JPS62138794A - Nuclear reactor feedwater-temperature controller - Google Patents

Nuclear reactor feedwater-temperature controller

Info

Publication number
JPS62138794A
JPS62138794A JP60280066A JP28006685A JPS62138794A JP S62138794 A JPS62138794 A JP S62138794A JP 60280066 A JP60280066 A JP 60280066A JP 28006685 A JP28006685 A JP 28006685A JP S62138794 A JPS62138794 A JP S62138794A
Authority
JP
Japan
Prior art keywords
feed water
reactor
water temperature
operating state
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60280066A
Other languages
Japanese (ja)
Inventor
山本 文昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60280066A priority Critical patent/JPS62138794A/en
Publication of JPS62138794A publication Critical patent/JPS62138794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は原子力発電プラントの出力制御を行なうための
原子炉給水温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a reactor feed water temperature control device for controlling the output of a nuclear power plant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子炉給水温度側tII装置は従来から用いられている
が、従来装置は単に予め設定された原子炉の熱出力と発
電見出力の熱平衡ヒートバランスを、例えば、定格出力
運転時に炉心内ボイド率を約40%に保つように制御さ
れている。
Reactor feed water temperature side tII devices have been used for a long time, but conventional devices simply measure the thermal equilibrium heat balance between the reactor's thermal output and power generation output set in advance, for example, the void fraction in the core during rated power operation. It is controlled to be kept at about 40%.

第7図はその従来装置を示しており、原子炉圧力容器1
1内に発生した蒸気は、主蒸気管12を通してタービン
13に送給されタービン13の駆動に供される。このタ
ービン13によって発ff1114か回転させられ発電
が行なわれる。寸なわら、熱エネルギが電気エネルギに
変換される。このタービン13の駆動に供された蒸気は
復水器15に導かれて復水けしめられ、給水として復水
管16を通して給水加熱器17へ送給される。この給水
加熱器17はタービン13から抽気配管18を通して抽
気された抽気蒸気により給水を加熱する。
Figure 7 shows the conventional equipment, and shows the reactor pressure vessel 1.
Steam generated in the turbine 1 is fed to the turbine 13 through the main steam pipe 12 and used to drive the turbine 13. The turbine 13 rotates the generator ff 1114 to generate electricity. In other words, thermal energy is converted into electrical energy. The steam supplied to drive the turbine 13 is led to a condenser 15 where it is condensed and sent as feed water to a feed water heater 17 through a condensate pipe 16. This feed water heater 17 heats the feed water using extracted steam extracted from the turbine 13 through an extraction pipe 18 .

そして、給水加熱器17において加熱された給水は給水
管1つを通して原子炉圧力容器11へ還流させられ、原
子炉圧力容器11内で冷却材として作用し、炉心(図示
せず)で発生した熱エネルギによって再び蒸気とされる
Then, the feed water heated in the feed water heater 17 is returned to the reactor pressure vessel 11 through one water supply pipe, acts as a coolant in the reactor pressure vessel 11, and heats up the reactor core (not shown). The energy converts it into steam again.

第8図は従来装置を更に詳細に示したものであり、給水
加熱器はA、B、Cの並列な3系列にぞれぞれa −C
の5個を直列に接続した合計15個の給水加熱’&i 
17 a△、17aB、17aC。
Figure 8 shows the conventional device in more detail, and the feed water heaters are arranged in three parallel series A, B, and C.
A total of 15 feed water heating units, 5 of which are connected in series
17a△, 17aB, 17aC.

17bA、17bB、17bC,17c△。17bA, 17bB, 17bC, 17cΔ.

17c8,17cC,17dA、17dB。17c8, 17cC, 17dA, 17dB.

17dC,17eA、17eB、17eCを設けている
。そして、給水加熱317a△、1アaB。
17dC, 17eA, 17eB, and 17eC are provided. And feed water heating 317a△, 1aaB.

17aCには高圧タービン13 aからそれぞれ油気蒸
気を導いている。同様に、給水11口熱器17bA、1
7bB、 17bCには湿5)分離器20J3よび第一
低圧タービン13bから、給水加熱器17c△、17c
B、17cCには第一低圧タービン13bから、給水加
熱器17(jΔ。
17aC, oil and steam are respectively introduced from the high pressure turbine 13a. Similarly, water supply 11-burner heater 17bA, 1
7bB, 17bC have moisture 5) From the separator 20J3 and the first low pressure turbine 13b, the feed water heaters 17c△, 17c
B, 17cC is supplied from the first low pressure turbine 13b to the feed water heater 17 (jΔ.

