JPS62119316A - Method of controlling temperature of fluidized bed - Google Patents

Method of controlling temperature of fluidized bed

Info

Publication number
JPS62119316A
JPS62119316A JP25778985A JP25778985A JPS62119316A JP S62119316 A JPS62119316 A JP S62119316A JP 25778985 A JP25778985 A JP 25778985A JP 25778985 A JP25778985 A JP 25778985A JP S62119316 A JPS62119316 A JP S62119316A
Authority
JP
Japan
Prior art keywords
fluidized bed
temperature
air
gas
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25778985A
Other languages
Japanese (ja)
Other versions
JPH0718542B2 (en
Inventor
Kunio Kishigami
岸上 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60257789A priority Critical patent/JPH0718542B2/en
Publication of JPS62119316A publication Critical patent/JPS62119316A/en
Publication of JPH0718542B2 publication Critical patent/JPH0718542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To suppress the generation of dioxine or the like by supplying pressure air of a predetermined air excess ratio to a particle dilute layer in the vicinity of the upper surface of the fluidized bed as a part of secondary air in the titled control of a fluidized bed refuse incinerator. CONSTITUTION:Air having an air excess ratio of 0.1-0.3 is supplied to a particle dilute layer 8 placed at the directly upper part of a fluidized bed 2 under a high pressure. By this procedure, air from the fluidized bed 2 and a vaporized burnable gas are mixed and caused to react sufficiently with each other to raise the furnace temperature as shown by curve B, and the fluidized bed 2 is heated with the radiation heat of a combustion flame to maintain the temperature of the fluidized bed at 800 deg.C or more. Particles which have sprung out into a dilute layer 8 come into direct contact with the high temperature gas and the temperature of the particles is raised, and again return to the fluidized bed 2 to maintain the temperature of the fluidized bed 2 to a high value. By this organization, the generation of dioxine or the like can be suppressed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は流動層ごみ焼却炉の運転方法に係″ リ、特
に間欠運転を好適に行なわせる流動層の温度制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of operating a fluidized bed waste incinerator, and particularly to a method of controlling the temperature of a fluidized bed to suitably perform intermittent operation.

〈従来の技術及びその問題点〉 年々増加の一途を辿る都市とみは従来ストーカ式焼却炉
で焼却処理されて来たが、最近になって流動床(層)式
焼却炉が採用され始めた。故障が少ないこと、焼却灰が
乾いた状態で得られ未燃分が少ないこと、間欠運転に便
利なこと等が流動焼却炉の優れた点とされている。
<Conventional technology and its problems> Urban areas, which are increasing year by year, have traditionally been incinerated using stoker type incinerators, but recently fluidized bed type incinerators have begun to be used. The advantages of fluidized incinerators include fewer breakdowns, dry ash with less unburned matter, and ease of intermittent operation.

流動床には粒径Lffiffi程度の珪砂が流動用気体
の供給をしていない所謂静置の状態で約1mの高さに充
填され、これが流動化される。この流動層充填物の熱保
有量が大きいことから停止後の炉内温度降下が緩やかで
、准連続式と呼ばれる間欠運転の炉には特に有利とされ
ている。
The fluidized bed is filled with silica sand having a particle size of about Lffiffi to a height of about 1 m in a so-called stationary state without supply of fluidizing gas, and is fluidized. Because the fluidized bed packing has a large heat retention capacity, the temperature inside the furnace decreases slowly after shutdown, which is particularly advantageous for intermittent operation furnaces called semi-continuous furnaces.

ここで間欠運転とは一日当り例えば昼間8時間あるいは
16時間運転するような操作を言う。
Here, intermittent operation refers to an operation in which the vehicle is operated for 8 hours or 16 hours during the day per day, for example.

しかし従来の運転法では種々の問題があり、更に改善を
要する点も多い。
However, conventional operating methods have various problems, and there are many points that require further improvement.

第1図に流動層ごみ焼却炉における燃焼空気供給位置と
炉内温度の関係を線図として示す。
FIG. 1 shows the relationship between the combustion air supply position and the temperature inside the furnace in a fluidized bed waste incinerator as a diagram.

