JPH0979542A - Superheated steam making apparatus utilizing incineration heat of waste - Google Patents

Superheated steam making apparatus utilizing incineration heat of waste

Info

Publication number
JPH0979542A
JPH0979542A JP26247495A JP26247495A JPH0979542A JP H0979542 A JPH0979542 A JP H0979542A JP 26247495 A JP26247495 A JP 26247495A JP 26247495 A JP26247495 A JP 26247495A JP H0979542 A JPH0979542 A JP H0979542A
Authority
JP
Japan
Prior art keywords
steam
combustion
pyrolysis
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26247495A
Other languages
Japanese (ja)
Other versions
JP3305172B2 (en
Inventor
Hirotoshi Horizoe
浩俊 堀添
Susumu Nishikawa
進 西川
Yoshihito Shimizu
義仁 清水
Shizuo Yasuda
静生 保田
Hideta Ogawa
秀太 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26247495A priority Critical patent/JP3305172B2/en
Publication of JPH0979542A publication Critical patent/JPH0979542A/en
Application granted granted Critical
Publication of JP3305172B2 publication Critical patent/JP3305172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high temperature/high pressure superheated steam while preventing high temperature corrosion of a boiler tube as caused by chlorine. SOLUTION: This superheated steam making apparatus has a thermal decomposition means 1 (for thermal decomposition reaction within a space at a temp. of at least 300 deg.C), a char combustion means 10, a first steam making means 24 (for obtaining steam at a temp. of at most 400 deg.C) and a second steam making means 20. On the outlet side 7 of the thermal decomposition means 1, air less in quantity than the air to be supplied to a reheating means 40, specifically, the air less than the theoretical air quantity is introduced into a thermal decomposition gas path on the outlet side of the thermal decomposition means to prevent adhesion of tar and coking in an outlet line. Then, a sufficient air is supplied to the reheating means 40 provided in the outlet line 7 to accomplish complete combustion of a thermal decomposition gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、都市ごみや産業廃棄物等を焼却
し、その燃焼排ガスの熱により蒸気を製造して、例えば
該蒸気を発電プラント等に用いる過熱蒸気製造に関する
発明である。
[0001] The present invention is an invention relating to the production of superheated steam in which municipal waste, industrial waste, etc. are incinerated, steam is produced by the heat of the combustion exhaust gas, and the steam is used in, for example, a power plant.

【0002】[0002]

【従来の技術】従来より都市ごみ等の廃棄物を焼却する
焼却装置には流動床焼却装置が多く用いられ、かかる装
置は流動床焼却炉内の分散板(例えば多孔板)上に収容
された砂等の流動媒体に分散板下方より空気または焼却
排ガス等を吹き込むことにより流動媒体を流動化すると
ともに加熱し、そのようにして形成された流動床内に都
市ごみ等の廃棄物を投入して燃焼させる。この燃焼によ
り発生した燃焼ガスは、燃焼ガス出口ラインを経てボイ
ラに至り、該ボイラ内で温水との熱接触により蒸気を発
生させ、該蒸気を発電プラント等のタービン駆動源とし
て用いるものである。
2. Description of the Related Art Conventionally, fluidized bed incinerators are often used as incinerators for incinerating waste such as municipal solid waste, and such apparatuses are accommodated on a dispersion plate (for example, a perforated plate) in a fluidized bed incinerator. The fluidized medium is fluidized and heated by blowing air or incineration exhaust gas etc. from below the dispersion plate into the fluidized medium such as sand, and waste such as municipal solid waste is thrown into the fluidized bed thus formed. Burn. The combustion gas generated by the combustion reaches a boiler via a combustion gas outlet line, generates steam by thermal contact with hot water in the boiler, and uses the steam as a turbine drive source of a power plant or the like.

【0003】[0003]

【発明が解決しようとする課題】さてかかる都市ごみ等
の廃棄物中には塩ビプラスチック等の含塩素有機化合物
が混入しており、可燃分中にC1として約0.2〜0.
5%含有されている。そして都市ごみ等の廃棄物中に混
入した塩ビプラスチック等に含まれる塩素は、燃焼によ
ってHC1となり(通常、都市ごみ燃焼排ガス中のHC
1は約500〜1000ppm)、焼却炉の後流に設置さ
れた蒸気発生用ボイラのチューブに作用してこれを腐食
させる。特にチューブ表面温度が約350℃以上では温
度の増加とともに高温腐食が顕著となる。このため、従
来、チューブ表面温度は350℃以下にする必要があ
り、製造される蒸気の温度は約300℃が限界であっ
た。その結果、従来のごみ焼却による発電効率は約15
%以下であって、塩素を殆ど含有しない重油やLNG等
を燃料とし、ボイラチューブ温度を500〜600℃に
できるプラントの発電効率約40%に比べて著しく低
く、その改善が強く望まれていた。
The waste such as municipal waste contains a chlorine-containing organic compound such as vinyl chloride plastic, and the combustible content is about 0.2 to 0.
Contains 5%. Then, chlorine contained in PVC plastic mixed in the waste such as municipal waste becomes HC1 by combustion (usually, HC in exhaust gas from combustion of municipal waste is
1 is about 500 to 1000 ppm), which acts on the tube of the steam generating boiler installed downstream of the incinerator to corrode it. In particular, when the tube surface temperature is about 350 ° C. or higher, high-temperature corrosion becomes remarkable as the temperature increases. For this reason, conventionally, the tube surface temperature had to be 350 ° C. or less, and the temperature of the produced steam was limited to about 300 ° C. As a result, the power generation efficiency of conventional waste incineration is about 15
% Or less and the fuel efficiency is about 40%, which is significantly lower than the power generation efficiency of a plant that uses a heavy oil containing almost no chlorine, LNG, etc. as a fuel, and the boiler tube temperature can be set to 500 to 600 ° C., and its improvement has been strongly desired. .