17dB、17dCには第一低圧タービン13bから、
給水加熱器17eA、17eB、’+ 7eCには第三
低圧タービン13dからそれぞれ抽気蒸気を導いている
。そして、このように形成されている多数の給水加熱器
17aΔ〜17cCへ送給する抽気蒸気の温度と量とに
より給水温度を制御する。例えば、第9図に示すような
予め設定されている定格出力運転時における発電見出力
比−拾水温度比特性からなるヒートバランスに従って、
発電見出力(もしくは主蒸気流量)に応じた給水温度(
定格出力運転時で約200℃程度)となるように制御し
ている。
17dB and 17dC from the first low pressure turbine 13b,
Extracted steam is introduced from the third low-pressure turbine 13d to the feed water heaters 17eA, 17eB, and '+7eC, respectively. Then, the feed water temperature is controlled by the temperature and amount of the extracted steam to be fed to the large number of feed water heaters 17aΔ to 17cC formed in this manner. For example, according to the preset heat balance consisting of the power generation output ratio-pickup water temperature ratio characteristic during rated output operation as shown in Fig. 9,
Feed water temperature (
The temperature is controlled to be approximately 200°C during rated output operation.

そして、この従来装置においては、前記した通常のヒー
トバランスを保つ運転以外の運転を行なう場合には、そ
の運転内容に応じて積極的に給水温度制御を行なうこと
がなかった。
In this conventional device, when an operation other than the operation for maintaining the normal heat balance described above is performed, the feed water temperature is not actively controlled depending on the operation details.

一方、通常のヒートバランスを保つ運転以外の運転を行
なう場合に、給水温度制御を行なうと、次のような種々
の効果を生じる。
On the other hand, if the water supply temperature is controlled during an operation other than the operation that maintains the normal heat balance, the following various effects will be produced.

例えば、給水温度を上野させると、炉心入口サブクーリ
ングが減少し、炉心内のボイド体積率が上背し、反応度
が低下し、原子炉出力が低下し、また出力分布が上部ピ
ークとなり、中性子束スペクトルが硬化し、プルトニウ
ムが蓄積しやすくなる等の効果を生じる。
For example, when the feed water temperature is lowered, the core inlet subcooling decreases, the void volume fraction in the core increases, the reactivity decreases, the reactor power decreases, and the power distribution peaks at the top, causing neutron Effects such as hardening of the flux spectrum and easier accumulation of plutonium are produced.

逆に、給水温度を降下させると、炉心入口サブクーリン
グが増加し、炉心内ボイドが減少し、反応度が増加し、
原子炉出力が増加し、また出力分布が下部ピークとなり
、中性子束スペクトルが軟化し、プルトニウムが燃焼し
やすくなる等の効果が生じる。
Conversely, lowering the feed water temperature increases core inlet subcooling, reduces in-core voids, and increases reactivity.
The reactor power increases, the power distribution peaks at the bottom, the neutron flux spectrum softens, and plutonium becomes easier to burn, among other effects.

これらの効果を利用すれば、出力制御(起動、出力変更
時、負荷追従運転時、キセノン反応度補償などサイクル
末期の反応度不足の補償、出力分布の制御、中性子経済
の向上、原子炉の反応度安定性や核熱水力学的安定性の
改善等を行なうことが可能となる。
These effects can be used to control output (startup, output change, load following operation, compensate for insufficient reactivity at the end of the cycle such as xenon reactivity compensation, control power distribution, improve neutron economy, reactor reaction This makes it possible to improve thermal stability and nuclear thermohydraulic stability.

しかしながら、前記従来装着においては、通常のヒート
バランスを保つ運転以外の運転を行なうことができない
ので、前記の各種の効果を発揮する運転を行なうことが
できなかった。
However, in the conventional mounting, it is not possible to perform any operation other than the operation that maintains the normal heat balance, and therefore it is not possible to perform the operation that brings out the various effects described above.

〔発明の効果〕〔Effect of the invention〕

本発明はこれらの点を考慮してなされたものであり、原
子炉の通常のヒートバランスを保つ運転以外の場合にも
給水温度を制御した運転を行なうことができ、原子炉出
力を種々の運転目的に応じて適確に制御した運転を行な
うことのできる原子炉給水湿度制御装置を提供すること
を目的とする。
The present invention has been made with these points in mind, and allows operation with the feed water temperature controlled even in cases other than the normal operation to maintain the reactor's heat balance, and allows the reactor output to be controlled in various operations. It is an object of the present invention to provide a reactor feed water humidity control device that can perform accurately controlled operation depending on the purpose.

