JPS62223980A - Temperature controller of fuel cell - Google Patents

Temperature controller of fuel cell

Info

Publication number
JPS62223980A
JPS62223980A JP61069055A JP6905586A JPS62223980A JP S62223980 A JPS62223980 A JP S62223980A JP 61069055 A JP61069055 A JP 61069055A JP 6905586 A JP6905586 A JP 6905586A JP S62223980 A JPS62223980 A JP S62223980A
Authority
JP
Japan
Prior art keywords
pipe
cooling
fuel cell
liquid level
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61069055A
Other languages
Japanese (ja)
Other versions
JPH0665057B2 (en
Inventor
Yoshiyuki Taguma
良行 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61069055A priority Critical patent/JPH0665057B2/en
Publication of JPS62223980A publication Critical patent/JPS62223980A/en
Publication of JPH0665057B2 publication Critical patent/JPH0665057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make a structure compact, simple, and inexpensive by connecting a plurality of cooling pipes with common first and second manifold pipes, and connecting the first manifold pipe with a radiator and the second manifold pipe with a heater, and arranging a liquid level controller. CONSTITUTION:In cooling operation, the liquid level of a heating medium is set in the first liquid level 19 by operation of a liquid level controller 21. Heat generated in a fuel cell 11 is conducted to a cooling plate 6 to evaporate a heating medium in a cooling pipe 7. The vapor is introduced into the first connecting pipeline 8a having a rising gradient by buoyancy, and introduced into the first manifold pipe 10a through the first header pipe 9a. The vapor come out from many pipes 9a arranged every cooling plate 6 is gathered in one tube 10a, the rises and reaches the liquid level 19. The vapor continues to rise through the pipe 10a and reaches a tube 14 in a radiator 13. The vapor in the tube 14 is condensed by heat exchange with cooling water in a drum 15 of the radiator 13. The condensed liquid returns to the pipe 10a by gravity, and falls to the liquid level 19 and returns to the cooling pipe 7 through the pipe 10a, the pipe 9a, and the pipeline 8a. In heating operation, the heating medium is set to the second liquid level 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱媒体を循環させて燃料電池と外部との間の
熱輸送を行う燃料電池の温度調節装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control device for a fuel cell that circulates a heat medium to transport heat between the fuel cell and the outside.

〔従来の技術〕[Conventional technology]

燃料電池は、停止状態から始動するときに、反応を促進
するために外部から加熱する必要があり1また運転時に
は内部で発生した熱を定常的に外部に取り出す必要があ
る。従来、このための手段として−燃料電池の積層方向
に適当なピッチで配置された冷却板内の冷却管に、外部
循環ポンプから温水または冷却水を送り込む通水熱交換
方式が一般に採用されてきたが、この方式は、通水管内
の腐食問題を避けることができず、このためにきびしい
水質管理を要求されるという欠点があった。
When starting a fuel cell from a stopped state, it is necessary to heat the fuel cell from the outside in order to promote the reaction, and during operation, it is necessary to constantly extract the heat generated inside the fuel cell to the outside. Conventionally, as a means for this purpose, a water flow heat exchange method has been generally adopted in which hot water or cooling water is sent from an external circulation pump to cooling pipes in cooling plates arranged at appropriate pitches in the stacking direction of the fuel cell. However, this method had the disadvantage that it was impossible to avoid the problem of corrosion inside the water pipes, which required strict water quality control.

これに代るものとして、燃料電池の熱交換器にヒートパ
イプを用いる方式が考案されており、その先行技術の一
例が特開昭57−180079号公報、特開昭57−1
80080号公報に示されている。
As an alternative to this, a system has been devised in which a heat pipe is used as a heat exchanger for a fuel cell.
This is shown in Japanese Patent No. 80080.

それらの−例の構成を第5図に示す0図において、(l
a)、(lb)はそれぞれ燃料電池の冷却板上板、冷却
板下板であり、冷却板下板(lb)の冷却板上板(1a
)に対向する側の面に冷却管(2)が設置されている。
The configuration of these examples is shown in FIG.
a) and (lb) are the upper cooling plate and lower cooling plate of the fuel cell, respectively, and the upper cooling plate (1a) of the lower cooling plate (lb)
) A cooling pipe (2) is installed on the side opposite to.

(4)は冷却管(2)の位置よりも高所に設けられた放
熱器、(5)は冷却管(2)の位置よりも低いところに
設けられた加熱器であり、これらの冷却管(2)、放熱
器(4へ加M ! (5)は、接続配管(8a ) 、
 (8b) 、(Bc )により、互いに接続されて1
つの密閉ループを形成する。この内部は、真空に排気さ
れた後に、水または7oンなどの熱媒体が封入されてい
る。
(4) is a radiator installed higher than the position of the cooling pipe (2), and (5) is a heater installed lower than the position of the cooling pipe (2). (2), radiator (addition M to 4! (5), connection piping (8a),
(8b) and (Bc) connect each other to 1
form two closed loops. This interior is evacuated and then filled with a heat medium such as water or 7 liters.