流動層炉1の下部に設けられた流動層2へ、燃焼用−次
空気5として流動化空気が風箱3を介して供給される。
Fluidized air is supplied as combustion air 5 to a fluidized bed 2 provided at the lower part of the fluidized bed furnace 1 via a wind box 3.

流動層2上の空塔部4へは可燃ガスの完全分解と冷却を
兼ねて二次空気6が供給される。これが通常のごみ流動
層焼却炉の代表的操作モードであり、第1図中にA曲線
で示されるような温度パターンをとる°。A曲線によっ
て炉底から炉頂に到る炉内温度変化の状態を説明する。
Secondary air 6 is supplied to the empty tower section 4 above the fluidized bed 2 for complete decomposition and cooling of the combustible gas. This is the typical operating mode of a normal waste fluidized bed incinerator, which takes a temperature pattern as shown by curve A in FIG. The state of temperature change in the furnace from the bottom to the top will be explained using the A curve.

炉底の風箱3よシ、流動化を兼ねた燃焼−次空気5が流
動層2へ供給される。このとき−次空気5は図示してい
ない押込ブロワによって圧力変化され50℃前後に昇温
されている。場合によっては図示していない空気予熱器
により100〜250℃程度まで加熱されていることも
ある。
From the wind box 3 at the bottom of the furnace, combustion air 5 which also serves as fluidization is supplied to the fluidized bed 2. At this time, the pressure of the secondary air 5 is changed by a forced blower (not shown), and the temperature is raised to around 50°C. In some cases, it may be heated to about 100 to 250°C by an air preheater (not shown).

いずれにしても風箱6からの一次空気は流動層2内に流
入すると、流動媒体と接触して瞬時に流動層2と同一の
温度600〜700℃まで昇温される。
In any case, when the primary air from the wind box 6 flows into the fluidized bed 2, it contacts the fluidized medium and is instantly heated to the same temperature as the fluidized bed 2, 600 to 700°C.

流動層2を出た空気は流動層2内もしくは空塔部4で気
化したごみの中の可燃分よりの可燃性ガスと接触して燃
焼反応を起こし炉頂に向うに従って温度上昇し、次いで
炉頂近くの二次空気乙の供給によって可燃分の完全燃焼
により供給個所で最高温度(図中では900℃)となり
混合゛され温度の平均化がされ、冷却され(図中では8
00℃)で炉外へ流出する。
The air leaving the fluidized bed 2 comes into contact with combustible gas from the combustible content in the waste vaporized in the fluidized bed 2 or in the empty tower section 4, causing a combustion reaction, and the temperature rises toward the top of the furnace. By supplying secondary air near the top, the combustible matter completely burns, reaching the highest temperature at the supply point (900°C in the figure), mixing, averaging the temperature, and cooling (800°C in the figure).
00℃) and flows out of the furnace.

A曲線に示されるように、流動層炉による従来のごみ焼
却の運転操作モードには下記のような欠点があった。
As shown in curve A, the conventional operating mode of waste incineration using a fluidized bed furnace has the following drawbacks.

まず流動層の温度はごみ焼却の場合、流動層上の燃焼ガ
スと流動媒体粒子の対流伝熱及び輻射伝熱によって支配
される。ごみの流動焼却の場合は一次空気量は過剰空気
率にして[19〜11程度が供給され、それ以上の必要
分は二次空気6として供給されるが、このような条件下
ではへ曲線となる。このモードでは流動層温度は600
〜700℃程度にしか保持できず次の理由から流動層炉
の欠点とされていた。
First, in the case of waste incineration, the temperature of the fluidized bed is controlled by convective heat transfer and radiation heat transfer between the combustion gas and fluidized medium particles on the fluidized bed. In the case of fluidized waste incineration, the amount of primary air is supplied at an excess air rate of about 19 to 11, and the excess air is supplied as secondary air 6, but under these conditions, the Become. In this mode, the fluidized bed temperature is 600
The temperature can only be maintained at about 700°C, which is considered a drawback of fluidized bed furnaces for the following reasons.