【0004】本発明者らはかかる技術的課題に鑑み、先
の出願において(出願番号:特願平6−324843
号、特願平7−140484号)、前記焼却炉としての
流動床内で、温度300〜700℃で処理したところ、
該流動床からの未分解残渣および流動媒体から成るチャ
ー混合物からは実質的に塩素を含有しない未分解残渣が
得られることを見出した。すなわち、廃棄物中に含まれ
ていた塩素は、実質的に全て熱分解ガスに含まれて、熱
分解ガス出口ラインに排出されることを見出した。
In view of such technical problems, the inventors of the present invention have filed in the previous application (application number: Japanese Patent Application No. 6-324843).
No. 7-140484), in a fluidized bed as the incinerator at a temperature of 300 to 700 ° C.,
It has been found that a char mixture consisting of the undecomposed residue from the fluidized bed and the fluid medium gives an undecomposed residue which is substantially free of chlorine. That is, it was found that chlorine contained in the waste is substantially contained in the pyrolysis gas and is discharged to the pyrolysis gas outlet line.

【0005】そして、かかる知見に基づき、焼却装置側
には、温度300℃以上の空間内に廃棄物を供給して熱
分解反応を行なわせ、その反応により発生した熱分解ガ
スと未分解残渣および流動媒体から成るチャー混合物と
不燃物とを互いに分離する第1の流動床(以下熱分解手
段という)とともに、前記チャー混合物を空気または燃
焼排ガスによって上方に吹き飛ばしながら前記未分解残
渣を完全燃焼させる第2の流動床(以下チャー燃焼手段
という)を設け、一方ボイラ側には第1及び第2のボイ
ラを実質的に直列に接続し、低段側のボイラで前記熱分
解ガスの熱を利用して約400℃以下、具体的には30
0℃前後の温水または蒸気を製造(以下第1の蒸気製造
手段という)し、次に該300℃前後の温水または蒸気
を第2のボイラに導入して前記チャー燃焼手段より得ら
れた燃焼ガスの熱により略500℃若しくはそれ以上の
過熱蒸気を製造(以下第2の蒸気製造手段という)する
ようにした過熱蒸気製造が提案されている。
Based on such knowledge, waste is supplied to the incinerator side in a space having a temperature of 300 ° C. or higher to cause a thermal decomposition reaction, and the thermal decomposition gas generated by the reaction and undecomposed residue and With a first fluidized bed (hereinafter referred to as a thermal decomposition means) for separating a char mixture composed of a fluid medium and an incombustible substance from each other, the char mixture is completely blown up by air or combustion exhaust gas while completely burning the undecomposed residue. A second fluidized bed (hereinafter referred to as char combustion means) is provided, while the first and second boilers are connected in series on the boiler side, and the heat of the pyrolysis gas is utilized by the low-stage boiler. About 400 ° C or less, specifically 30
Combustion gas obtained by the char combustion means by producing hot water or steam at around 0 ° C. (hereinafter referred to as first steam producing means), and then introducing the hot water or steam at around 300 ° C. into a second boiler It has been proposed to manufacture superheated steam by manufacturing superheated steam at a temperature of approximately 500 ° C. or higher (hereinafter referred to as a second steam manufacturing means) by the heat of.

【0006】本発明は、かかる先願技術を更に発展さ
せ、塩素によるボイラチューブの高温腐食を防止しなが
ら高温・高圧の過熱蒸気を効率的に得ることのできる過
熱蒸気の製造にかかる発明を提供する事にある。本発明
の他の目的は前記チャー燃焼手段におけるチャー燃焼と
熱分解手段における熱分解を効率良く行い、先願技術に
おいて比較して更に効率良く塩素の低減ともに且つ高温
度の過熱蒸気を得ることの出来る過熱蒸気の製造にかか
る発明を提供する事にある。
The present invention further develops the above-mentioned prior art and provides an invention relating to the production of superheated steam capable of efficiently obtaining high temperature and high pressure superheated steam while preventing high temperature corrosion of a boiler tube due to chlorine. There is something to do. Another object of the present invention is to efficiently perform char combustion in the char combustion means and pyrolysis in the pyrolysis means, and to more efficiently reduce chlorine and obtain high temperature superheated steam as compared with the prior art. Another object of the present invention is to provide an invention relating to the production of superheated steam.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
温度300℃以上、好ましくは温度300〜700℃の
空間内に廃棄物を供給して熱分解反応を行なわせ、その
反応により発生した熱分解ガスと未分解残渣および流動
媒体から成るチャー混合物と不燃物とを互いに分離する
例えば流動床等の熱分解手段と、空気または燃焼排ガス
によって前記チャー混合物を上方に吹き飛ばしながら前
記未分解残渣を完全燃焼させる例えば流動床や熱分解炉
等のチャー燃焼手段と、前記熱分解ガスを直接若しくは
再燃焼させた後、その熱を利用して約400℃以下、具
体的には略300〜350℃以下の温水または蒸気を製
造する第1の蒸気製造手段と、前記チャー燃焼手段によ
り得られた燃焼ガスの熱により前記第1の蒸気製造手段
で製造された温水または蒸気を過熱蒸気とする第2の蒸
気製造手段を含み、前記熱分解ガス通路中に、空気を導
入し、予燃焼又は/及びタール燃焼を行う事をことを特
徴とするものである。
According to the first aspect of the present invention,
Waste is supplied into a space having a temperature of 300 ° C. or higher, preferably 300 to 700 ° C. to cause a pyrolysis reaction, and a char mixture composed of a pyrolysis gas generated by the reaction, an undecomposed residue and a fluidized medium and non-combustible. A thermal decomposition means such as a fluidized bed for separating things from each other, and a char combustion means such as a fluidized bed or a thermal decomposition furnace for completely burning the undecomposed residue while blowing the char mixture upward by air or combustion exhaust gas, A first steam producing means for producing hot water or steam having a temperature of about 400 ° C. or less, specifically about 300 to 350 ° C. or less by utilizing the heat after directly or re-combusting the pyrolysis gas; A second steam producing means for converting the hot water or the steam produced by the first steam producing means into superheated steam by the heat of the combustion gas obtained by the char combustion means. The pyrolysis gas passageway, in which air was introduced, characterized in that to conduct the pre-combustion and / or tar combustion.

