined by the gaseous phase.

さらに本発明においては、前述のような沸騰冷却条件で
運転される各冷却体から流れ出る冷却媒体を共通の冷却
媒体の集合区画2例えば後述の集合管に導き、該集合区
画内の冷却媒体中の気相の圧力が各冷却体内の冷却媒体
に共通に掛かるようにする。すなわち前述のように、冷
却体の出口付近ですでに冷却媒体内では気相が支配的に
なっているから、この状態を集合区画にまで導くことに
よって、各冷却体内の冷却媒体の圧力は集合区画内の一
つの圧力に完全に統一され、各冷却体は同一の冷却媒体
の圧力条件下で、従ってその圧力に相応する同一の温度
条件下で運転されることが保証される このようにして
、本発明の冷却方法においては、燃料電池積層体を従来
よシも格段に均一化された温度分布下で運転することが
可能になる。
Furthermore, in the present invention, the cooling medium flowing out from each cooling body operated under boiling cooling conditions as described above is guided to a common cooling medium collecting section 2, for example, a collecting pipe described below, and the cooling medium in the collecting section is The pressure of the gas phase is applied commonly to the cooling medium in each cooling body. In other words, as mentioned above, since the gas phase is already predominant in the cooling medium near the outlet of the cooling body, by leading this state to the collection section, the pressure of the cooling medium in each cooling body is reduced to a concentration. One pressure in the compartment is completely unified and it is thus ensured that each cooling body operates under the same cooling medium pressure conditions and therefore under the same temperature conditions corresponding to its pressure. In the cooling method of the present invention, it becomes possible to operate the fuel cell stack under a much more uniform temperature distribution than in the past.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しながら本発明の実施例を詳細に説明す
る。なお以下の図面において第1図と同じ部分には同じ
符号が付されている。
Embodiments of the present invention will be described in detail below with reference to the drawings. In the following drawings, the same parts as in FIG. 1 are given the same reference numerals.

第2図には本発明の冷却方法を実施するための冷却系が
一部断面図で示されている。乙の図で電池積層体1はす
べて縦断が示されており、単位電池2と電池積層体1の
適所に介装された板状の冷却体3とのほかに、上下の締
め付は板13.13が示されており、電池積層体1は電
池締付板13.13の上下から図示しない締結手段によ
シ上下方向に締め付けられている。電池積層体1はその
側面1a 、 lbの一方から反応ガスを供給し他方か
らその反応ガスを排出するよう構成されており、この反
応ガスを通流させる反応ガス室を形成するためのマニホ
ールド蓋14 、15がパツキン14a 、 15aを
介して電池積層体1の側面la、lbにそれぞれ気密に
取り付けられている。冷却体3は第3図に外形が示され
ているように、多数本の冷却管4aを埋込みあるいはそ
れらによって貫通されており、該冷却管の入口部および
出口部は共通のマニホールド管4b、4cと接続されて
いる。
FIG. 2 shows a partially sectional view of a cooling system for carrying out the cooling method of the present invention. In the figure B, all of the battery stacks 1 are shown in longitudinal section, and in addition to the unit batteries 2 and the plate-shaped cooling bodies 3 interposed at appropriate places in the battery stack 1, the upper and lower tightening is done by plates 13. .13 is shown, and the battery stack 1 is tightened in the vertical direction by fastening means (not shown) from above and below the battery clamping plates 13.13. The battery stack 1 is configured to supply a reactive gas from one of its side surfaces 1a and 1b and exhaust the reactive gas from the other side, and includes a manifold lid 14 for forming a reactive gas chamber through which the reactive gas flows. , 15 are airtightly attached to the side surfaces la and lb of the battery stack 1 via gaskets 14a and 15a, respectively. As shown in FIG. 3, the cooling body 3 is embedded with or penetrated by a large number of cooling pipes 4a, and the inlet and outlet portions of the cooling pipes are connected to a common manifold pipe 4b, 4c. is connected to.