流動層式ごみ焼炉は准連続式と称して一日当り8〜16
時間運転される・(ツチ式のものが多く、翌日の炉スタ
ートのことを考えると流動層温度は高い方が良く、75
0〜850℃であれば翌日スタート時の層温は600℃
以上であり、油助燃をすることなく直ぐにごみを投入し
て定常運転に入れろ利点がある。しかし流動層運転温度
が600〜700℃の時は翌日層温は500℃以下に降
下してしまう。この場合には層温度600〜650℃ま
で油助燃による昇温作業が必要となる。これが第1の欠
点である。
The fluidized bed type waste incinerator is called a semi-continuous type and burns 8 to 16 kg per day.
The temperature of the fluidized bed should be high, considering the start of the furnace the next day.
If it is 0 to 850℃, the layer temperature at the start of the next day will be 600℃.
As described above, there is an advantage in immediately putting in garbage and starting steady operation without using oil supplementary combustion. However, when the fluidized bed operating temperature is 600 to 700°C, the next day the bed temperature drops to 500°C or less. In this case, it is necessary to raise the bed temperature to 600 to 650°C by auxiliary combustion of oil. This is the first drawback.

最近になってごみ焼却の新しい公害要素としてダイオキ
シン等の問題が発生して来た。ダイオキシンの毒性には
極めて激しいものがあるが、熱的には不安定で800℃
以上では容易に分解することが知られており、反応(滞
留)時間も1秒程度で十分であることも知られている。
Recently, problems such as dioxins have emerged as new pollution factors in waste incineration. Although the toxicity of dioxin is extremely severe, it is thermally unstable and can reach temperatures of 800°C.
It is known that the above decomposes easily, and it is also known that a reaction (residence) time of about 1 second is sufficient.

ごみ焼却におけるダイオキシン問題はガス側のフライア
ッシュ及び燃焼残置(焼却灰)に関係する。
The dioxin problem in waste incineration is related to fly ash and combustion residue (incineration ash) on the gas side.

反応温度が低いと発生しやすいと言われ、実際にも確認
されている。
It is said that this occurs more easily when the reaction temperature is low, and it has been confirmed in practice.

これらの欠点を除く目的で、流動層直上部に高圧噴射空
気の供給を行ない、第1図に示した8曲線の運転を行な
わさせるものである。
In order to eliminate these drawbacks, high-pressure injection air is supplied directly above the fluidized bed to allow operation along the 8 curves shown in FIG. 1.

〈発明の目的〉 本発明は従来の流動層ごみ焼却炉の運転操作上の欠点を
なくし、運転停止前の流動層温度を高く保持し、間欠運
転を容易にし且つ経済性を計り、ダイオキシン等の発生
を抑制する技術に関する。
<Objective of the Invention> The present invention eliminates the operational disadvantages of conventional fluidized bed waste incinerators, maintains a high fluidized bed temperature before shutting down the operation, facilitates intermittent operation, is economical, and eliminates dioxins, etc. Regarding technology to suppress outbreaks.

く手段の概要〉 流動層の上面上の粒子希薄層に高圧噴射空気を供給する
ことにより、可燃性ガスの混合撚7暁を促進し、層直上
温度を高温に保ち、これによって流動層温度を従来法に
よる運転温度より高温に保持する。
Outline of the means for achieving this> By supplying high-pressure injection air to the particle-diluted layer on the upper surface of the fluidized bed, the mixing and twisting of the combustible gas is promoted and the temperature directly above the layer is maintained at a high temperature, thereby lowering the fluidized bed temperature. It is maintained at a higher temperature than the operating temperature of conventional methods.

本発明の一実施例を第1図を用いて説明する。An embodiment of the present invention will be described with reference to FIG.