【0008】請求項2記載の発明は、前記発明を更に具
体化したもので、前記熱分解手段出口側の熱分解ガス通
路中に、理論空気量より少ない量の空気を導入する事を
特徴とし、例えば前記熱分解手段と第1の蒸気製造手段
との間に、該熱分解ガスの再加熱を行う再加熱手段を設
けるとともに、前記熱分解手段と再加熱手段の間の前記
熱分解ガス通路中に、前記再加熱手段に供給する空気よ
り少ない量の空気を導入する事を特徴とするものであ
る。
According to a second aspect of the present invention, the above-mentioned invention is further embodied, and an amount of air smaller than the theoretical amount of air is introduced into the thermal decomposition gas passage on the outlet side of the thermal decomposition means. For example, a reheating means for reheating the pyrolysis gas is provided between the pyrolysis means and the first steam producing means, and the pyrolysis gas passage between the pyrolysis means and the reheating means is provided. It is characterized in that a smaller amount of air than the air supplied to the reheating means is introduced therein.

【0009】かかる発明によれば前記いずれの請求項に
おいても熱分解手段で分離されたチャー混合物には塩素
が実質的に含まれないので、これを第2の蒸気製造手段
の過熱源として用い500℃以上の過熱蒸気を得るよう
に構成しても、機器の高温腐食は生じない。
According to the above invention, in any of the above claims, the char mixture separated by the thermal decomposition means does not substantially contain chlorine, so that it is used as a superheat source for the second steam producing means. Even if it is configured to obtain superheated steam above ℃, high temperature corrosion of equipment does not occur.

【0010】また第1の蒸気製造手段の加熱源には、塩
素を含む熱分解ガスを用いるも、該熱を利用して約40
0℃以下、具体的には略300〜350℃以下の温水ま
たは蒸気を製造を製造するものである為に、高温腐食の
温度以下の温度しか加熱しないために、ボイラチューブ
等の腐食の恐れはない。
Although a pyrolyzed gas containing chlorine is used as the heat source of the first steam producing means, the heat is used to generate about 40
Since the production of hot water or steam at 0 ° C. or lower, specifically about 300 to 350 ° C. or lower, only the temperature not higher than the high temperature corrosion temperature is heated. Therefore, there is no risk of corrosion of the boiler tube or the like. Absent.

【0011】さて前記熱分解手段よりの出口ガスはその
出口温度が350〜450℃前後の為に、タール分を含
んだガスが出てくる場合があり、そのタール分が出口ラ
インに付着する恐れがある。又出口温度が出口温度が3
50〜450℃では300℃前後の蒸気を製造する過熱
源としては不十分である。
Since the outlet gas from the thermal decomposition means has an outlet temperature of about 350 to 450 ° C., a gas containing a tar component may come out, and the tar component may adhere to the outlet line. There is. Also, the outlet temperature is 3
At 50 to 450 ° C, it is insufficient as a superheat source for producing steam at around 300 ° C.

【0012】そこで請求項1記載の発明では、前記熱分
解ガス通路中に、空気を導入し、予燃焼又は/及びター
ル燃焼を行うようにしている。更に、本発明は、前記再
加熱とタール燃焼を分離し、前記熱分解手段出口側の熱
分解ガス通路中に、理論空気量より少ない量の適度の空
気を導入して、タール等の燃焼により出口ラインにおけ
るタール付着防止やコーキング防止を図り、次に、必要
に応じて前記出口ラインに十分な空気を供給して該熱分
解ガスの完全燃焼を行うものである。これにより出口ラ
インにおけるタール付着防止やコーキング防止と共に、
第1の蒸気製造手段に導入される熱分解ガス温度を高く
設定できるために、該製造手段で製造される300℃前
後の蒸気を多量に製造できる。この場合、熱分解手段出
口側に導入されるタール燃焼用空気21(空気過剰率
B)は、その下流側の熱分解ガスの完全燃焼を行う空気
21(空気過剰率A)に比較して大幅に少なく設定する
のが良く、具体的には 空気過剰率A:空気過剰率B=(0.6〜1.05):
(0.05〜0.3)、 好ましくはA:B=0.9:0.1前後に設定するのが
よい。ここで空気過剰率とは(供給空気量/理論空気
量)をいう。
Therefore, in the first aspect of the invention, air is introduced into the pyrolysis gas passage to perform pre-combustion and / or tar combustion. Furthermore, the present invention separates the reheating and the tar combustion, and introduces an appropriate amount of air, which is smaller than the theoretical air amount, into the pyrolysis gas passage on the outlet side of the pyrolysis means to burn tar or the like. It is intended to prevent tar from adhering to the outlet line and prevent coking, and then, if necessary, supply sufficient air to the outlet line to completely burn the pyrolysis gas. This prevents tar adhesion and coking in the exit line,
Since the temperature of the pyrolysis gas introduced into the first steam producing means can be set high, it is possible to produce a large amount of steam at around 300 ° C. produced by the producing means. In this case, the tar combustion air 21 (air excess ratio B) introduced on the outlet side of the thermal decomposition means is significantly larger than the air 21 (air excess ratio A) on the downstream side thereof for complete combustion of the pyrolysis gas. It is better to set it to a small value, specifically, excess air ratio A: excess air ratio B = (0.6 to 1.05):
(0.05 to 0.3), preferably A: B = 0.9: 0.1. Here, the excess air ratio means (supply air amount / theoretical air amount).