この様な従来構成のものの動作について説明する。積層
された燃料電池で発生した熱は、上下から冷却板上板(
la)、冷却板下板(1b)に伝えられ、さらにこの中
の冷却管(2)に伝えられる。この熱は冷却管(2)内
に封入されている熱媒体を蒸発させ、この蒸気は冷却管
(2)より高所に配置されている放#’! Rg (4
) ヘ、接続配管(aa)、(ab)を経由して導かれ
る。放熱器(4)において、外部への放熱が行われ、蒸
気は凝縮液化する。凝縮液は自重によって、接続配管(
8a)、(8b)を通って冷却管(2)に戻る。次に起
動時の加熱方法を説明する。電気ヒータ等ノ加熱手段に
より、加熱器(5)内で加熱され密度が小さくなった熱
媒体は、冷却管(2)内の熱媒体との密度差に基く浮力
によって、接続配管(8c)・(8a)を通って上昇し
て、冷却管(2)内に流入し、冷却板上板(la)、冷
却板下板(1b)に熱を与え燃料電池を加熱する。そこ
で冷却され、密度が大きくなった熱媒体は自重によって
再び加熱器(5) tで戻る。かくして動力を用いるこ
となく、密閉ループで熱媒体を循環させて熱輸送を行う
ことを可能としている。
The operation of such a conventional configuration will be explained. The heat generated in the stacked fuel cells is transferred from the top and bottom to the upper cooling plate (
la), is transmitted to the lower cooling plate (1b), and further transmitted to the cooling pipe (2) therein. This heat evaporates the heat medium sealed in the cooling pipe (2), and this steam is released into the air at a location higher than the cooling pipe (2). Rg (4
) F. It is guided via connecting pipes (aa) and (ab). In the heat radiator (4), heat is radiated to the outside, and the steam is condensed and liquefied. The condensate flows through the connecting pipe (
8a) and (8b) and returns to the cooling pipe (2). Next, the heating method at startup will be explained. The heat medium whose density has been reduced by being heated in the heater (5) by a heating means such as an electric heater is buoyant due to the density difference between the heat medium and the heat medium in the cooling pipe (2). (8a) and flows into the cooling pipe (2), giving heat to the upper cooling plate (la) and lower cooling plate (1b) to heat the fuel cell. The heat medium, which has been cooled there and whose density has increased, returns to the heater (5) t due to its own weight. In this way, it is possible to circulate heat medium in a closed loop and transport heat without using power.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、燃料電池の冷却板(6)は、燃料電池の効果
的な冷却1加熱のために、積層方向に適当なピッチで多
数配置される。しかるに上述した従来の装置では、冷却
板(6)1組に対して放熱器(4)、加熱器(5)が1
組配置され、この組合せが高さ方向に大きなスペースを
占有するために、燃料WtftJlの限られた積PIJ
高さの寸法内に、この放熱器(4)と加熱器(5)を配
置することが困難であるという問題点があった。また仮
に配置できたとしても、多数の放熱器(4)と加熱器(
5)を構成する関係上1多大のスペースを要求すること
、構造が複雑になること、多大の製作コストがかがるな
どの欠点を有していた。
Incidentally, a large number of cooling plates (6) for the fuel cell are arranged at appropriate pitches in the stacking direction for effective cooling and heating of the fuel cell. However, in the conventional device described above, there are one radiator (4) and one heater (5) for one set of cooling plates (6).
Since this combination occupies a large space in the height direction, the limited product PIJ of the fuel WtftJl
There was a problem in that it was difficult to arrange the heat radiator (4) and heater (5) within the height dimension. Moreover, even if it were possible to arrange them, there would be a large number of radiators (4) and heaters (
5), it has disadvantages such as requiring a large amount of space, complicating the structure, and incurring a large production cost.

この発明は、上記の様な問題点を解消するためになされ
たもので、コンパクトでシンプルで且つ安価な燃料電池
の温度調節装置を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a compact, simple, and inexpensive temperature control device for a fuel cell.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に保る燃料1!池の温度調節装置は、各々の冷
却板における冷却管の出入口を構成する第1−第2の接
続配管を1第1.第2のヘッダ管を介して第1#第2の
マニホールド管でつなぎ、第1のマニホールド管を上部
に配置した放熱器と、第2のマニホールド管を下部に配
置した加熱器と接続して1冷却管−接続配管−ヘッダ管
−マニホールド管−放熱器−加熱器で1つの閉ループの
温度調節系を構成させるとともに、この系の中に適当な
量の熱媒体を封入し1温度調節系の熱媒体の液面を調節
する液面調節機構を備えたものである。
Fuel 1 to keep this invention! The pond temperature control device connects first and second connecting pipes constituting the inlet and outlet of the cooling pipes in each cooling plate. The first manifold pipe is connected to the first #second manifold pipe through the second header pipe, and the first manifold pipe is connected to the radiator placed at the top, and the second manifold pipe is connected to the heater placed at the bottom. Cooling pipes, connecting pipes, header pipes, manifold pipes, radiators, and heaters constitute one closed-loop temperature control system, and an appropriate amount of heat medium is sealed in this system to control the heat of one temperature control system. It is equipped with a liquid level adjustment mechanism that adjusts the liquid level of the medium.