・流動層直上部に高圧噴射空気供給ロアを設け、これよ
り比較的少量の高圧空気を噴射供給することにより流動
層直上部を高温に保持し、流動媒体粒子との対流及び輻
射伝熱を活発にし、流動層温度を従来運転法に比較して
高温に保持し、間欠運転を容易ならしめ、ダイオキシン
等の完全分解を計る。
・A high-pressure injection air supply lower is provided just above the fluidized bed, and by injecting and supplying a relatively small amount of high-pressure air, the area directly above the fluidized bed is maintained at a high temperature, and convection and radiation heat transfer with the fluidized medium particles is activated. The temperature of the fluidized bed is maintained at a higher temperature than in conventional operation methods, making intermittent operation easier and ensuring complete decomposition of dioxins, etc.

第1図中の8曲線が本運転方法による炉内温変曲線であ
る。流動層炉へ供給されたごみ中可燃分は流動層内もし
くは層直上で速やかに気化(ガス化)し流動層下方から
の空気によって着火燃焼する。通常都市とみはその熱量
によって異なるが、過剰空気率1.2〜2.5の範囲で
燃焼処理される。この中、−火燃焼空気としての流動化
空気は前記の如くα9〜1.1の範囲で供給される。従
って二次空気としては過剰空気率にして0.1〜1.6
相当分が流動層上部の空塔部4へ供給される。しかし二
次空気を本発明の如く流動層直上部に全量供給すると、
二次空気の供給量が過剰空気率で0.4を超過する点近
辺から、ガス温度が局部的に高くなり、NOx濃度が急
激に上昇するという欠点があった。
The 8 curves in FIG. 1 are the furnace temperature change curves according to this operating method. The combustible components of the waste supplied to the fluidized bed furnace are quickly vaporized (gasified) in or directly above the fluidized bed, and are ignited and combusted by air flowing from below the fluidized bed. Normally, urban air is burned at an excess air ratio of 1.2 to 2.5, although it varies depending on the amount of heat. Among these, the fluidizing air as combustion air is supplied in the range of α9 to 1.1 as described above. Therefore, as secondary air, the excess air rate is 0.1 to 1.6.
A corresponding portion is supplied to the empty column section 4 above the fluidized bed. However, if the entire amount of secondary air is supplied directly above the fluidized bed as in the present invention,
There is a drawback that the gas temperature becomes locally high from around the point where the supply amount of secondary air exceeds the excess air ratio of 0.4, and the NOx concentration rapidly increases.

流動層の見掛は比重は、流動粒子が珪砂の場合、約1で
ある。従って空気と可燃分の気化したガス体との接触は
、通常の気体が充満した空間と比較して、流動層の場合
は悪い。いいかえれば流動層内に存在する空気中の酸素
が、全量気化ガスと反応することは不可能である。これ
が原因となって第1図中のA曲線に示される如く、流動
層温度が低い結果となり、層上べ出てから、空塔部で反
応して温度が上昇することとなる。
The apparent specific gravity of the fluidized bed is approximately 1 when the fluidized particles are silica sand. Therefore, the contact between air and the vaporized gaseous body of combustible substances is worse in a fluidized bed than in a normal gas-filled space. In other words, it is impossible for all the oxygen in the air present in the fluidized bed to react with the vaporized gas. This results in a low fluidized bed temperature, as shown by curve A in FIG. 1, and after the fluid has evaporated to the top of the bed, a reaction occurs in the empty column and the temperature rises.

この欠点を除くために本発明では、流動層直上部の粒子
希薄層8へ空気過剰率で0.1〜0.5に相当する空気
を供給し、更にこれを高圧で供給することによシ、流動
層からの空気と気化した可燃性ガスとを混合させて十分
に反応させ、8曲線の温度を上昇させ、流動層を燃焼火
炎の輻射熱で加熱し流動層温度を高<800℃以上に保
持する。また流動層の上面は水面のように気体との間に
明確に区画されているものではなく、流動層から飛び跳
ねた粒子が沸騰水のように踊っており所謂希薄層8を形
成している。この飛び跳ねた粒子が噴出空気による高温
ガスと直接接触し昇温し、再び重力で流動層に戻υ層温
を高める効果を奏するものである。
In order to eliminate this drawback, in the present invention, air corresponding to an air excess ratio of 0.1 to 0.5 is supplied to the particle diluted layer 8 immediately above the fluidized bed, and this is further supplied at high pressure. , the air from the fluidized bed and the vaporized combustible gas are mixed and reacted sufficiently, the temperature of the 8th curve is raised, and the fluidized bed is heated by the radiant heat of the combustion flame to raise the fluidized bed temperature to 800℃ or higher. Hold. Further, the upper surface of the fluidized bed is not clearly separated from the gas like the water surface, but particles that have jumped from the fluidized bed dance like boiling water, forming a so-called dilute layer 8. These flying particles come into direct contact with the high-temperature gas produced by the ejected air, raise their temperature, and then return to the fluidized bed by gravity, which has the effect of increasing the bed temperature.