【0013】請求項3記載の発明においては、前記第1
若しくは第2の蒸気製造手段で加熱された蒸気若しくは
前記いずれかの製造手段に導入される温水若しくは蒸気
の一部を、前記燃焼手段の高温域側に配した熱交換手段
に適宜導入することを特徴とするものである。即ち、前
記燃焼手段では空気または燃焼排ガスによってチャー混
合物を上方に吹き飛ばしながら未分解残渣を分解させる
ので、その燃焼ガス中には高温の流動媒体が含まれる。
In a third aspect of the invention, the first
Alternatively, the steam heated by the second steam producing means or the hot water or part of the steam introduced into any one of the producing means may be appropriately introduced into the heat exchange means arranged on the high temperature side of the combustion means. It is a feature. That is, in the combustion means, the char mixture is blown upward by air or combustion exhaust gas to decompose the undecomposed residue, so that the combustion gas contains a high-temperature fluid medium.

【0014】そこで本発明においては、その高温の流動
媒体を利用して、前記チャー燃焼手段の高温域側に熱交
換手段を配設して、前記第1若しくは第2の蒸気製造手
段で加熱された蒸気若しくは前記いずれかの製造手段に
導入される温水若しくは蒸気の一部と熱交換する事によ
り、後記する作用を営むことが出来る。即ち、前記第1
の蒸気製造手段に導入される温水を前記熱交換手段に導
入してある程度の昇温を図ることにより、熱交換手段−
第1の蒸気製造手段−第2の蒸気製造手段と、実質的に
直列の3段階昇温を図ることが出来、多量且つ十分加熱
された過熱蒸気を得ることが出来る。
Therefore, in the present invention, by utilizing the high temperature fluid medium, a heat exchange means is disposed on the high temperature side of the char combustion means and is heated by the first or second steam producing means. By exchanging heat with the steam, or with part of the hot water or steam introduced into any of the above-mentioned manufacturing means, the operation described below can be performed. That is, the first
By introducing the hot water introduced into the steam producing means into the heat exchanging means to raise the temperature to some extent, the heat exchanging means-
It is possible to increase the temperature in three stages substantially in series with the first steam producing means and the second steam producing means, and to obtain a large amount of sufficiently heated superheated steam.

【0015】又、前記第2の蒸気製造手段に導入される
温水又は蒸気を前記第1の蒸気製造手段とともに、前記
熱交換手段にパラレルに導入することにより、第2の蒸
気製造手段の加熱量を多くする事が出来、多量の過熱蒸
気を得ることが出来る。
Further, the hot water or steam introduced into the second steam producing means is introduced into the heat exchanging means in parallel with the first steam producing means so that the heating amount of the second steam producing means is increased. Can be increased and a large amount of superheated steam can be obtained.

【0016】又前記チャー燃焼手段の高温域側に熱交換
手段を配設する事は、950〜1300℃前後と無用に
高くなり、そのまま出口ラインに流すと通常の金属ライ
ンでは温度的に持たないが、これを800〜950℃に
落とすことにより通常の耐熱金属ラインの利用が可能と
なる。又前記のように800〜950℃に落としても第
2の蒸気製造手段における蒸気温度を500〜600℃
に維持する上で何の支障もない。
Further, disposing the heat exchanging means on the high temperature side of the char combustion means is unnecessarily high at around 950 to 1300 ° C., and if it is allowed to flow through the outlet line as it is, the ordinary metal line has no temperature. However, by dropping this to 800 to 950 ° C., it becomes possible to use a normal refractory metal line. Even if the temperature is lowered to 800 to 950 ° C as described above, the steam temperature in the second steam producing means is 500 to 600 ° C.
There is no hindrance in maintaining it.

【0017】請求項4記載の発明は、上記燃焼手段の出
口側に接続され該燃焼手段より燃焼ガスと上記流動媒体
とを分離する分離手段を含み、前記第1若しくは第2の
蒸気製造手段で加熱された蒸気若しくは前記いずれかの
製造手段に導入される温水若しくは蒸気の一部を、適宜
前記分離手段の流動媒体出口側に導入し、該流動媒体と
の熱接触により加熱することを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a separation means connected to the outlet side of the combustion means for separating the combustion gas and the fluidized medium from the combustion means. A part of the heated steam or hot water or steam introduced into any of the manufacturing means is appropriately introduced into the fluid medium outlet side of the separating means, and heated by thermal contact with the fluid medium. To do.