〔作用〕[Effect]

この発明における燃料電池の温度調節装置は、燃料電池
の冷却動作時には1冷却管と上部の放熱器との間で熱媒
体の循環を行わせ、燃料電池の加熱動作時には、冷却管
と下部の加熱器との間で熱媒体の循環を行わせることに
よって燃料電池の効果的な冷却、加熱を実現する。
The temperature control device for a fuel cell according to the present invention circulates a heat medium between the first cooling pipe and the upper radiator during the cooling operation of the fuel cell, and heats the cooling pipe and the lower part during the heating operation of the fuel cell. Effective cooling and heating of the fuel cell is realized by circulating a heat medium between the fuel cell and the fuel cell.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図、第2図。 An embodiment of the present invention is shown in FIGS. 1 and 2 below.

第8図に基いて説明する。第2図は、多数の冷却板(6
)をはさむ燃料電池Qllと温度調節系的との組合せを
概念的に示したもので、第1図は冷却板(6)の周りの
構造を示したものである。第1図において、(7)は冷
却板(6)に設置された冷却管で、冷却管(7)は冷却
板(6)の中で複数の並行流を構成するように配列され
、対応する複数の第19第2の接続配管(8a)、 (
8b)に接続される。第1の接続配管(8a)は冷却管
(7)よりも高位にある第1のヘッダ管(9a)につな
がれ、第1のヘッダ管(9a)は上下につながる第1の
マニホールド管(10a)に接続される。もう一方の第
2の接続配管(8b)は冷却管(7)よりも低位にある
第2のヘッダ管(9b)につながれ、第2のヘッダ管(
9b)は上下につながる第2のマニホールド管(10b
)に接続される。第2図において、(6) 、 (7)
 。
This will be explained based on FIG. Figure 2 shows a large number of cooling plates (6
), which conceptually shows a combination of a fuel cell Qll and a temperature control system, and FIG. 1 shows the structure around the cooling plate (6). In Fig. 1, (7) is a cooling pipe installed in the cooling plate (6), and the cooling pipe (7) is arranged so as to constitute a plurality of parallel flows in the cooling plate (6). A plurality of 19th second connection pipes (8a), (
8b). The first connection pipe (8a) is connected to a first header pipe (9a) located at a higher level than the cooling pipe (7), and the first header pipe (9a) is connected to a first manifold pipe (10a) that is connected vertically. connected to. The other second connection pipe (8b) is connected to a second header pipe (9b) located lower than the cooling pipe (7), and the second header pipe (
9b) is the second manifold pipe (10b) that connects up and down.
). In Figure 2, (6), (7)
.

(8a)、(8b)、(9a)、(9b)、(10a)
、(10b)は第1図と同じものを多少概念的に描いて
いる。
(8a), (8b), (9a), (9b), (10a)
, (10b) is a somewhat conceptual depiction of the same thing as in FIG.

第1.第2のヘッダ管(9a)、 (9b)は1枚の冷
却板(6)に対し1組配置され、燃料電池αηの積層方
向に冷却板の数だけ配置されるが、第1.第2のマニホ
ールド管(10a)、(10b)は、これらを垂直方向
に連通させるもので、1対で構成される。(至)は胴体
(至)とチューブa4より構成され、燃料電池(ロ)の
最上部の冷却板(6)より高位に配置された放熱器であ
る。放熱器(至)のチューブα尋は水平から傾斜させて
配置してあり、チューブQ4の低い側の一端が第1のマ
ニホールド管(10a)の上部に接続される。また(l
は胴体(財)とチューブαηより構成され、燃料電池(
ロ)の最下部の冷却板(6)より低位に配置された加熱
器であり、同様に加熱器Q・のチューブ(ロ)は水平か
ら傾斜させて配置してあり、チューブQηの高い側の一
端が第2のマニホールド管(10b)の下部に接続され
る。この様にして、冷却管(7)、第1.第2の接続配
管(8a)、(8b) 、第1.第2のヘッダ管(9a
)、(9b) 、第1.第2のマニホールド管(lea
)。
1st. One set of second header pipes (9a) and (9b) is arranged for one cooling plate (6), and the number of second header pipes (9a) and (9b) is equal to the number of cooling plates arranged in the stacking direction of the fuel cell αη. The second manifold pipes (10a) and (10b) communicate with each other in the vertical direction, and are configured as a pair. (To) is a radiator consisting of a body (To) and a tube A4, and is arranged at a higher level than the cooling plate (6) at the top of the fuel cell (B). The tube α fathom of the radiator (to) is arranged to be inclined from the horizontal, and one end of the lower side of the tube Q4 is connected to the upper part of the first manifold pipe (10a). Also (l
consists of a body (goods) and a tube αη, and a fuel cell (
This is a heater placed lower than the cooling plate (6) at the bottom of heater Q. Similarly, the tube (b) of heater Q is placed at an angle from the horizontal, and the tube (b) of heater Q One end is connected to the lower part of the second manifold pipe (10b). In this way, the cooling pipe (7), the first. 2nd connection pipes (8a), (8b), 1st. Second header pipe (9a
), (9b), 1st. Second manifold tube (lea
).