前述のマニホールド蓋14の下面を貫通して冷却媒体の
ための入口集合管6が反応ガスのマニホールド室内に導
入されており、前述の各冷却管4aへのマニホールド管
4bに接続管6aを介してそれぞれ接続されている。一
方、他方のマニホールド蓋15の方にも、その上下面を
貫通して出口集合管16がマニホールド室内に導入され
、各冷却管4aがらの出口集合管4cに接続管16aを
介してそれぞれ接続されている。該出口集合管16の上
端は図では逆U字状の屈曲部として示されだ液切シ部]
、7aを備えた蒸気排出管17aと図示のようにフラン
ジ接続されており、その下端は図の下方に示された冷却
媒体溜め18に接続されている。
An inlet collecting pipe 6 for the cooling medium is introduced into the reactant gas manifold chamber through the lower surface of the manifold lid 14 described above, and is connected to the manifold pipe 4b to each of the cooling pipes 4a through the connecting pipe 6a. each connected. On the other hand, an outlet collecting pipe 16 is introduced into the manifold chamber through the upper and lower surfaces of the other manifold lid 15, and is connected to the outlet collecting pipe 4c of each cooling pipe 4a through a connecting pipe 16a. ing. The upper end of the outlet collecting pipe 16 is shown as an inverted U-shaped bent part in the figure.
, 7a, and its lower end is connected to a cooling medium reservoir 18 shown at the bottom of the figure.

以上のような冷却媒体系において、まず冷却媒体溜め1
8の下部に溜められた液相の冷却媒体5aがポンプ8に
よって付勢され入口集合管6.接続管6a;入口マニホ
ールド管4bを通って冷却板3と熱的に密に結合された
各冷却管4の図の左方の入口部に供給される。このよう
に冷却管4の入口に供給されだ液相の冷却媒体は電池積
層体1の発生熱によって直ちに加熱され、冷却体3.冷
却管4を冷却しながら前述のような核沸騰状況に入シ、
入口から出口に流れるに従って気相分が液相外よシも優
勢になり、出口付近に至って気相分が支配的な気液二相
の混合状態になる。かかる気相が支配的な状態の冷却媒
体5dは出口マニホールド管4c。
In the cooling medium system as described above, first, the cooling medium reservoir 1
The liquid phase cooling medium 5a stored in the lower part of the inlet collecting pipe 6. Connection pipe 6a; supplied to the left inlet portion of each cooling pipe 4 in the figure, which is thermally tightly coupled to the cooling plate 3 through the inlet manifold pipe 4b. The liquid phase cooling medium supplied to the inlet of the cooling pipe 4 is immediately heated by the heat generated by the battery stack 1, and the cooling medium 3. While cooling the cooling pipe 4, enter the nucleate boiling state as described above.
As it flows from the inlet to the outlet, the gas phase component becomes more dominant than the liquid phase component, and near the exit, a gas-liquid two-phase mixture state occurs where the gas phase component is dominant. The cooling medium 5d in a state where the gas phase is dominant is the outlet manifold pipe 4c.

接続管16aを通って出口集合管16の図で16bで示
された開口から該出口集合管16内に気液混合状態のま
まで入る。核間1=」16bは図示のように出口マニホ
ールド管4cよりも低い位置に開口されておシ、冷却媒
体5d内の液相外が該出口マニホールド管4cまたは接
続管16a内で停滞しないように考慮が払われている。
The gas passes through the connecting pipe 16a and enters the outlet collecting pipe 16 from the opening indicated by 16b in the figure in the outlet collecting pipe 16 in a gas-liquid mixed state. As shown in the figure, the internuclear 1=' 16b is opened at a lower position than the outlet manifold pipe 4c, so that the outside of the liquid phase in the cooling medium 5d does not stagnate in the outlet manifold pipe 4c or the connecting pipe 16a. consideration is given.