【0018】かかる発明によれば、前記チャー燃焼手段
の出口側に燃焼ガスと前記流動媒体とを分離する分離手
段を設けた為に、言換えれば800〜950℃前後の高
温の流動媒体を熱分解手段とチャー燃焼手段夫々に戻入
することにより、目的とする温度の流動床形成や温度管
理が容易になる。そして本発明においては、前記分離手
段の流動媒体出口側に熱交換手段を配置し、前記第1若
しくは第2の蒸気製造手段で加熱された蒸気若しくは前
記いずれかの製造手段に導入される温水若しくは蒸気の
一部を、適宜該流動媒体との熱接触により加熱すること
により、請求項1記載の発明と同様な作用を営むことが
出来る。
According to the invention, since the separating means for separating the combustion gas and the fluidized medium is provided on the outlet side of the char combustion means, in other words, the fluidized medium having a high temperature of about 800 to 950 ° C. is heated. By returning to the decomposition means and the char combustion means respectively, formation of a fluidized bed at a target temperature and temperature control become easy. And in the present invention, a heat exchange means is arranged on the fluid medium outlet side of the separating means, and the steam heated by the first or second steam producing means or the hot water introduced into any of the producing means or By appropriately heating a part of the vapor by thermal contact with the fluidized medium, the same effect as that of the invention according to claim 1 can be achieved.

【0019】この場合、前記チャー燃焼手段の高温域側
に熱交換手段(以下第1熱交換手段という)と前記分離
手段の流動媒体出口側にも熱交換手段(以下第2熱交換
手段という)を配置してもよい。又、第1の熱交換手段
−第1の蒸気製造手段−第2の蒸気製造手段−第2熱交
換手段と配置することにより、実質的に直列の4段階昇
温を図ることが出来、極めて高い十分加熱された過熱蒸
気を得ることが出来る。又、後記実施例に示すように
(第1の熱交換手段と第1の蒸気製造手段を並列に)−
第2の蒸気製造手段−第2熱交換手段とを直列に配置す
ることにより、実質的に並列/直列の3段階昇温を図る
ことが出来、多量且つ十分加熱された過熱蒸気を得るこ
とが出来る。又第1の熱交換手段と第2の熱交換手段を
いずれかを選択的に用いても良い。又、前記熱交換手段
にはスーパヒータ若しくはボイラを用いるのがよい。
In this case, heat exchange means (hereinafter referred to as first heat exchange means) on the high temperature side of the char combustion means and heat exchange means (hereinafter referred to as second heat exchange means) also on the fluid medium outlet side of the separation means. May be arranged. Further, by arranging the first heat exchanging means, the first steam producing means, the second steam producing means, and the second heat exchanging means, it is possible to substantially raise the temperature in four stages in series. A high, sufficiently heated superheated steam can be obtained. In addition, as shown in the examples described later (the first heat exchange means and the first steam production means are arranged in parallel)-
By arranging the second steam producing means and the second heat exchanging means in series, it is possible to substantially raise the temperature in parallel / series in three stages, and to obtain a large amount of sufficiently heated superheated steam. I can. Further, either the first heat exchanging means or the second heat exchanging means may be selectively used. Further, it is preferable to use a super heater or a boiler as the heat exchange means.

【0020】[0020]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
構成部品の寸法、材質、形状、その相対的配置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
(A)は本発明の実施例に係る廃棄物の焼却熱を利用し
た過熱蒸気製造装置を示し、図中、1は流動床からなる
熱分解炉で、多孔板等の分散板3上に流動砂等の流動媒
体2が収納されており、廃棄物供給ライン4及び砂循環
ライン5より流動砂と都市ごみ等の廃棄物が投入され、
空気または燃焼排ガス入口ライン6より供給された空気
または燃焼排ガスにより温度300℃以上の流動床空間
を生成し、廃棄物の熱分解反応を行なわせ、その反応に
より発生した熱分解ガスは熱分解ガス出口ライン7よ
り、又未分解残渣および流動砂から成るチャー混合物は
チャー混合物取り出しライン9より、不燃物は不燃物取
り出しライン8より、夫々互いに分離して取り出す。又
熱分解炉1出口直後の熱分解ガス出口ライン7の出発位
置には空気入口ライン21が取付けられており、熱分解
炉1より取り出された熱分解ガスは、空気入口ライン2
1より空気を導入して熱分解ガス中に含まれるタール等
を一部燃焼させ、出口ライン7におけるタール付着防止
やコーキング防止を図る。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG.
(A) shows an apparatus for producing superheated steam using the heat of incineration of waste according to an embodiment of the present invention. In the figure, 1 is a pyrolysis furnace comprising a fluidized bed, which is flown on a dispersion plate 3 such as a perforated plate. A fluid medium 2 such as sand is stored, and fluid sand and waste such as municipal solid waste are input from a waste supply line 4 and a sand circulation line 5,
Air or combustion exhaust gas supplied from the air or combustion exhaust gas inlet line 6 generates a fluidized bed space having a temperature of 300 ° C. or higher to cause a thermal decomposition reaction of waste, and the thermal decomposition gas generated by the reaction is a thermal decomposition gas. Separately from the outlet line 7, the char mixture consisting of undecomposed residue and fluidized sand from the char mixture take-out line 9 and the non-combustible substance from the non-combustible substance take-out line 8, respectively. An air inlet line 21 is attached to the starting position of the pyrolysis gas outlet line 7 immediately after the exit of the pyrolysis furnace 1, and the pyrolysis gas taken out from the pyrolysis furnace 1 is supplied to the air inlet line 2
The air is introduced from 1 to partially burn the tar and the like contained in the pyrolysis gas to prevent tar from adhering to the outlet line 7 and prevent coking.