(10b) 、放熱器(至)のチューブα◆、加熱器Q
ejのチューブ(ロ)は1つの閉ループの温度調節系(
2)を構成する。温度調節系(2)には、内部を真空に
排気したあと、水、フロンなどの熱媒体を封入する。0
1は、燃料電池(ロ)の冷却動作時に維持すべき熱媒体
の第1の液面であり、燃料電池(ロ)の最上部の冷却板
(6)の高さ以上で且つ放熱器(至)のチューブ(L4
の高さ以下の範囲に設定される。(ホ)は、燃料電池(
ロ)の加熱動作時に維持すべき熱媒体の第2の液面であ
り1燃料電池αηの最下部の冷却板(6)の高さ以下で
且つ加熱器QISのチューブ(ロ)の高さ以上の範囲に
設定される。@は、燃料電池Qηの冷却、加熱に応じて
熱媒体の液面を調節する液面調節機構であり、導入管(
2)を経由して熱媒体は液面調節機構(2)にチャージ
、あるいは液面調節機構(2)より放出される。第8図
は液面調節機構(ハ)の1例を示したもので、液面調節
機構(ロ)は、チャンバ(ホ)、ベローズ(至)、−ア
クチュエータ■、スピンドル(イ)より構成され、ベロ
ーズ(至)内に熱媒体が収容されている。
(10b), radiator tube α◆, heater Q
The ej tube (b) is one closed loop temperature control system (
2). After the inside of the temperature control system (2) is evacuated to vacuum, a heat medium such as water or fluorocarbon is filled in the temperature control system (2). 0
1 is the first liquid level of the heat medium that should be maintained during the cooling operation of the fuel cell (b), and is at least the height of the cooling plate (6) at the top of the fuel cell (b) and above the radiator ( ) tube (L4
is set to a range less than or equal to the height of (E) is a fuel cell (
This is the second liquid level of the heat medium that must be maintained during the heating operation in (b), and is below the height of the cooling plate (6) at the bottom of one fuel cell αη and above the height of the tube (b) of the heater QIS. The range is set to . @ is a liquid level adjustment mechanism that adjusts the liquid level of the heat medium according to the cooling and heating of the fuel cell Qη.
2), the heat medium is charged to the liquid level adjustment mechanism (2) or discharged from the liquid level adjustment mechanism (2). Figure 8 shows an example of the liquid level adjustment mechanism (c). The liquid level adjustment mechanism (b) is composed of a chamber (e), a bellows (to), an actuator (■), and a spindle (a). , a heat medium is housed within the bellows.

次いで、第1図、第2図、第8図の実施例の動作につい
て説明する。まず、燃料電池oTJの冷却時の動作を述
べる。燃料電池aηの冷却動作時は、液面調節機構(ロ
)の操作により、温度調節系(2)の熱媒体の液面を第
1の液面Q呻に設定しておく。この状態で、積層された
燃料電池(ロ)で発生した熱は冷却板(6)に伝えられ
、さらにその熱は冷却板(6)内の冷却管(7)に伝え
られ、この熱は冷却管(7)内に満ちている熱媒体を蒸
発させる。蒸発潜熱を奪った熱媒体の蒸気は一浮力によ
り上勾配をもった第1の接続配管(8a)に導かれ、第
1のヘッダ管(9a)を経由して第1のマニホールド管
(10a)に導かれる。冷却板(6)毎に配置された多
数の第1のヘッダ管(9a)から出てきた蒸気は、1本
の第1のマニホールド管(10a)に集合され、さらに
浮力によって蒸気は第1のマニホールド管(tea)内
を上昇して第1の液面α呻に到達する。そこから蒸気は
第1のマニホー/I/ド管(10a)内をさらに上昇し
、放熱器(2)のチューブ(ロ)に到達する。放熱器(
2)の胴体(至)には冷却水を通水しており、この冷却
水との熱交換によりチューブ(ロ)内の蒸気は凝縮液化
する。チューブa4内の凝縮液は自重によって第1のマ
ニホールド管(10a)に戻り、さらに凝縮液は第1の
マニホールド管(10a)内を落下して第1の液面aI
Iに至り、そこから液は第1のマニホールド管(10a
) 、第1のヘッダ管(9a)%第1の接続配管(8a
)を経由して冷却管(7)に戻る。かくして相変化を伴
う潜熱の吸収、放出を利用した、いわゆるヒートパイプ
としての冷却系が構成される・次いで燃料電池(6)の
加熱時の動作を述べる。燃料電池(ロ)の加熱動作時は
、液面調節機構(2)の操作により、温度調節系(6)
の熱媒体の液面を第2の液面(1)に設定しておく。ま
た、放熱器(至)への冷却水の通水は停止し、加熱器(
ト)の胴体(ト)にはスチームまたは温水などの加熱媒
体を流す。加熱器α・のチューブQη内の熱媒体は、胴
体(至)側の加熱媒体より熱を与えられて、チューブQ
η内で蒸発する。ここで発生した熱媒体の蒸気は、浮力
により第2のマニホールド管(10b)に至り、さらに
蒸気は第2のマニホールド管(10b)内を浮力で上昇
し1第2の液面−に到達する。そこから蒸気は第2のマ
ニホールド管(10b)内をさらに上昇し、第2のヘッ
ダ管(9b)、第2の接続配管(8b)を経由して冷却
管(7)に至る。ここで燃料電池(ロ)の冷却板(6)
は蒸気より熱を与えられて加熱され、一方冷却管(7)
の中の蒸気は熱を奪われることによって凝縮液化する。
Next, the operation of the embodiments shown in FIGS. 1, 2, and 8 will be explained. First, the operation during cooling of the fuel cell oTJ will be described. During the cooling operation of the fuel cell aη, the liquid level of the heat medium in the temperature adjustment system (2) is set to the first liquid level Q by operating the liquid level adjustment mechanism (b). In this state, the heat generated in the stacked fuel cells (b) is transferred to the cooling plate (6), and the heat is further transferred to the cooling pipe (7) inside the cooling plate (6). Evaporate the heat medium filling the tube (7). The vapor of the heating medium that has absorbed the latent heat of vaporization is guided by buoyancy to the first connecting pipe (8a) with an upward slope, and then passes through the first header pipe (9a) to the first manifold pipe (10a). guided by. The steam coming out of a large number of first header pipes (9a) arranged for each cooling plate (6) is collected in one first manifold pipe (10a), and the steam is further transferred to the first manifold pipe (10a) due to buoyancy. The liquid rises in the manifold tube (tea) and reaches the first liquid level α. From there, the steam further rises in the first manifold/I/do pipe (10a) and reaches the tube (b) of the radiator (2). Heat sink (
Cooling water is passed through the body (to) of 2), and the steam in the tube (b) is condensed and liquefied by heat exchange with this cooling water. The condensate in the tube a4 returns to the first manifold pipe (10a) by its own weight, and the condensate further falls in the first manifold pipe (10a) to reach the first liquid level aI.
I, from where the liquid flows to the first manifold tube (10a
), first header pipe (9a)% first connection pipe (8a
) and returns to the cooling pipe (7). In this way, a cooling system is constructed as a so-called heat pipe that utilizes the absorption and release of latent heat accompanied by a phase change.Next, the operation of the fuel cell (6) during heating will be described. During the heating operation of the fuel cell (b), the temperature control system (6) is adjusted by operating the liquid level control mechanism (2).
The liquid level of the heat medium is set to the second liquid level (1). Also, the flow of cooling water to the radiator (to) is stopped and the heater (to) is stopped.
A heating medium such as steam or hot water is passed through the body (G) of the device (G). The heat medium in the tube Qη of the heater α is given heat by the heating medium on the body side, and the heat medium in the tube Qη of the heater α is heated.
Evaporates within η. The heat transfer steam generated here reaches the second manifold pipe (10b) due to buoyancy, and the steam further rises within the second manifold pipe (10b) due to buoyancy and reaches the second liquid level. . From there, the steam further rises in the second manifold pipe (10b) and reaches the cooling pipe (7) via the second header pipe (9b) and the second connecting pipe (8b). Here, the cooling plate (6) of the fuel cell (b)
is heated by the heat provided by the steam, while the cooling pipe (7)
The steam inside condenses and liquefies as it loses heat.