(発明の概要) 本発明は原子炉給水温度制ti装置に関するものであり
、原子炉給水系の給水温度を調節する給水温度調節機構
と、原子炉の運転状態を検出して検出信号を発する運転
状態検出機構と、原子炉に対する運転要求信号と前記検
出信号とを比較し、前。
(Summary of the Invention) The present invention relates to a reactor feed water temperature control system, which includes a feed water temperature control mechanism that adjusts the feed water temperature of a reactor water system, and an operation system that detects the operating state of the reactor and issues a detection signal. The state detection mechanism compares the operation request signal for the reactor with the detection signal.

記運転要求信号に応じた運転を行なわせるように給水湿
度をw4節させる給水温度調節信号を前記給水温度調節
機構へ発する制御器とを有することを特徴としている。
and a controller that issues a feed water temperature adjustment signal to the feed water temperature adjustment mechanism to set the feed water humidity at node W4 so as to cause the feed water temperature adjustment mechanism to operate in accordance with the operation request signal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図から第6図について説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

従来と同一部分には同一符号を付しである。The same parts as the conventional one are given the same reference numerals.

本実施例においては、原子炉の運転状態を検出するため
の運転状態検出機構として、原子炉系検出機構21、タ
ービン・発電機系検出機構22および給水系検出機構2
3を設けている。この原子炉系検出1jiM +i42
1は原子炉系の構成各部の運転状態を検出して検出信号
21sを介する。具体的には、炉心エンタルピ、制御棒
挿入位置、熱出力、出力分布、炉内圧力、炉心流量、最
小限界出力比、最大線出力密度等をそれぞれセンナ(図
示せず)によって検出し、その値を検出信号21sとし
て出力する。また、タービン・発fffi系検出618
422はタービン・発電機系の構成各部の運転状態を検
出して検出信号22sを発する。具体的には光電気出力
、主蒸気流堡、主蒸気圧力、油気蒸気量、抽気蒸気温度
等をそれぞれセンサ(図示せず)によって検出し、その
値を検出信号22sとして出力する。また、給水系検出
機構23は給水系の構成各部の運転状態を検出して検出
信号23sを発する。具体的には、給水流量、給水温度
、給水圧力、弁開度、給水加熱器17のドレン猷並びに
ドレン水位等をそれぞれセンサ(図示せず)によって検
出し、その値を検出信号23sとして出力する。そして
、給水系を形成する給水加熱器17等の近傍には、給水
温度を調節する給水温fl!lff5機構が設けられて
いる。第2図はこの給水温度調節機構の一実施例を示し
ており、給水加熱器17へ抽気蒸気を導く抽気配管18
の途中に制御弁24を数本ノで、加熱源となる抽気蒸気
の送給量を制御するように形成されている。そして、本
実施例においては、前記各検出機構21,22゜23か
ら各検出信号21s、22a、23sが入力されるとと
もに、原子炉に対する運転要求信号25sが入力される
制御器26が設けられている。
In this embodiment, the operating state detection mechanisms for detecting the operating state of the nuclear reactor are a reactor system detection mechanism 21, a turbine/generator system detection mechanism 22, and a water supply system detection mechanism 2.
There are 3. This reactor system detection 1jiM +i42
1 detects the operating state of each component of the nuclear reactor system and sends a detection signal 21s. Specifically, core enthalpy, control rod insertion position, thermal output, power distribution, reactor pressure, core flow rate, minimum critical power ratio, maximum linear power density, etc. are detected by sensors (not shown), and their values are calculated. is output as a detection signal 21s. In addition, turbine/offfi system detection 618
422 detects the operating state of each component of the turbine/generator system and issues a detection signal 22s. Specifically, the photoelectric output, the main steam flow field, the main steam pressure, the amount of oil/vapor, the bleed steam temperature, etc. are detected by sensors (not shown), and the values thereof are output as the detection signal 22s. Further, the water supply system detection mechanism 23 detects the operating state of each component of the water supply system and issues a detection signal 23s. Specifically, the water supply flow rate, water supply temperature, water supply pressure, valve opening degree, drain height and drain water level of the feed water heater 17 are detected by sensors (not shown), and the values are output as the detection signal 23s. . In the vicinity of the feed water heater 17 and the like forming the water supply system, there is a feed water temperature fl! that adjusts the feed water temperature. An lff5 mechanism is provided. FIG. 2 shows an embodiment of this feed water temperature adjustment mechanism, and shows a bleed air pipe 18 that guides bleed steam to the feed water heater 17.
Several control valves 24 are provided in the middle to control the amount of bleed steam supplied as a heating source. In this embodiment, a controller 26 is provided to which the detection signals 21s, 22a, 23s are inputted from the detection mechanisms 21, 22.degree. 23, and an operation request signal 25s for the reactor is inputted. There is.