【0021】又前記出口ライン7の下流端には、予混合
器47と燃焼ダクト40からなる再加熱手段40Aが配
設され、前記熱分解ガスに十分な空気21’を供給して
該熱分解ガスの完全燃焼を行う。即ち図1(B)に示す
ように前記予混合器47は、熱分解ガス出口ライン7の
一部となす管路47b内に放射状に空気を散気する散気
管47aが内挿され、該散気管47aにより空気と熱分
解ガスを十分に混合した後、第2ボイラガス出口ライン
22より供給された高温排ガスの熱を利用して燃焼ダク
ト40内で完全燃焼されて第1のボイラ24に導入され
る。
At the downstream end of the outlet line 7, there is provided a reheating means 40A consisting of a premixer 47 and a combustion duct 40, and a sufficient amount of air 21 'is supplied to the pyrolysis gas to effect the pyrolysis. Complete gas combustion. That is, as shown in FIG. 1B, in the premixer 47, a diffuser pipe 47a for radially diffusing air is inserted into a pipe line 47b forming a part of the pyrolysis gas outlet line 7, and the diffuser 47a After the air and the pyrolysis gas are sufficiently mixed by the trachea 47a, the heat of the high-temperature exhaust gas supplied from the second boiler gas outlet line 22 is used to be completely combusted in the combustion duct 40 and introduced into the first boiler 24. It

【0022】この場合、空気入口ライン21より導入さ
れるタール燃焼用空気(空気過剰率B)は、その下流側
の予混合器47の散気管47aより導入される空気(空
気過剰率A)に比較して大幅に少なく設定するのが良
く、具体的には 空気過剰率A:空気過剰率B=(0.6〜1.05):
(0.05〜0.3)、好ましくはA:B=0.9:
0.1前後に設定するのがよい。
In this case, the tar combustion air (air excess ratio B) introduced from the air inlet line 21 becomes the air (air excess ratio A) introduced from the air diffuser 47a of the premixer 47 on the downstream side. It is better to set it to a significantly smaller value in comparison, specifically, excess air ratio A: excess air ratio B = (0.6 to 1.05):
(0.05-0.3), preferably A: B = 0.9:
It is better to set it to around 0.1.

【0023】10は塔式の流動床炉からなるチャー燃焼
炉で、底部に配した分散板11上にチャー混合物取り出
しライン9より供給されたチャー混合物、及び砂循環ラ
イン19より循環された流動砂が収納される。そして前
記分散板11下方の空気供給ライン12より更にチャー
燃焼炉10中域の空気供給ライン13より夫々空気が供
給されて未分解残渣の燃焼を行い、約800〜1300
℃前後の燃焼ガスを生成すると共に、そのチャー燃焼炉
10中の上方域に分岐ライン26’よりボイラー水を導
入する水冷壁ボイラ又はスーパヒートを配設し、950
〜1300℃前後と無用に高くなった燃焼ガスを800
〜950℃に落とすと共に、第1ボイラに供給するボイ
ラ水の一部を加熱する。該ボイラ水の加熱温度は300
℃前後になる。尚前記のように燃焼ガス温度を800〜
950℃に落としても第2のボイラ20における蒸気温
度を500〜600℃に維持する上で何の支障もない。
そして前記燃焼炉で燃焼炉で燃焼されない小型の不燃物
は不燃物取り出しライン14より取り出される。
Numeral 10 is a char combustion furnace comprising a tower type fluidized bed furnace. The char mixture is supplied from a char mixture take-out line 9 on a dispersion plate 11 arranged at the bottom and the fluidized sand circulated from a sand circulation line 19. Is stored. Then, air is supplied from the air supply line 12 below the dispersion plate 11 and further from the air supply line 13 in the middle region of the char combustion furnace 10 to burn the undecomposed residue, and about 800 to 1300
A water-cooled wall boiler or superheat for introducing boiler water from a branch line 26 'is disposed in the upper region of the char combustion furnace 10 while generating combustion gas of around ℃, 950
Combustion gas that has risen unnecessarily high at around 1300 ° C is 800
The temperature is lowered to ˜950 ° C. and part of the boiler water supplied to the first boiler is heated. The heating temperature of the boiler water is 300
℃. As described above, the combustion gas temperature is 800 to
Even if the temperature is lowered to 950 ° C, there is no problem in maintaining the steam temperature in the second boiler 20 at 500 to 600 ° C.
Then, small incombustibles that are not burned in the combustion furnace are taken out from the incombustibles taking line 14.

【0024】そして前記のように高温化された砂混合の
燃焼ガスは、砂/燃焼ガス出口ライン15より気・固分
離装置例えばサイクロン16に導入され、ここで流動砂
と燃焼ガスを分離し、燃焼ガスはガス出口ライン17よ
り第2ボイラ20に導入される。流動砂は砂出口ライン
18より取り出され、砂循環ライン19より燃焼炉10
と、砂循環ライン5より熱分解炉1に夫々供給される。
The combustion gas of the sand mixture, which has been heated to a high temperature as described above, is introduced from the sand / combustion gas outlet line 15 into a gas / solid separation device such as a cyclone 16, where the fluidized sand and the combustion gas are separated, The combustion gas is introduced into the second boiler 20 through the gas outlet line 17. The fluidized sand is taken out from the sand outlet line 18, and is sent from the sand circulation line 19 to the combustion furnace 10
Then, they are supplied to the pyrolysis furnace 1 from the sand circulation line 5, respectively.