凝縮液は自重によって冷却管(7)から第2の接続配管
(sb) 、第2のヘッダ管(9b)を経て第2のマニ
ホールド管(10b)に至り、さらに凝縮液は第2のマ
ニホールド管(10b)内を落下して第2の液面(1)
に至り、そこから液は、第2のマニホールド管(?Ob
)を経由して、加熱器Qliのチューブαηに戻る。永
−D様にして、ヒートバイブ動作を利用した燃料電池α
ηの温度調節系(イ)が構成される。ここで1燃料電池
αηの冷却時と加熱時で熱媒体の液面を変えるときの液
面調節機構(財)の操作を述ヘル、第8図において、ア
クチュエータ(ハ)は電動モータあるいは空気圧などを
駆動力としてスピンドルに)を動かすもので、アクチュ
エータ(財)の動作によりスピンドル(2)、ベローズ
(至)が上下し、液面調節機構(2)のベローズ(2)
内の熱媒体が導入管翰を介して出入りする。燃料電池Q
l)の冷却時には、このベローズ(至)を押し上げて、
温度調節系(2)の液面を第1の液面α時まで上昇させ
、一方燃料電池(ロ)の加熱時には、ベローズ(至)を
押し下げて、温度調節系(2)の液面を第2の液面(ホ
)まで降下させる。
The condensate flows from the cooling pipe (7) through the second connection pipe (sb) and the second header pipe (9b) to the second manifold pipe (10b) due to its own weight, and further the condensate flows to the second manifold pipe (10b). (10b) and falls to the second liquid level (1)
and from there the liquid flows into the second manifold tube (?Ob
) and returns to the tube αη of the heater Qli. Mr. Ei-D created a fuel cell α using heat vibrator operation.
A temperature control system (a) for η is constructed. Here, we will explain the operation of the liquid level adjustment mechanism when changing the liquid level of the heat medium during cooling and heating of the fuel cell αη. In Figure 8, the actuator (c) is an electric motor or pneumatic is used as a driving force to move the spindle (to the spindle), and the spindle (2) and bellows (to) move up and down by the operation of the actuator, and the bellows (2) of the liquid level adjustment mechanism (2)
The heat medium inside enters and exits through the introduction tube. fuel cell Q
When cooling l), push up this bellows (to),
The liquid level in the temperature control system (2) is raised to the first liquid level α, while when heating the fuel cell (b), the bellows (to) is pushed down to raise the liquid level in the temperature control system (2) to the first liquid level α. Lower it to the liquid level (E) in step 2.