気液混合状態で出口集合管16に入った冷却媒体5dは
、そこで気相と液相とが分離し、内液相は出口集合管1
6の内壁面をったりて、あるいは液滴が滴下する形で下
方に落ち、前述の冷却媒体溜め18に入る。−男気相分
は出口集合管を上方に向かって進み前述の蒸気排出管1
7に入るが、この蒸気内に若干液相分が混入していても
、液切jl)部17aノ所で分離されて出口集合管16
内に返る。なお出口集合管16は入口集合管6よシも大
径に構成されていて、冷却媒体の液相外が下方に落ちる
際にもこれによってふさがれることがないようにされて
いるので、出口集合管内の圧力はその中の冷却媒体の気
相分の圧力によって決定される。このように出口集合管
16は各冷却体3からの冷却媒体に対する集合区画とし
て働き、その中の冷却媒体の圧力を各冷却体3の冷却管
4aのすくなくとも出口に共通に掛ける役目を演じると
ともに、冷却媒体の気液分離装置としての役割シを果す
The cooling medium 5d entering the outlet collecting pipe 16 in a gas-liquid mixed state is separated into a gas phase and a liquid phase, and the internal liquid phase is transferred to the outlet collecting pipe 1.
The liquid flows along the inner wall surface of the cooling medium 6 or falls downward in the form of drops, and enters the above-mentioned cooling medium reservoir 18. - The male gas phase proceeds upward through the outlet collecting pipe and the steam discharge pipe 1 mentioned above.
However, even if some liquid phase is mixed in this steam, it is separated at the liquid cutter 17a and sent to the outlet collecting pipe 16.
Return inward. The outlet collecting pipe 16 is also configured to have a larger diameter than the inlet collecting pipe 6, so that even when the outside of the liquid phase of the cooling medium falls downward, it will not be blocked by this. The pressure inside the tube is determined by the pressure of the gas phase of the cooling medium therein. In this way, the outlet collecting pipe 16 acts as a collecting section for the cooling medium from each cooling body 3, plays the role of commonly applying the pressure of the cooling medium therein to at least the outlet of the cooling pipe 4a of each cooling body 3, and It plays the role of a cooling medium gas-liquid separator.

蒸気排出管17に入った冷却媒体の蒸気5cは、第1図
の場合と同様に圧力制御器20によって制御される制御
弁19を通って排出され、図示しない熱交換器内で熱回
収されると同時に凝縮されて液相の冷却媒体5aとなっ
て、冷却媒体溜め18の補給口18aに戻される。圧力
制御器20は蒸気排出管17内の圧力、従って出口集合
管16内の圧力を検出して、それを一定にするよう動作
することによって、各冷却管4a内の圧力を、従って冷
却体3の動作温度を決定する。一方、前述のポンプ8も
流1制御器21の制御下で作動しており、ポンプ8が移
送する冷却媒体の流−14Qを冷却管4a内の冷却媒体
が適正な沸騰冷却状態になる5ff、 fi Q Oに
電動機制御される。この流掃制御器20への流量設定値
QOは、例えば燃料電池が出力する電力値や電流値に関
連して容易に決めることができる。
The cooling medium steam 5c that has entered the steam exhaust pipe 17 is discharged through a control valve 19 controlled by a pressure controller 20 as in the case of FIG. 1, and its heat is recovered in a heat exchanger (not shown). At the same time, it is condensed to become a liquid phase cooling medium 5a, which is returned to the supply port 18a of the cooling medium reservoir 18. The pressure controller 20 detects the pressure in the steam discharge pipe 17, and therefore the pressure in the outlet collecting pipe 16, and operates to keep it constant, thereby controlling the pressure in each cooling pipe 4a, and thus controlling the pressure in the cooling body 3. Determine the operating temperature. On the other hand, the aforementioned pump 8 is also operated under the control of the flow 1 controller 21, and the flow 14Q of the cooling medium transferred by the pump 8 is controlled by 5ff, which brings the cooling medium in the cooling pipe 4a into a proper boiling cooling state. The motor is controlled by fi Q O. The flow rate setting value QO to the sweep controller 20 can be easily determined, for example, in relation to the power value and current value output by the fuel cell.

第4図はマニホールド蓋15を横断した状態を示すもの
で、接続管16aの詳細が示されている。出口マニホー
ルド管4bと出口集合管16への開口16bとを結ぶこ
の接続管16aは可撓管どして構成されており、マニホ
ールド蓋15を電池積層体の側面1bから取り外す場合
に、接続管接手 16cを外して出口集合管16と一体
となったマニホールド蓋15を切り離せるように考慮さ
れている。
FIG. 4 shows a state where the manifold lid 15 is crossed, and details of the connecting pipe 16a are shown. This connecting pipe 16a that connects the outlet manifold pipe 4b and the opening 16b to the outlet collecting pipe 16 is configured as a flexible pipe, and when removing the manifold lid 15 from the side surface 1b of the battery stack, it can be used as a connecting pipe joint. It is designed so that the manifold cover 15 integrated with the outlet collecting pipe 16 can be separated by removing the cover 16c.