この運転要求信号25sは原子炉にどのような運転を行
なうかを要求する信号であり、通常は運転員によって入
力される。そして、制御器26は運転要求信号255と
各検出信号215,228゜23sとを比較し、運転要
求信号25sに応じて原子炉を運転させ得る給水温度の
給水を提供させるように制御弁24を開閉させる給水温
度調節信号26sを、制御弁24に向けて発するように
形成されている。
This operation request signal 25s is a signal requesting what kind of operation the nuclear reactor should perform, and is normally input by an operator. Then, the controller 26 compares the operation request signal 255 with each of the detection signals 215, 228° 23s, and operates the control valve 24 in accordance with the operation request signal 25s to provide feed water at a temperature that allows the reactor to operate. It is formed to issue a water supply temperature adjustment signal 26s to the control valve 24 to open and close it.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

本実施例においては、原子炉の運転状態を原子炉系検出
は構21、タービン・発電機系検出機構22および給水
系検出機構23によって常時検出しながら、それらの検
出信号21S、22s。
In this embodiment, the operating state of the nuclear reactor is constantly detected by a reactor system detection mechanism 21, a turbine/generator system detection mechanism 22, and a water supply system detection mechanism 23, and their detection signals 21S and 22s are transmitted.

23sを運転要求信号25sと制御器26によって常に
比較し、給水温度調節信号26sをもって制御弁24を
連続的に開閉制御して、常に運転要求信号25sの内容
を満たして原子炉を運転させることができる。従って運
転要求信号25sに応じて容易に給水温度を上昇または
下降するように制御することができる。
23s is constantly compared with the operation request signal 25s by the controller 26, and the control valve 24 is continuously controlled to open and close using the feed water temperature adjustment signal 26s, so that the reactor can be operated while always satisfying the contents of the operation request signal 25s. can. Therefore, the feed water temperature can be easily controlled to be raised or lowered in accordance with the operation request signal 25s.

このことから、通常のと−l−バランスを保つ運転以外
に、給水温度を昇温させて運転覆ることができる。その
結果、原子炉の運転状態は、炉心入口サブクーリングが
下がり、ボイド率が上界し、炉心反応度が下がり、原子
炉出力が下がり、その出力分布は上方ピークの状態とな
り、中性子束スペクトルが硬化し、プル1−ニウムが蓄
積しやりくなるという効果を発揮することとなる。
From this, in addition to the normal operation that maintains the -l- balance, it is possible to increase the temperature of the feed water and reverse the operation. As a result, the operating state of the reactor is such that the core inlet subcooling is reduced, the void fraction is at its upper limit, the core reactivity is reduced, the reactor power is reduced, and the power distribution is in an upward peak state, and the neutron flux spectrum is This results in the effect of hardening and accumulation of plu-1-nium.

逆に、給水温度を降下させて運転すると、炉心人Dリブ
クーリングが上がり、ボイド率が下がり、炉心反応度が
上がり、口;[子炉出力が上がり、その出力分布は下方
ピークの状態となり、中性子束スペクトルが軟化し、プ
ルトニウムが燃えやすくなるという効果を発揮すること
となる。
Conversely, when operating with a lower feed water temperature, the core D-rib cooling increases, the void ratio decreases, the core reactivity increases, and the child reactor output increases, with the output distribution reaching a downward peak. This has the effect of softening the neutron flux spectrum and making plutonium more flammable.

また、他の原子炉出力制御手段である制御棒操作もしく
は炉心流量制御111等と前記給水温度の調節とを組合
わせることにより、次のような出力制御を(1なうこと
ができる。
Furthermore, by combining other reactor output control means such as control rod operation or core flow rate control 111 with the adjustment of the feed water temperature, the following output control can be achieved (1).