なお、上記燃料電池(6)の加熱動作時に、加熱器QI
SのチューブQっで発生した熱媒体の蒸気の一部は冷却
管(7)を通過し第1のマニホールド管(10a) 全
経由して放pIA器(至)のチューブ(ロ)に至り、放
熱器(至)の加熱に費やされるが、放熱器(至)の熱容
量は燃料電池Qυの熱容量に比し僅かであり、放熱器(
至)はすぐに加熱されてしまうので、実質的には問題に
ならない、ただし、少しでも早く燃料電池(ロ)を加熱
したいときには、同時に放f8器(至)にも胴体(至)
にスチームか温水を流してやるのが望ましい。
Note that during the heating operation of the fuel cell (6), the heater QI
A part of the heat medium vapor generated in the tube Q of S passes through the cooling pipe (7), passes through the first manifold pipe (10a), and reaches the tube (B) of the PIA device (to). It is used to heat the radiator (to), but the heat capacity of the radiator (to) is small compared to the heat capacity of the fuel cell Qυ.
Since the fuel cell (B) heats up quickly, it is practically not a problem. However, if you want to heat up the fuel cell (B) as quickly as possible, you can also connect the fuselage (B) to the f8 radiation device (B) at the same time.
It is preferable to run steam or warm water through it.

以上、燃料電池(ロ)の冷却、加熱の動作を述べたが、
この方式は、燃料電池(11)の積層方向に多数配置さ
れた冷却板(6)の冷却管(7)を1対の第1.第2の
マニホールド管(10a)、 (10b)に接続させる
ことで、放熱器(至)及び加熱器α・の共通化を可能と
したもので、従来技術で冷却板1枚に対し1組の放熱器
、加熱kgを要した構成に比べ、大幅なコンパクト化を
図ることができる。
The cooling and heating operations of the fuel cell (b) have been described above;
In this method, cooling pipes (7) of cooling plates (6) arranged in large numbers in the stacking direction of fuel cells (11) are connected to a pair of first and second cooling pipes (7). By connecting to the second manifold pipes (10a) and (10b), it is possible to share the radiator (to) and the heater α. Compared to a configuration that requires a heat radiator and heating kg, it can be significantly more compact.

なお、上記実施例では、冷却管(7)の構成として、片
道流れの場合を示したが、特にこの構成に限定するもの
ではなく、1以上の往復数の流れ構成であっても良く、
同じ効果を奏する。1往復流れ構成の場合の実施例を第
4図に示す、第4図において、(6)〜(10b)は第
1図と同じものを示す、第4図は冷却管(7)の流れの
構成が異なるのみで、温度調節系(2)の構成、伝熱の
機構などは第1図、第2図の実施例と全く同様である。
In the above embodiment, the configuration of the cooling pipe (7) is one-way flow, but it is not limited to this configuration, and may have a flow configuration with one or more round trips.
have the same effect. An example in the case of one reciprocating flow configuration is shown in Fig. 4. In Fig. 4, (6) to (10b) show the same things as Fig. 1. Fig. 4 shows the flow of the cooling pipe (7). The only difference is the configuration of the temperature control system (2), the heat transfer mechanism, etc., which are completely the same as the embodiments shown in FIGS. 1 and 2.

なお、第1図、第2図の構成において、冷却板(6)内
の冷却管(7)は、接続配管(8b)から接続配管(8
a) fillに向けて上向きの勾配を持つように配置
しても良い。
In addition, in the configurations shown in FIGS. 1 and 2, the cooling pipe (7) in the cooling plate (6) is connected from the connecting pipe (8b) to the connecting pipe (8).
a) It may be arranged so as to have an upward slope toward the fill.

また上記実施例では、1対の第1.第2のマニホールド
管(10a) 、 (10b)で構成される例を示した
が、例えば第1.第2のヘッダ管(9a) 、 (9b
)のそれぞれの両側に2対のマニホールド管を設けるな
ど、複数組のマニホールド管を設置しても良く、同じ効
果を奏する0、またマニホールド管の組数に応じて複数
の放熱器、複数の加熱器を配置しても良く、さらには冷
却板(6)を燃料電池(ロ)の積層方向に複数のブロッ
クに分け1各ブロツク毎にマニホールド管と放熱器と加
熱器の組合せを配置しても良い・ さらに、上記実施例においては、蒸気の流れと液の流れ
をスムーズにするために、第1.第2の接続配管(8a
)、(8b) 、放熱器(至)のチューブQ4及び加熱
器CA時のチューブ(17)にそれぞれ勾配を持たせた
が、必ずしも勾配を持たせる必要はなく、いずれかかあ
るいは全てを水平に配置しても良く、所期の目的を達成
する。この場合、構造がさらにシンプルになり製作容易
という利点がある。またこのチューブQ41 、αηの
勾配をとるのに、放熱器(至)自体あるいは加熱器Ql
自体を傾けても良く、さらには放熱器に)、加熱器α・
をチューブα◆、Oηが垂直方向を向く様に配置しても
良い、なお上記実施例では、シェルアンドチューブ方式
の放熱器(至)、加熱器(至)を配置した例を述べたが
、放熱器(2)、加熱器(lieはどの様な形式でも良
い、放熱器(至)の冷却媒体は水に限定される訳ではな
く、例えばフィン付きの風冷方式でも良く、一方角熱器
α・の加熱方法もスチームや温水によるものに限らず、
例えば電気ヒータを用いても良い。
Further, in the above embodiment, a pair of first . Although an example has been shown in which the second manifold pipes (10a) and (10b) are used, for example, the first manifold pipes (10a) and (10b) are configured. Second header pipe (9a), (9b
) Multiple sets of manifold pipes may be installed, such as two pairs of manifold pipes on each side of the pipe, and the same effect can be achieved. Furthermore, the cooling plate (6) may be divided into a plurality of blocks in the stacking direction of the fuel cell (B) and a combination of a manifold pipe, a radiator, and a heater may be arranged for each block. Good・Furthermore, in the above embodiment, in order to smooth the flow of steam and liquid, the first. Second connection pipe (8a
), (8b), the tube Q4 of the radiator (to) and the tube (17) of the heater CA each have a slope, but it is not necessarily necessary to have a slope, and it is not necessary to make any or all of them horizontal. It can be placed anywhere to achieve the intended purpose. In this case, there is an advantage that the structure is simpler and manufacturing is easier. In addition, in order to obtain the gradient of αη for this tube Q41, it is necessary to use the radiator (to) itself or the heater Ql.
You can also tilt the heater itself (or even use it as a radiator), heater α・
may be arranged so that the tubes α◆ and Oη face in the vertical direction. In the above embodiment, an example was described in which a shell-and-tube type radiator (to) and a heater (to) were arranged. The radiator (2) and the heater (lie) may be of any type; the cooling medium of the radiator (2) is not limited to water; for example, it may be an air-cooled system with fins; The heating method for α is not limited to steam or hot water.
For example, an electric heater may be used.