また噴射空気を空気過剰率0.1〜0,6と少なくする
ことはNOxの発生を抑制する。
Further, reducing the amount of injected air to an excess air ratio of 0.1 to 0.6 suppresses the generation of NOx.

との操作によって流動層温度を750℃以上に保持する
ことが極めて容易となる。
By this operation, it becomes extremely easy to maintain the fluidized bed temperature at 750° C. or higher.

流動層温度を高く保つことの利点は、間欠運転の場合、
翌日も流動層温度を油を燃焼させて加温することなく運
転に入れることである。
The advantage of keeping the fluidized bed temperature high is in the case of intermittent operation.
The next day, the fluidized bed should be operated without heating the oil by burning the oil.

〈発明の効果〉 本発明を実施することにより、流動層の温度が800℃
以上で運転停止したときは、これが日常運転の起動停止
である所謂間欠運転では、温度降下が少なく起動に際し
直接ごみを供給しても容易に起動でき、助燃燃料を不要
とする。
<Effect of the invention> By implementing the present invention, the temperature of the fluidized bed can be reduced to 800°C.
When the operation is stopped in the above manner, in so-called intermittent operation, which is a start-up/stop of daily operation, the temperature drop is small and it is easy to start even if garbage is directly supplied at the time of start-up, and auxiliary fuel is not required.

また流動層よυ抜き出す焼却灰中のダイオキシン等の猛
毒性物質は高温により完全に分解できる。更に流動層上
ガス温度を瞬時に高温にすることにより、高温ガス中の
フライアッシュ滞留時間を長くして、その中に含有され
るダイオキシン等の分解の完全化が計れる等の特長があ
る。
In addition, highly toxic substances such as dioxins in the incineration ash extracted through the fluidized bed can be completely decomposed at high temperatures. Furthermore, by instantaneously raising the gas temperature above the fluidized bed to a high temperature, the residence time of the fly ash in the high-temperature gas can be extended, and the decomposition of dioxins and the like contained therein can be completely completed.

なお流動媒体に石灰石粒子を用いて脱硫を行なう場合、
脱硫反応の最適温度は800〜850℃にあることはこ
の発明の効果として特記すべきことである。
When desulfurization is performed using limestone particles as a fluid medium,
It is particularly noteworthy as an effect of this invention that the optimum temperature for the desulfurization reaction is 800 to 850°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気供給位置と炉内温度の関係を示す線図であ
る。 1・・・流動層炉   2・・・流動層3・・・風 箱
    4・・・空塔部5・・・−次空気   6・・
・二次空気7・・・噴射空気
FIG. 1 is a diagram showing the relationship between the air supply position and the furnace temperature. 1...Fluidized bed furnace 2...Fluidized bed 3...Wind box 4...Sky tower section 5...-Next air 6...
・Secondary air 7...Injection air

Claims (1)