例えば、原子炉の起動時、出力変更時、負?+?1追従
運転時、定常運転時等における原子炉出力制御を行なう
ことができる。また、1ナイクル末期において給水温度
を降下させて、ボイドの正の反応度を利得して、4ノイ
クル末朋反応度を増加させることができる。更に、サイ
クル前半で給水温度を上背さけてプルトニウムを蓄積さ
せ、一方サイクル未明で給水温度を降下させてプル1−
ニウムを燃焼さけることにより反応度を利19シて中性
子束スベク1〜ルシフ1〜運転を行なうことができる。
For example, when starting a nuclear reactor, changing output, negative? +? It is possible to control the reactor output during 1 follow-up operation, steady operation, etc. In addition, by lowering the feed water temperature at the end of 1 nicle, the positive reactivity of the void can be gained, and the reactivity at the end of 4 nucles can be increased. Furthermore, in the first half of the cycle, the feed water temperature is lowered to allow plutonium to accumulate, while in the early hours of the cycle, the feed water temperature is lowered to increase plutonium.
By avoiding the combustion of Ni, the reactivity can be improved and the neutron flux Svek1~Lucif1~ operation can be performed.

更に、出力分布調整を行なって、運転制御値の余裕制御
、炉心反応度安定性や炉心ヂトンネルの核熱水力学的安
定性等の向上を図ることがひきる。
Furthermore, it is possible to adjust the power distribution to improve margin control of operation control values, core reactivity stability, nuclear thermal hydraulic stability of core tunnels, etc.

なお、第2図においては理解の便のために、1個の給水
加熱器17に対Jる1個の制御弁24を設置〕ているが
、複数個の給水加熱器に対しても同様に適用して給水温
度の制御を自由に行なうことができる(以下、第3図か
ら第6図に示ザ各実施例において同様である)。
In Fig. 2, for ease of understanding, one control valve 24 is installed for one feed water heater 17, but the same applies to multiple feed water heaters. By applying this method, the temperature of the water supply can be freely controlled (the same applies to the embodiments shown in FIGS. 3 to 6 below).

また、制御弁24を実際に設ける場合には、多数の給水
加熱器17へ接続されているすべての抽気配管18に制
御弁24を設りてもより、−方熱効率、抽気配管18へ
の応力、熱損失、圧力損失の面を考慮して必要とする抽
気配管18にのみ制御弁24を設けてもよい。例えば、
給水温度の制御幅にもよるものであるが、温度制御効果
が特に顕著である第8図の高圧タービン13a、湿分分
1ii11器20、第一低圧タービン13bおよび第二
低圧タービン13Cから導出されている抽気配管18ま
でに制御弁24を設けることにより、給水温度の制御を
自由に行ない、かつ、配管、弁等の改造や新設の際の施
工性゛や経済性を向上させることができる。
In addition, when the control valve 24 is actually provided, it is possible to install the control valve 24 in all the air bleed pipes 18 connected to a large number of feed water heaters 17. In view of heat loss and pressure loss, the control valve 24 may be provided only in the bleed pipe 18 where it is necessary. for example,
Although it depends on the control width of the feed water temperature, the temperature control effect is particularly remarkable as shown in FIG. By providing the control valve 24 up to the bleed air piping 18, it is possible to freely control the temperature of the water supply, and to improve workability and economic efficiency when modifying or newly installing piping, valves, etc.

第3図は給水温度調節機構の伯の実施例を示す。FIG. 3 shows an embodiment of the feed water temperature control mechanism.

本実施例は、抽気配管18の主流部にオン・オフ弁27
をFll iプ、このオン・オ゛フ弁27のバイパス管
28に制御弁24を設けたものである。
In this embodiment, an on/off valve 27 is provided in the main flow part of the bleed pipe 18.
A control valve 24 is provided in a bypass pipe 28 of this on-off valve 27.

なぜなら、原子カプラントのような高温、高圧の運転条
件下にJ3いては、制御弁24はその形状から圧力損失
、熱損失、熱反応、疲労等が生じるので良明間に亘って
常に正常な動作を維持することが困難である。そこで、
本実施例のように形成することにより通常のヒートバラ
ンスを保つ運転は−ブjのオン・オフ弁27を全開どし
他方の制御弁24を全開とし、他の給水温度の運転を行
なう場合には一方のオン・オフ弁27を全開とし他方の
制御弁24を全開として運転することができる。
This is because when J3 is operated under high-temperature, high-pressure operating conditions such as in an atomic coupler, the control valve 24 suffers from pressure loss, heat loss, thermal reaction, fatigue, etc. due to its shape. Difficult to maintain. Therefore,
By forming the structure as in this embodiment, normal operation to maintain heat balance is possible by fully opening the on/off valve 27 of valve j and fully opening the other control valve 24, and performing operation at other feed water temperatures. can be operated with one on/off valve 27 fully open and the other control valve 24 fully open.