【0025】20は第2ボイラ及び24は第1ボイラ
で、第1ボイラ24では熱分解ガス出口ライン7より取
り出された熱分解ガスが、空気入口ライン21、21’
より取込んだ空気により再燃焼されて第2ボイラガス出
口より排出された燃焼排ガスと共に、第1のボイラ24
に導入され、ボイラ水入口26より取込んだボイラ水を
300℃前後に加熱し、第1ボイラ蒸気出口27より第
2ボイラ20に蒸気を供給する。
Reference numeral 20 is a second boiler and 24 is a first boiler. In the first boiler 24, the pyrolysis gas taken out from the pyrolysis gas outlet line 7 is supplied to the air inlet lines 21 and 21 '.
The first boiler 24 together with the combustion exhaust gas re-combusted by the air taken in from the second boiler gas outlet
The boiler water introduced into the boiler water inlet 26 is heated to around 300 ° C., and steam is supplied from the first boiler steam outlet 27 to the second boiler 20.

【0026】第2ボイラ20では前記第1ボイラ24の
第1ボイラ蒸気出口ライン27より取り出した蒸気及び
水冷壁ボイラ36により加熱され分岐蒸気ライン27’
を介してとりだされた蒸気を導入して、前記燃焼ガスラ
イン17を介して供給された燃焼ガスで加熱し、500
〜600℃前後の過熱蒸気を製造し、第2ボイラ蒸気出
口28より取り出す。
In the second boiler 20, the steam extracted from the first boiler steam outlet line 27 of the first boiler 24 and the water-cooled wall boiler 36 are heated to form a branched steam line 27 '.
500 is introduced through the combustion gas line 17 and heated by the combustion gas supplied through the combustion gas line 17.
Superheated steam of about 600 ° C. is produced and taken out from the second boiler steam outlet 28.

【0027】次に前記実施例の作用について詳述する。
熱分解炉1に供給される都市ごみ等の廃棄物中には塩ビ
プラスチック等の含塩素有機化合物が混入しており、可
燃分中にC1として約0.2〜0.5%含有されてい
る。そして、廃棄物供給ライン4から都市ごみ、流動砂
循環ライン5から高温の循環流動砂を、それぞれ熱分解
炉1に供給し、下部の空気または燃焼排ガス入口ライン
6から空気または燃焼排ガスを供給して流動砂2を流動
させた流動床内で、温度300〜700℃で処理するこ
とにより、チャー混合物取り出しライン9からは実質的
に塩素を含有しない未分解残渣が得られる。すなわち、
廃棄物中に含まれていた塩素は、実質的に全て熱分解ガ
スに含まれて、熱分解ガス出口ライン7に排出されるこ
とになる。なお、熱分解炉1内の熱分解反応で分離され
た大型の不燃物は、不燃物取り出しライン8から炉外に
取り出される。
Next, the operation of the above embodiment will be described in detail.
Wastes such as municipal waste supplied to the pyrolysis furnace 1 contain chlorine-containing organic compounds such as vinyl chloride plastics and are contained in the combustible content as C1 in an amount of about 0.2 to 0.5%. . Then, municipal waste is supplied from the waste supply line 4 and high-temperature circulating fluidized sand is supplied from the fluidized sand circulation line 5 to the pyrolysis furnace 1, respectively, and air or combustion exhaust gas is supplied from the lower air or combustion exhaust gas inlet line 6. By treating at a temperature of 300 to 700 ° C. in a fluidized bed in which the fluidized sand 2 is fluidized, an undecomposed residue containing substantially no chlorine is obtained from the char mixture withdrawing line 9. That is,
Substantially all of the chlorine contained in the waste is contained in the pyrolysis gas and is discharged to the pyrolysis gas outlet line 7. The large incombustibles separated by the thermal decomposition reaction in the thermal decomposition furnace 1 are taken out of the furnace through the incombustibles extraction line 8.

【0028】熱分解炉1の熱分解出口ライン7から取り
出された上記熱分解ガスには、低カロリーガス、油分、
タールおよびHC1が含まれているが、これらの熱分解
炉1の空気入口ライン21から供給される空気で予備燃
焼させ前記タール分の燃焼若しくは蒸発を行い、出口ラ
イン7におけるタール付着防止やコーキング防止と共
に、散気管47aより多量の空気21’を導入して空気
と混合の熱分解ガスを導入してここで第2ボイラガス出
口ライン22より供給された高温排ガスの熱を利用して
燃焼ダクト40内で完全燃焼を行う。この結果第一ボイ
ラに導入される熱分解ガス温度を高く設定できるため
に、該製造手段で製造される300℃前後の蒸気を多量
に製造できる。
The pyrolysis gas taken out from the pyrolysis exit line 7 of the pyrolysis furnace 1 contains low-calorie gas, oil,
Although it contains tar and HC1, the air supplied from the air inlet line 21 of these pyrolysis furnaces 1 is pre-combusted to burn or evaporate the tar portion, thereby preventing tar adhesion and coking in the outlet line 7. At the same time, a large amount of air 21 ′ is introduced from the air diffuser 47a to introduce a pyrolysis gas mixed with air, and the heat of the high-temperature exhaust gas supplied from the second boiler gas outlet line 22 is used in the combustion duct 40. Completely burn with. As a result, since the temperature of the pyrolysis gas introduced into the first boiler can be set high, a large amount of steam at around 300 ° C. produced by the production means can be produced.