【特許請求の範囲】 1、流動層炉でごみを焼却する方法において、流動層上
面近傍の粒子希薄層に圧力空気を二次空気の一部とし空
気過剰係数相当で0.1〜0.3の量を噴出供給するこ
とを特徴とする流動層温度制御方法。 2、流動層温度を800℃以上に保持し間欠運転をする
ことを特徴とする特許請求の範囲第1項記載の流動層温
度制御方法。
[Claims] 1. In a method of incinerating waste in a fluidized bed furnace, pressurized air is used as part of secondary air in a particle diluted layer near the top surface of the fluidized bed, and the air excess coefficient is equivalent to 0.1 to 0.3. A fluidized bed temperature control method characterized by supplying an amount of . 2. The fluidized bed temperature control method according to claim 1, wherein the fluidized bed temperature is maintained at 800° C. or higher and the fluidized bed is operated intermittently.
JP60257789A 1985-11-19 1985-11-19 Fluidized bed temperature control method Expired - Lifetime JPH0718542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257789A JPH0718542B2 (en) 1985-11-19 1985-11-19 Fluidized bed temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257789A JPH0718542B2 (en) 1985-11-19 1985-11-19 Fluidized bed temperature control method

Publications (2)

Publication Number Publication Date
JPS62119316A true JPS62119316A (en) 1987-05-30
JPH0718542B2 JPH0718542B2 (en) 1995-03-06

Family

ID=17311126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257789A Expired - Lifetime JPH0718542B2 (en) 1985-11-19 1985-11-19 Fluidized bed temperature control method

Country Status (1)

Country Link
JP (1) JPH0718542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493503A (en) * 1990-08-07 1992-03-26 Mitsubishi Heavy Ind Ltd Method of operating fluidized bed combustion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393068U (en) * 1976-12-28 1978-07-29
JPS56103740U (en) * 1980-01-09 1981-08-13
JPS58175342U (en) * 1982-05-20 1983-11-24 バブコツク日立株式会社 Fluidized fluid furnace
JPS6127096U (en) * 1984-07-24 1986-02-18 九吾 延原 Fluidized bed incinerator
JPS6134329U (en) * 1984-07-31 1986-03-03 株式会社 栗本鐵工所 Fluidized bed incinerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393068U (en) * 1976-12-28 1978-07-29
JPS56103740U (en) * 1980-01-09 1981-08-13
JPS58175342U (en) * 1982-05-20 1983-11-24 バブコツク日立株式会社 Fluidized fluid furnace
JPS6127096U (en) * 1984-07-24 1986-02-18 九吾 延原 Fluidized bed incinerator
JPS6134329U (en) * 1984-07-31 1986-03-03 株式会社 栗本鐵工所 Fluidized bed incinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493503A (en) * 1990-08-07 1992-03-26 Mitsubishi Heavy Ind Ltd Method of operating fluidized bed combustion device

Also Published As

Publication number Publication date
JPH0718542B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
CA2102730A1 (en) Fluidized bed reactor and system and method utilizing same
US5103773A (en) Fluid bed furnace
JP2006300501A (en) Downward moving bed type furnace
US5553554A (en) Waste disposal and energy recovery system and method
US3680501A (en) Incinerator
JP3033015B2 (en) Semi-dry distillation gasification incineration method and apparatus
JPS62119316A (en) Method of controlling temperature of fluidized bed
JP2000283427A (en) Reaction type refuse incinerating furnace and method for incinerating refuse using the same
JP3004629B1 (en) Start control method and stop control method for partial combustion furnace, and start / stop control device
JP2005308372A (en) Fluidized bed furnace
JP3824627B1 (en) Method for melting waste asbestos
JP2001065844A (en) Method and apparatus for spheroidizing incineration ash
JPH03279705A (en) Incinerator of combustion temperature controlling type
JP3372526B2 (en) Waste treatment method and apparatus
JPS5960106A (en) Low nox burning device
JP2007271206A (en) Operation control method of gasification melting system, and system
JPH10185137A (en) Semi-dry distillation gasification incineration method and device thereof
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JPH08285259A (en) Method and device for combustion of fluidized bed type waste incineration furnace
JPH0571707A (en) Boiler with fluidized bed
JPH0979542A (en) Superheated steam making apparatus utilizing incineration heat of waste
JPS6321404A (en) Starting method of powdered coal-burning boiler
JPS61208420A (en) Method of combustion in dry retorting distillation gasification furnace
JP2000240917A (en) Incineration furnace
JP2000297917A (en) Municipal refuse incinerating device and its operation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term