これにより制御弁24を必要な0.1だけ作動させるこ
とにより、原子カプラントの高温、高圧下においても制
御弁24を正常に動作させて、常に適格な給水温度制御
を行なうことができる。
Thereby, by operating the control valve 24 by the necessary 0.1, the control valve 24 can be operated normally even under the high temperature and high pressure of the atomic coupler, and proper feed water temperature control can always be performed.

第4図は給水温度調節機構の更に他の実施例を示寸。本
実施例は、第2図および第3図の実施例が加熱源となる
油気蒸気量を制御するのに対して、一定の抽気蒸気量に
対して給水加熱器17への流入給水間を制御して給水温
度を制御するように形成されている。rjなわち、給水
加熱器17にバイパス管29を設置フ、給水加熱器17
の上流側の給水流量制御弁30とバイパス管29のバイ
パス弁31とを制till器26からの給水温度調節信
号26sによって開閉制御して、給水加熱器17を通過
する給水流量を制御して熱交換量を調節して給水温度を
調節する。これにより抽気配管18に制御弁24を設け
るスペースが無い場合にし給水温度を制御することがで
きる。
FIG. 4 shows the dimensions of yet another embodiment of the feed water temperature control mechanism. In contrast to the embodiments shown in FIGS. 2 and 3, which control the amount of oil and steam serving as a heating source, this embodiment controls the amount of water flowing into the feed water heater 17 for a constant amount of extracted steam. and configured to control the feed water temperature. rj, that is, the bypass pipe 29 is installed in the feed water heater 17.
The feed water flow rate control valve 30 on the upstream side and the bypass valve 31 of the bypass pipe 29 are opened and closed by the feed water temperature adjustment signal 26s from the tiller 26, and the feed water flow rate passing through the feed water heater 17 is controlled to generate heat. Adjust the exchange rate to adjust the water supply temperature. Thereby, the temperature of the water supply can be controlled even when there is no space to install the control valve 24 in the bleed pipe 18.

第5図は第4図と同様に給水加熱器への流入給水間を制
御するように形成した、給水温度調節し1構の他の実施
例を示す。本実施例は並列に接続された給水加熱317
aA、17aB、17aCのそれぞれの上流側に給水流
量制御弁30A。
FIG. 5 shows another embodiment of a system for adjusting the temperature of the feed water, which is formed to control the flow of water into the feed water heater in the same way as FIG. 4. In this embodiment, the feed water heating 317 is connected in parallel.
A water supply flow rate control valve 30A is provided on the upstream side of each of aA, 17aB, and 17aC.

30B、30Cを設け、これらの給水流量制御弁30△
、30B、30Gを制御器26からの給水温度調節信号
26Sによって開閉制御して、各給水加熱器17aΔ、
17aB、17aCにd′3【プる熱交換mを調節して
給水温度を自由に調節する。
30B and 30C are provided, and these water supply flow rate control valves 30△
, 30B, 30G are controlled to open and close by the feed water temperature adjustment signal 26S from the controller 26, and each feed water heater 17aΔ,
17aB, 17aC, d'3 [heat exchange m] is adjusted to freely adjust the feed water temperature.

第6図は給水温度調節機構の更に伯の実施例を示す。本
実施例は給水加熱器17内のドレン32の水位を可変調
節することにより給水加熱器17の熱交換面積を加減し
て給水温度を調節する。す4Tわち、給水加熱器17に
設【プたドレン水位計33にJ:つてドレン32の水位
を検出し、その検出水位を検出信号23sとして制御器
26へ送給し、この制御器26で検出信号23Sと運転
要求信号25sとを比較して、給水湿度調節信号26S
を抽気配管18に設けた油気弁34と給水加熱器17の
ドレン管35に設けたドレンレベル制御弁36とに送給
し、これらの弁34.36を聞開制m+することにより
ドレン32の水位を調節し、給水温度を自由に調節する
FIG. 6 shows a further embodiment of the feed water temperature regulating mechanism. In this embodiment, the water level of the drain 32 in the feed water heater 17 is variably adjusted to adjust the heat exchange area of the feed water heater 17 to adjust the feed water temperature. In other words, the water level of the drain 32 is detected by the drain water level gauge 33 installed in the feed water heater 17, and the detected water level is sent to the controller 26 as a detection signal 23s. The detection signal 23S and the operation request signal 25s are compared, and the water supply humidity adjustment signal 26S is determined.
is supplied to the oil valve 34 provided in the bleed air pipe 18 and the drain level control valve 36 provided in the drain pipe 35 of the feed water heater 17, and by controlling these valves 34 and 36 to open and close the drain 32. Adjust the water level and freely adjust the water supply temperature.