第5図および第6図は本発明方法のそれぞれ異なる実施
例を適饗した冷却系の系統図である。これらの図では電
池本体1は鎖線で囲まれた斜線部分として略示されてお
シ、積層体としてなる該電池本体1の要所には前al’
%>じく冷却体3とその冷却管4とが介装されている。
5 and 6 are system diagrams of cooling systems adapted to different embodiments of the method of the present invention. In these figures, the battery body 1 is schematically shown as a hatched area surrounded by chain lines, and important parts of the battery body 1, which is a laminate, have front al'
%> A cooling body 3 and its cooling pipe 4 are interposed.

ガス供給系のマニホールド蓋14 、15は一点鎖線に
よシ略示されている。
The manifold covers 14 and 15 of the gas supply system are schematically indicated by dashed lines.

第5図の実施例では、出口集合管16は、各冷却管4か
らの気相が支配的な気液二相混合状態の冷却媒体を集め
て、下方の気液分離装置としての役割を兼ねた冷却媒体
溜め22に導くために設けられておシ、とくに気液分離
の役目を果していない。このため第5図の実施例では、
この出口集合管16は第2図のそれよシも小径に構成す
ることができる。
In the embodiment shown in FIG. 5, the outlet collecting pipe 16 collects the cooling medium in a gas-liquid two-phase mixed state in which the gas phase is predominant from each cooling pipe 4, and also serves as a lower gas-liquid separation device. Although the cooling medium is provided to guide the cooling medium to the coolant reservoir 22, it does not play a role in gas-liquid separation. Therefore, in the embodiment shown in FIG.
This outlet collecting pipe 16 can also be configured to have a smaller diameter than that shown in FIG.

これに伴なって蒸気排出管17は冷却媒体溜め22に接
続され、その管中に設けられた制御弁19は、冷却媒体
溜め22の上部の気相空間内の圧力を検出してそれを一
定にするように働く圧力制御器20によって制御される
。従って、この実施例においては冷却媒体の集合区画と
しての役割りは冷却媒体溜め22が果しており、そのガ
ス相空間内の圧力によって冷却管4従って電池本体1の
動作温度が決定される。
Along with this, the steam exhaust pipe 17 is connected to the coolant reservoir 22, and the control valve 19 provided in the pipe detects the pressure in the gas phase space above the coolant reservoir 22 and keeps it constant. It is controlled by a pressure controller 20 which acts to Therefore, in this embodiment, the cooling medium reservoir 22 serves as a collection section for the cooling medium, and the operating temperature of the cooling pipe 4 and therefore of the battery body 1 is determined by the pressure in the gas phase space.

一方この実施例における各冷却管40入口部には絞り2
3が設けられており、該絞り23により各冷却管4が所
定の沸騰冷却条件で動作するに適した流量の液体の冷却
媒体が該各冷却管に導入される。この場合ポンプ8の制
御は入口集合管6内の圧力を検出してこ扛を一定に調節
する圧力制御器24によって制御され、これによって常
に一定の圧力の液相の冷却媒体が前述の絞り23に与え
られる。
On the other hand, in this embodiment, a throttle 2 is provided at the inlet of each cooling pipe 40.
3 is provided, and a liquid cooling medium is introduced into each cooling pipe through the throttle 23 at a flow rate suitable for each cooling pipe 4 to operate under a predetermined boiling cooling condition. In this case, the pump 8 is controlled by a pressure controller 24 that detects the pressure in the inlet collecting pipe 6 and adjusts the pumping to a constant level, so that a liquid phase cooling medium at a constant pressure is always supplied to the aforementioned throttle 23. Given.

なおこの実施例において、圧力制御器24はポンプ8の
かわりにその吐出側に制御弁を入れて該制御弁を操作す
るようにしても、同様の効果が得られることはもちろん
である。
In this embodiment, it is of course possible to obtain the same effect even if the pressure controller 24 includes a control valve on its discharge side instead of the pump 8 and operates the control valve.