なお、液面調節機構に)の構造は第8図のものに限定さ
れる訳ではなく、要するに、外部からの操作によって液
の貯え(チャージ)と放出ができる機構であれば良い、
また液面調節機構Qカの導入管(支)の接続位置は、第
2図に示す位置に限定される訳ではなく、燃料電池αυ
の最下部の冷却板(6)の高さ以下であれば、第1のマ
ニホールド管(10a)、第2のマニホールド管(10
b) 、加熱器αQのチューブ的のいずれに接続しても
良い。
Note that the structure of the liquid level adjustment mechanism is not limited to that shown in FIG.
In addition, the connection position of the inlet pipe (branch) of the liquid level adjustment mechanism Q is not limited to the position shown in Fig. 2;
If the height is below the lowest cooling plate (6), the first manifold pipe (10a) and the second manifold pipe (10a)
b) It may be connected to either of the tubes of the heater αQ.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料電池の積層方向
に配置された複数の冷却管を共通の第1゜第2のマニホ
ールド管でつなぎ、$1のマニホールド管を上部に配置
した放熱器に、第2のマニホールド管を下部に配置した
加熱器に接続するように構成したので1コンパクトで構
造がシンプルで且つ安価な燃料電池の温度調節装置を得
ることができる。
As described above, according to the present invention, a plurality of cooling pipes arranged in the stacking direction of fuel cells are connected by a common first and second manifold pipe, and a radiator with a $1 manifold pipe arranged at the top Furthermore, since the second manifold pipe is connected to the heater disposed at the bottom, it is possible to obtain a temperature control device for a fuel cell that is compact, simple in structure, and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の一実施例による燃料電池の
温度調節装置を示す要部斜視図、系統図、第8図はこの
発明に係る液面調節機構を示す詳細図1第4図はこの発
明の他の実施例による燃料電池の温度調節装置を示す要
部斜視図、第6図は従来の燃料電池の温度調節装置を示
す斜視図である。 図において、(6)は冷却板、(7)は冷却管、(8a
)。 (8b)は第1・第2の接続配管、(9a)=(9b)
は第1゜第2のヘッダ管、(10a)、 (10b)は
第1.第2のマニホールド管、(ロ)は燃料電池、(イ
)は温度調節系、(至)は放熱器、Q・は加#I器、(
2)は液面調節機構である。 尚、図中同一符号は同一、又は相当部分を示す。
1 and 2 are perspective views and system diagrams of main parts showing a temperature control device for a fuel cell according to an embodiment of the present invention, and FIG. 8 is a detailed view 1 and 4 showing a liquid level control mechanism according to the present invention. This figure is a perspective view of a main part of a temperature control device for a fuel cell according to another embodiment of the present invention, and FIG. 6 is a perspective view of a conventional temperature control device for a fuel cell. In the figure, (6) is a cooling plate, (7) is a cooling pipe, (8a
). (8b) is the first and second connection piping, (9a) = (9b)
are the first and second header pipes, (10a) and (10b) are the first and second header pipes. The second manifold pipe, (B) is the fuel cell, (A) is the temperature control system, (To) is the radiator, Q is the heater #I, (
2) is a liquid level adjustment mechanism. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電池の積層方向に配置された複数の冷却板の
中で複数の並行流を構成するように配列された冷却管と
、前記冷却板1枚毎に配置された第1のヘッダ管と第2
のヘッダ管と、前記第1のヘッダ管と前記冷却管の一方
の出口とを接続する第1の接続配管と、前記第2のヘッ
ダ管と前記冷却管のもう一方の出口とを接続する第2の
接続配管と、前記最上部の冷却板よりも高位に配置され
た放熱器と、前記最下部の冷却板よりも低位に配置され
た加熱器と、前記第1のヘッダ管と前記放熱器とを接続
する第1のマニホールド管と、前記第2のヘッダ管と前
記加熱器とを接続する第2のマニホールド管とによって
、密閉ループの温度調節系を構成し、この中に熱媒体を
封入するとともに、前記燃料電池の前記最下部の冷却板
の高さより低い位置で前記温度調節系に接続され前記温
度調節系の熱媒体の液面を調節する液面調節機構を備え
たことを特徴とする燃料電池の温度調節装置。
(1) Cooling pipes arranged to form a plurality of parallel flows among a plurality of cooling plates arranged in the stacking direction of the fuel cell, and a first header pipe arranged for each cooling plate. and second
a first connecting pipe connecting the first header pipe and one outlet of the cooling pipe, and a first connecting pipe connecting the second header pipe and the other outlet of the cooling pipe. 2, a radiator placed higher than the top cooling plate, a heater placed lower than the bottom cooling plate, the first header pipe, and the radiator. and a second manifold pipe that connects the second header pipe and the heater, forming a closed loop temperature control system, in which a heat medium is sealed. In addition, the fuel cell is characterized by comprising a liquid level adjustment mechanism that is connected to the temperature adjustment system at a position lower than the height of the lowest cooling plate of the fuel cell and adjusts the liquid level of the heat medium in the temperature adjustment system. Temperature control device for fuel cells.
(2)液面調節機構は燃料電池の冷却動作時、熱媒体を
燃料電池の最上部の冷却板の高さ以上で且つ放熱器の高
さ以下の範囲で液面を維持するように動作し、燃料電池
の加熱動作時、熱媒体を燃料電池の最下部の冷却板の高
さ以下で且つ加熱器の高さ以上の範囲で液面を維持する
ように動作するように構成したことを特徴とする特許請
求範囲第1項記載の燃料電池の温度調節装置。
(2) During the cooling operation of the fuel cell, the liquid level adjustment mechanism operates to maintain the liquid level of the heat medium within a range that is above the height of the cooling plate at the top of the fuel cell and below the height of the radiator. , characterized in that, during heating operation of the fuel cell, the heating medium operates to maintain the liquid level within a range below the height of the lowest cooling plate of the fuel cell and above the height of the heater. A temperature control device for a fuel cell according to claim 1.
JP61069055A 1986-03-25 1986-03-25 Fuel cell Expired - Lifetime JPH0665057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069055A JPH0665057B2 (en) 1986-03-25 1986-03-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069055A JPH0665057B2 (en) 1986-03-25 1986-03-25 Fuel cell