なお、これらの各実m例を制御目的に応じて組合わせて
用いることにより、給水温度を制御するように形成して
もよい。
Note that the water supply temperature may be controlled by using a combination of these examples depending on the control purpose.

〔弁明の効果〕[Effect of excuse]

このように本発明の原子炉給水温度制御711装置によ
れば、原子炉の通常のピー1−バランスを保つ運転以外
の場合にも給水温度を制御した運転を行<rうことがで
き、原子炉出力を種々の運転目的に応じて適確に制御し
た運転を行なうことができる等の効果を秦する。
As described above, according to the reactor feed water temperature control device 711 of the present invention, it is possible to perform operation with the feed water temperature controlled even in cases other than the normal operation to maintain the P1 balance of the nuclear reactor. Effects such as being able to perform operations with accurately controlled furnace output according to various operating purposes are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原子炉給水温電制6+1装置の一実施
例を示づ゛ブロック図、第2図から第6図はそれぞれ本
発明の給水温度調節は横のそれぞれの実施例を示すブロ
ック図、第7図および第8図はそれぞれ従X装置を示す
ブロック図、第9図は従来装置による発電見出ノJと給
水温度との関係を示J特性図である。 11・・・原子炉圧力容器、13・・・タービン、14
・・・発電機、17・・・給水加熱器、18・・・抽気
配管、21・・・原子炉系検出機構、22・・・タービ
ン・発電機系検出機構、23・・・給水系検出機構、2
1s、22s、23s・・・検出信号、24・・・制御
弁、25s・・・運転要求信号、26・・・制御器、2
6s・・・給水温度調節信号、30・・・給水流量制御
弁、34・・・抽気弁、36・・・ドレンレベル制御弁
。 出願人代理人  佐  藤  −雄 2己S 汽 1 図 へ2 図 も 3 図 も4 図 島5 図 九6 図 も7 囚
Fig. 1 shows a block diagram of an embodiment of the 6+1 reactor feed water temperature control system of the present invention, and Figs. 2 to 6 show horizontal embodiments of the reactor feed water temperature control system of the present invention. The block diagrams, FIGS. 7 and 8 are block diagrams showing the slave X device, respectively, and FIG. 9 is a J characteristic diagram showing the relationship between the power generation value J and the feed water temperature by the conventional device. 11... Nuclear reactor pressure vessel, 13... Turbine, 14
... Generator, 17... Feed water heater, 18... Air extraction piping, 21... Reactor system detection mechanism, 22... Turbine/generator system detection mechanism, 23... Water supply system detection Mechanism, 2
1s, 22s, 23s...detection signal, 24...control valve, 25s...operation request signal, 26...controller, 2
6s... Water supply temperature adjustment signal, 30... Water supply flow rate control valve, 34... Bleeding valve, 36... Drain level control valve. Applicant's agent Sato - Yu 2 Ki S Ki 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 96 Fig. 7 Prisoner

Claims (1)