第6図の実施例では、冷却媒体の集合区画としての役目
はマニホールド蓋15と一体に構成された気液分離装置
25が果してお如、冷却管3の出口からの気液混合状態
の冷却媒体を受け入れ、蒸気状態の冷却媒体を上方に排
出し、液相の冷却媒体をその下部に貯留させる。圧力制
御器20は、この気液分離装置25内の気相の圧力を一
定に保つよう、蒸気排出管17に設けられた制御弁19
を操作する。
In the embodiment shown in FIG. 6, the gas-liquid separator 25 integrated with the manifold lid 15 serves as a collection section for the cooling medium, and the cooling medium in a gas-liquid mixed state flows from the outlet of the cooling pipe 3. The cooling medium in the vapor state is discharged upward, and the cooling medium in the liquid phase is stored in the lower part. The pressure controller 20 includes a control valve 19 provided in the steam exhaust pipe 17 to keep the pressure of the gas phase in the gas-liquid separation device 25 constant.
operate.

この図では排出蒸気中の潜熱を回収する熱交換器26が
示されておシ、蒸気状態の冷却媒体は、との熱交換器2
6内で熱媒体27に潜熱を与えることによシ、みずから
は凝縮されて液相の冷却媒体となり、移送ポンプあるい
は昇圧ポンプ28により気液分離装置25の下部の冷却
媒体貯留部に還流される。
In this figure, a heat exchanger 26 is shown which recovers the latent heat in the exhaust steam, and the cooling medium in the vapor state is transferred to the heat exchanger 26.
By imparting latent heat to the heating medium 27 in the heating medium 27, the heating medium 27 is condensed and becomes a liquid phase cooling medium, which is returned to the cooling medium storage section at the lower part of the gas-liquid separation device 25 by the transfer pump or booster pump 28. .

また(この実施例においてはポンプ8の吐出側に設けら
れた制御弁29は、前記の気液分離装置25内の液相の
冷却媒体の液面25を一定に制御する液面制御器30に
よって制御される。
In addition, (in this embodiment, the control valve 29 provided on the discharge side of the pump 8 is operated by a liquid level controller 30 that controls the liquid level 25 of the liquid-phase cooling medium in the gas-liquid separation device 25 to a constant level). controlled.