Publications (2)

Publication Number Publication Date
JPS62223980A true JPS62223980A (en) 1987-10-01
JPH0665057B2 JPH0665057B2 (en) 1994-08-22

Family

ID=13391499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069055A Expired - Lifetime JPH0665057B2 (en) 1986-03-25 1986-03-25 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0665057B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213638A (en) * 1975-07-21 1977-02-02 United Technologies Corp Cooling system for fuel cell using nonndielectric coolant liquid
JPS57180079A (en) * 1981-04-24 1982-11-05 Mitsubishi Electric Corp Temperature controller for fuel cell
JPS6035469A (en) * 1983-08-05 1985-02-23 Fuji Electric Corp Res & Dev Ltd Cooling method of stacked fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213638A (en) * 1975-07-21 1977-02-02 United Technologies Corp Cooling system for fuel cell using nonndielectric coolant liquid
JPS57180079A (en) * 1981-04-24 1982-11-05 Mitsubishi Electric Corp Temperature controller for fuel cell
JPS6035469A (en) * 1983-08-05 1985-02-23 Fuji Electric Corp Res & Dev Ltd Cooling method of stacked fuel cell

Also Published As

Publication number Publication date
JPH0665057B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US4500612A (en) Temperature control device for a fuel cell
US4510922A (en) Energy storage system having thermally stratified liquid
WO2005110128A1 (en) System and method for the immersion cooking/cooling of food in diffused forced convection
US3590912A (en) Vertical staggered surface feedwater heater
FI90313C (en) Medium liquid heater for plate-like membrane evaporators and method for evaporating the liquid
JPS62223980A (en) Temperature controller of fuel cell
JPS62223976A (en) Temperature controller of fuel cell
JPS62223982A (en) Temperature controller of fuel cell
JPS62223979A (en) Temperature controller of fuel cell
JPS58198648A (en) Loop type heat pipe system solar heat water heater
JPS62223978A (en) Heat controller of fuel cell
JPS62223981A (en) Temperature controller of fuel cell
CN211575069U (en) Non-ferrous metallurgy high-temperature material heat energy recovery system
JPS6357719B2 (en)
JPH0665058B2 (en) Fuel cell
JP2003240465A (en) Latent heat storage device
JPH02290478A (en) Direct contact type condenser and heat cycle apparatus using the same
JPS6312348B2 (en)
PL163570B1 (en) Fixed catalyst reactor with internal heat exchange
JPH0468554B2 (en)
CN216898481U (en) Ventilation structure of vaporizer
CN221002884U (en) Waste heat power generation system based on alumina micropowder
CN217465451U (en) Heat exchange device and gas water heater with same
JPH0547964Y2 (en)
JPH11311401A (en) Shell-and-tube heat exchanger type horizontal steam generator