【特許請求の範囲】 1、原子炉給水系の給水温度を調節する給水温度調節機
構と、原子炉の運転状態を検出して検出信号を発する運
転状態検出機構と、原子炉に対する運転要求信号と前記
検出信号とを比較し、前記運転要求信号に応じた運転を
行なわせるように給水湿度を調節させる給水温度調節信
号を前記給水温度調節機構へ発する制御器とを有する原
子炉給水温度制御装置。 2、運転状態検出機構は、原子炉系の運転状態を検出す
る原子炉系検出機構と、タービンや発電機部分の運転状
態を検出するタービン・発電機系検出機構と、給水系の
運転状態を検出する給水系検出機構とにより形成されて
いることを特徴とする特許請求の範囲第1項記載の原子
炉給水温度制御装置。 3、給水温度調節機構は、給水加熱器の加熱源となる抽
気蒸気の送給量を制御するように形成されていることを
特徴とする特許請求の範囲第1項記載の原子炉給水温度
制御装置。 4、給水温度調節機構は、給水加熱器を通過する給水間
を制御するように形成されていることを特徴とする特許
請求の範囲第1項記載の原子炉給水温度制御装置。 5、給水温度調節機構は、給水加熱器の熱交換面積を制
御するように形成されていることを特徴とする特許請求
の範囲第1項記載の原子炉給水温度制御装置。
[Scope of Claims] 1. A feedwater temperature adjustment mechanism that adjusts the temperature of water in the reactor water supply system, an operating state detection mechanism that detects the operating state of the reactor and issues a detection signal, and an operation request signal for the reactor. A reactor feed water temperature control device comprising: a controller that compares the detection signal with the detection signal and issues a feed water temperature adjustment signal to the feed water temperature adjustment mechanism to adjust the feed water humidity so as to perform an operation according to the operation request signal. 2. The operating state detection mechanism includes a reactor system detection mechanism that detects the operating state of the nuclear reactor system, a turbine/generator system detection mechanism that detects the operating state of the turbine and generator, and an operating state of the water supply system. 2. The reactor feed water temperature control device according to claim 1, further comprising a water supply system detection mechanism for detecting the temperature of the reactor feed water. 3. Reactor feed water temperature control according to claim 1, wherein the feed water temperature adjustment mechanism is configured to control the amount of bleed steam supplied as a heating source for the feed water heater. Device. 4. The reactor feed water temperature control device according to claim 1, wherein the feed water temperature adjustment mechanism is formed to control the flow of the feed water passing through the feed water heater. 5. The reactor feed water temperature control device according to claim 1, wherein the feed water temperature adjustment mechanism is formed to control the heat exchange area of the feed water heater.
JP60280066A 1985-12-12 1985-12-12 Nuclear reactor feedwater-temperature controller Pending JPS62138794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280066A JPS62138794A (en) 1985-12-12 1985-12-12 Nuclear reactor feedwater-temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280066A JPS62138794A (en) 1985-12-12 1985-12-12 Nuclear reactor feedwater-temperature controller

Publications (1)

Publication Number Publication Date
JPS62138794A true JPS62138794A (en) 1987-06-22

Family

ID=17619827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280066A Pending JPS62138794A (en) 1985-12-12 1985-12-12 Nuclear reactor feedwater-temperature controller

Country Status (1)

Country Link
JP (1) JPS62138794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225461A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Output control method of nuclear reactor and nuclear reactor plant
JP2008249580A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Nuclear power plant, thermal fatigue monitoring method for water supply nozzle, and operation method for nuclear power plant
JP2013120172A (en) * 2011-12-09 2013-06-17 Hitachi-Ge Nuclear Energy Ltd Reactor core isolation cooling system and method for controlling reactor core isolation cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225461A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Output control method of nuclear reactor and nuclear reactor plant
JP2008249580A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Nuclear power plant, thermal fatigue monitoring method for water supply nozzle, and operation method for nuclear power plant
JP2013120172A (en) * 2011-12-09 2013-06-17 Hitachi-Ge Nuclear Energy Ltd Reactor core isolation cooling system and method for controlling reactor core isolation cooling system

Similar Documents

Publication Publication Date Title
CN102011615B (en) Method and system for controlling moisture separator reheaters
CA1190304A (en) Hrsg damper control
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP2000161014A5 (en)
CN106981322A (en) A kind of system and method for being used to verify HTGR start and stop heaping equipment function
CN104714526A (en) Load control system and method based on condensation water throttling governing pre-estimation
CN112594667A (en) System and method for adjusting reheat steam temperature of high-temperature ultrahigh-pressure reheat dry quenching boiler
CN110207098A (en) Consider the double reheat power generation sets vapor (steam) temperature control method of Boiler Metallic accumulation of heat
Wang et al. Simulation study of frequency control characteristics of a generation III+ nuclear power plant
JPS62138794A (en) Nuclear reactor feedwater-temperature controller
JP5723220B2 (en) Power plant
JP2019124436A (en) Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler
Deng et al. Quantitative analysis of energy storage in different parts of combined heat and power plants
Kluba et al. Control system considerations for APR1400 integrated with thermal energy storage
Liu et al. Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam
CN214580977U (en) High-temperature ultrahigh-pressure reheating dry quenching boiler reheat steam temperature adjusting system
JP2012215340A (en) Steam supply system and steam supply method
JPS6291703A (en) Steaming preventive device for fuel economizer
JPH04140699A (en) Nuclear reactor electric power generator
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
KR101638296B1 (en) Apparatus and method for reactor power control of steam turbine power generation system
JP2023086015A (en) nuclear power plant
CN116951535A (en) Pressurized water reactor nuclear power cogeneration control method and system
JPH01212802A (en) Steam temperature control device for boiler
CN112943391A (en) Concise and efficient flexibility modification research and application of 350MW supercritical coal-fired unit based on thermoelectric decoupling mode