〔発明の効果〕〔Effect of the invention〕

木兄明方・法においては、上述のように電池積層体内に
介装された冷却体に並列に冷却媒体を通流させて電池積
層体内の温度分布を均一化させるに際して、各冷却体内
の冷却条件を該冷却体の出口付近では気相が支配的にな
るよう々沸騰冷却条件に保ちながら、該各冷却体からの
気液混合状態の冷却媒体を共通の集合区画内に集め、該
集合区画内の気相の圧力が各冷却体内の冷却媒体に共通
に掛かるように構成したので、各冷却体の動作温度は集
合区画の気相部の圧力によシー義的に共通に決まること
に々す、従来方法におけるような冷却体の介装位置によ
って動作温度が変わる欠点は全く解消される。この効果
は、熱料電池発電装置が大容量化して、一つの電池積層
体内の単位電池の積層数が大きくなってもなんら変わら
ずに従味方法より有利に々る。燃料電池は本発明方法に
よって各部の温度が均一化された理想的な温度下で運転
されるので、総合効率の上昇がはかれるほか、局部的々
温度上列によって劣化を起こすおそれがほとんどなく々
る。また前述のように、この運転温度は冷却媒体の集合
区画内の気相の圧力によって一義的に決まるから、この
1個所の圧力を基準に簡単にかつ極めて効果的に電池の
運転温度の制御をすることができる効果をも有する。
In the Kinoe method and method, when uniformizing the temperature distribution within the battery stack by passing a cooling medium in parallel through the cooling bodies interposed within the battery stack as described above, the cooling inside each cooling body is While maintaining boiling cooling conditions so that the gas phase is predominant near the outlet of the cooling body, the cooling medium in a gas-liquid mixed state from each cooling body is collected in a common collection compartment. Since the configuration is such that the pressure of the gas phase in the cooling medium is commonly applied to the cooling medium in each cooling body, the operating temperature of each cooling body is commonly determined by the pressure of the gas phase in the collecting section. The drawback of the conventional method in which the operating temperature varies depending on the intervening position of the cooling body is completely eliminated. This effect remains more advantageous than the conventional method even when the capacity of the thermal battery power generation device increases and the number of unit cells stacked in one battery stack increases. By using the method of the present invention, the fuel cell is operated at an ideal temperature where the temperature of each part is equalized, so not only is the overall efficiency increased, but there is almost no risk of deterioration caused by localized increases in temperature. . Furthermore, as mentioned above, this operating temperature is uniquely determined by the pressure of the gas phase in the cooling medium collection compartment, so the operating temperature of the battery can be easily and extremely effectively controlled based on the pressure at this single point. It also has the effect of being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池の冷却方法を模式的に示す冷却
系の系統図、第2図以降はすべて本発明による積層燃料
電池の冷却方法の実施例を示すもので、内第2図は本発
明の一実施例を説明する冷却系の一部を断面で示す系統
図、第3図は冷却系内の冷却管つき冷却体の具体構造を
示す斜視外形図、第4図は燃料電池積層体側面のマニホ
ールド蓋内の冷却系の冷却管と集合配管と接続管との接
続状態を示す横断面図、第5図は本発明方法の異なる実
施例を示す冷却系の系統図、第6図は本発明方法のさら
に異なる実施例を示す冷却系の系統図である。図におい
て、 1:電池積層体としての電池本体、2:単位電池、3:
冷却体、4:冷却管、5:冷却媒体、5a:液相状態の
冷却媒体、5c:気相状態の冷却媒体、5d:気相が支
配的な気液二相混合状態の冷却媒体、6:冷却体に冷却
媒体を並列に通流させる手段としての入口集合配管、1
6:冷却媒体の集合区画としての出口集合配管、19:
集合区画内の気相部の圧力を制御する手段としての制御
弁、20:集合区画内の気相部の圧力を制御する手段と
じての圧力制御器、21:冷却体への冷却媒体の供給流
量を制御する手段としての流量制御器、22:冷却媒体
の集合区画および気液分離装置としての冷却媒体溜め、
23:冷却体への冷却媒体の供給流量を制御する手段と
しての絞シ、25:冷却媒体の集合区画として気液分離
装置、29:冷却体への冷却媒体の供給流量を制御する
手段としての制御弁、で第1図 第3図 第4図
Fig. 1 is a system diagram of a cooling system schematically showing a conventional cooling method for a fuel cell, and Fig. 2 and subsequent figures all show examples of the cooling method for a stacked fuel cell according to the present invention. A system diagram showing a part of a cooling system in cross section to explain an embodiment of the present invention, FIG. 3 is a perspective external view showing the specific structure of a cooling body with cooling pipes in the cooling system, and FIG. 4 is a stacked fuel cell diagram. FIG. 5 is a cross-sectional view showing the connection state of the cooling pipe of the cooling system in the manifold lid on the body side, the collecting pipe, and the connecting pipe; FIG. 5 is a system diagram of the cooling system showing a different embodiment of the method of the present invention; FIG. FIG. 2 is a system diagram of a cooling system showing still another embodiment of the method of the present invention. In the figure, 1: battery body as a battery stack, 2: unit battery, 3:
Cooling body, 4: Cooling pipe, 5: Cooling medium, 5a: Cooling medium in liquid phase, 5c: Cooling medium in gas phase, 5d: Cooling medium in gas-liquid two-phase mixed state in which gas phase is dominant, 6 : Inlet collective piping as a means for flowing cooling medium in parallel to the cooling body, 1
6: Outlet collection pipe as a cooling medium collection section, 19:
Control valve as a means for controlling the pressure of the gas phase part in the collection compartment, 20: Pressure controller as a means for controlling the pressure of the gas phase part in the collection compartment, 21: Supply of cooling medium to the cooling body Flow rate controller as a means for controlling the flow rate; 22: a cooling medium reservoir as a cooling medium collection section and a gas-liquid separation device;
23: Throttle as a means for controlling the supply flow rate of the cooling medium to the cooling body, 25: Gas-liquid separation device as a cooling medium collection section, 29: As a means for controlling the supply flow rate of the cooling medium to the cooling body Control valve, Figure 1, Figure 3, Figure 4

Claims (1)

【特許請求の範囲】 1)単位電池を積層してなる電池積層体の積層方向の複
数個所に分布して冷却体を介装し、該冷却体内に冷却媒
体を並列的に流して電池積層体を冷却する燃料電池の冷
却方法において、前記各冷却体内における冷却を冷却媒
体の沸騰条件下で、かつ該冷却体内の少なくとも冷却媒
体の出口付近では冷却媒体中の気相が支配的となる条件
下で運転するとともに、該各冷却体の出口から流出する
冷却媒体を共通の冷却媒体の集合区画内に導き、該集合
区画内の冷却媒体中の気相の圧力が前記各冷却体内の冷
却媒体に共通に掛かるようにしたことを特徴とする積層
燃料電池の冷却方法。 2、特許請求の範囲第1項記載の冷却方法において、冷
却体内の冷却媒体が沸騰冷却条件を満たすよう該冷却体
への液相の冷却媒体の供給流量が制御されることを特徴
とする積層燃料電池の冷却方法。 3)特許請求の範囲第1項記載の冷却方法において、冷
却媒体の集合区画を気泡分離装置として構成し、各冷却
体からの冷却媒体を気相が支配的な気液混合状態で該気
液分離装置内の冷却媒体の気相区画に導くようにしたこ
とを特徴とする積層燃料電池の冷却方法。 4)特許請求の範囲第1項または第3項記載の冷却方法
において、冷却媒体の集合区画を上下方向に配された集
合管として構成し、該集合管の内部で気相の冷却媒体を
上方に、液相の冷却媒体を下方に分離して導くようにし
たことを特徴とする積層燃料電池の冷却方法。 5)特許請求の範囲第1項記載の冷却方法において、冷
却媒体の集合区画内の気相部の圧力が所定値になるよう
に制御されることを特徴とする積層燃料電池の冷却方法
。 6)特許請求の範囲第1項記載の冷却方法において、冷
却体内の冷却が冷却媒体の該沸騰条件下で運転されるこ
とを特徴とする積層燃料電池の冷却方法。
[Claims] 1) Cooling bodies are interposed at a plurality of locations in the stacking direction of a battery stack formed by stacking unit batteries, and a cooling medium is flowed in parallel into the cooling bodies to form a battery stack. In the method for cooling a fuel cell, cooling in each of the cooling bodies is carried out under boiling conditions of the cooling medium, and under conditions in which the gas phase in the cooling medium is dominant at least near the outlet of the cooling medium in the cooling body. At the same time, the cooling medium flowing out from the outlet of each cooling body is guided into a common cooling medium collecting compartment, and the pressure of the gas phase in the cooling medium in the collecting compartment is applied to the cooling medium in each cooling body. A cooling method for a stacked fuel cell, characterized in that the fuel cells are cooled in common. 2. The cooling method according to claim 1, wherein the flow rate of the liquid-phase cooling medium supplied to the cooling body is controlled so that the cooling medium in the cooling body satisfies boiling cooling conditions. Cooling method for fuel cells. 3) In the cooling method according to claim 1, the cooling medium collection section is constructed as a bubble separator, and the cooling medium from each cooling body is separated into the gas-liquid mixture in a gas-liquid mixed state where the gas phase is dominant. A method for cooling a stacked fuel cell, characterized in that the cooling medium is guided to a gas phase compartment in a separation device. 4) In the cooling method according to claim 1 or 3, the cooling medium collecting section is configured as a collecting pipe arranged in the vertical direction, and the gas phase cooling medium is directed upwardly within the collecting pipe. A method for cooling a stacked fuel cell, characterized in that a liquid phase cooling medium is separated and guided downward. 5) A cooling method for a stacked fuel cell according to claim 1, characterized in that the pressure of the gas phase in the cooling medium collection section is controlled to a predetermined value. 6) A cooling method for a stacked fuel cell according to claim 1, characterized in that the cooling inside the cooling body is operated under the boiling condition of the cooling medium.
JP58143423A 1983-08-05 1983-08-05 Cooling method of stacked fuel cell Granted JPS6035469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143423A JPS6035469A (en) 1983-08-05 1983-08-05 Cooling method of stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143423A JPS6035469A (en) 1983-08-05 1983-08-05 Cooling method of stacked fuel cell

Publications (2)

Publication Number Publication Date
JPS6035469A true JPS6035469A (en) 1985-02-23
JPH0414471B2 JPH0414471B2 (en) 1992-03-12

Family

ID=15338393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143423A Granted JPS6035469A (en) 1983-08-05 1983-08-05 Cooling method of stacked fuel cell

Country Status (1)

Country Link
JP (1) JPS6035469A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243661A (en) * 1985-04-22 1986-10-29 Toshiba Corp Cooling device for fuel cell
JPS61284068A (en) * 1985-06-11 1986-12-15 Toshiba Corp Fuel cell cooling equipment
JPS6282661A (en) * 1985-10-08 1987-04-16 Fuji Electric Corp Res & Dev Ltd Cooler of fuel cell
JPS62119873A (en) * 1985-11-19 1987-06-01 Chubu Electric Power Co Inc Waste heat recovering device for combined power generation plant
JPS62223980A (en) * 1986-03-25 1987-10-01 Mitsubishi Electric Corp Temperature controller of fuel cell
EP1387424A2 (en) * 2002-05-23 2004-02-04 Honda Giken Kabushiki Kaisha Fuel cell stack
US6756144B2 (en) 2002-01-03 2004-06-29 Hybrid Power Generation Systems, Llc Integrated recuperation loop in fuel cell stack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111274A (en) * 1981-12-23 1983-07-02 Mitsubishi Electric Corp Temperature regulator for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111274A (en) * 1981-12-23 1983-07-02 Mitsubishi Electric Corp Temperature regulator for fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243661A (en) * 1985-04-22 1986-10-29 Toshiba Corp Cooling device for fuel cell
JPS61284068A (en) * 1985-06-11 1986-12-15 Toshiba Corp Fuel cell cooling equipment
JPS6282661A (en) * 1985-10-08 1987-04-16 Fuji Electric Corp Res & Dev Ltd Cooler of fuel cell
JPS62119873A (en) * 1985-11-19 1987-06-01 Chubu Electric Power Co Inc Waste heat recovering device for combined power generation plant
JPS62223980A (en) * 1986-03-25 1987-10-01 Mitsubishi Electric Corp Temperature controller of fuel cell
US6756144B2 (en) 2002-01-03 2004-06-29 Hybrid Power Generation Systems, Llc Integrated recuperation loop in fuel cell stack
EP1387424A2 (en) * 2002-05-23 2004-02-04 Honda Giken Kabushiki Kaisha Fuel cell stack
EP1387424A3 (en) * 2002-05-23 2006-11-15 Honda Giken Kabushiki Kaisha Fuel cell stack

Also Published As

Publication number Publication date
JPH0414471B2 (en) 1992-03-12

Similar Documents

Publication Publication Date Title
US6468681B1 (en) Fuel cell system
JP4513168B2 (en) Combined system of fuel cell device and hot water supply device
JP4684224B2 (en) PEM fuel cell passive water management
EP1442494B1 (en) Fuel cell device and related control method
JPS6035469A (en) Cooling method of stacked fuel cell
JP3818068B2 (en) Fuel cell system
US6389830B2 (en) Solar refrigeration and heating system usable with alternative heat sources
JP2811905B2 (en) Steam generator for fuel cell power generation system
JP2924671B2 (en) Water treatment system for fuel cell power plant
JPH06338334A (en) Cooling plate and cooling system for fuel cell
JPS62223975A (en) Heat exchanger of fuel cell
JPS5921930A (en) Heat storage tank
JP2000357527A (en) Fuel cell system
JPH0776653B2 (en) Direct contact type condenser and heat cycle device using the same
JP2002170588A (en) Deionized water recovery system for fuel battery
JP4288052B2 (en) Freezing liquid storage tank
CN218632128U (en) Gas-water separation device for fuel cell system
JPH0238023Y2 (en)
JPH0541231A (en) Fuel cell
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
JPH086364Y2 (en) Water cooled fuel cell
JP2000055520A (en) Liquefied natural gas cold using vaporizer
JPS61276675A (en) Liquid filling type evaporator
JP6449657B2 (en) Hot water storage tank and hot water storage unit using the same
JPS6220470B2 (en)