【0029】第2ボイラガス出口ライン22よりの燃焼
排ガスとともに第1ボイラガス入口23から第1ボイラ
24に供給する。第1ボイラガス入口23のガスにはH
C1が約500〜1000ppm含まれているので、ボイ
ラ水の流量を調整して第1ボイラ24のチューブ表面温
度は従来並みの約350℃以下として、高温腐食を抑制
する。このため、第1ボイラ24では高温の過熱蒸気は
得られないが、約300℃までは加熱できるので、これ
を更に第2ボイラ20で加熱すれば、約500〜600
℃の高温の過熱蒸気を得ることができる。
The flue gas from the second boiler gas outlet line 22 is supplied to the first boiler 24 from the first boiler gas inlet 23. The gas at the first boiler gas inlet 23 is H
Since C1 is contained in an amount of about 500 to 1000 ppm, the high temperature corrosion is suppressed by adjusting the flow rate of the boiler water to keep the tube surface temperature of the first boiler 24 at about 350 ° C. or lower, which is the same level as the conventional one. Therefore, although high-temperature superheated steam cannot be obtained in the first boiler 24, it can be heated up to about 300 ° C., so if it is further heated by the second boiler 20, it will be about 500-600.
It is possible to obtain superheated steam at a high temperature of ° C.

【0030】熱分解炉1でチャー混合物取り出しライン
9から取り出されたチャー混合物は流動砂と未分解残渣
から成り、実質的に塩素を含有しないチャー混合物を、
燃焼炉10では燃焼炉10の下部に供給し、空気供給ラ
イン12から分散板11を介して供給される空気によっ
て燃焼させる。この場合、空気供給ライン12から供給
する空気量を調整して、流動砂を上方に吹き飛ばしなが
ら未分解残渣を燃焼させる。完全燃焼のために空気供給
ライン13から更に空気を供給することもある。燃焼炉
10の温度は燃焼発熱反応によって上昇する。この温度
値は、チャー混合物取り出しライン9から供給される未
分解残渣の発熱量と空気供給ライン12、13の空気お
よび砂循環ライン19の流動砂の量と温度によって決ま
るが、1500℃前後の高温になる場合がある。
The char mixture taken out from the char mixture take-out line 9 in the pyrolysis furnace 1 is composed of fluidized sand and undecomposed residue, and a char mixture containing substantially no chlorine is
In the combustion furnace 10, the air is supplied to the lower part of the combustion furnace 10 and burned by the air supplied from the air supply line 12 through the dispersion plate 11. In this case, the amount of air supplied from the air supply line 12 is adjusted so that the undecomposed residue is burned while blowing the fluidized sand upward. Further air may be supplied from the air supply line 13 for complete combustion. The temperature of the combustion furnace 10 rises due to the combustion exothermic reaction. This temperature value is determined by the calorific value of the undecomposed residue supplied from the char mixture extraction line 9 and the amount and temperature of the air in the air supply lines 12 and 13 and the fluidized sand in the sand circulation line 19; May be.

【0031】そこで水冷壁ボイラ36により分岐管26
より導入されたボイラ水と熱交換することにより砂混合
燃焼ガス800〜950℃にすることは容易である。ガ
ラスや缶類等の溶融により小型化された不燃物は不燃物
取り出しライン14から抜き出す。
Then, the branch pipe 26 is provided by the water-cooled wall boiler 36.
It is easy to bring the sand-mixed combustion gas to 800 to 950 ° C. by exchanging heat with the boiler water introduced further. The incombustibles reduced in size by melting glass, cans, and the like are extracted from the incombustibles take-out line 14.

【0032】燃焼炉10で生成し800〜950℃の高
温でかつ塩素を実質的に含有しない排ガスは、第3の工
程で流動砂とともに砂・燃焼ガス出口ライン15を経て
サイクロン16に導入され、流動砂は砂出口ライン18
から、排ガスはガス出口ライン17からそれぞれ分離し
て取り出される。そして砂出口ライン18から取り出さ
れた800〜950℃の高温の流動砂の一部は砂循環ラ
イン5を経て熱分解炉1へ戻され、熱分解炉1内部の温
度を所定温度に保持するために用いられる。また残りは
砂循環ライン19を経て燃焼炉10に戻される。
The exhaust gas generated in the combustion furnace 10 at a high temperature of 800 to 950 ° C. and containing substantially no chlorine is introduced into the cyclone 16 through the sand / combustion gas outlet line 15 together with the fluidized sand in the third step, Fluid sand is sand exit line 18
Therefore, the exhaust gas is separated and taken out from the gas outlet line 17. Then, a part of the high temperature fluidized sand of 800 to 950 ° C. taken out from the sand outlet line 18 is returned to the pyrolysis furnace 1 through the sand circulation line 5 to keep the temperature inside the pyrolysis furnace 1 at a predetermined temperature. Used for. The rest is returned to the combustion furnace 10 via the sand circulation line 19.

【0033】一方、上記サイクロン16のガス出口ライ
ン17から取り出された800〜950℃の高温排ガス
は、第2ボイラ20で第2ボイラ20に導入され、第1
ボイラ24で製造された蒸気を更に加熱して過熱蒸気と
するために用いられる。ガス出口ライン17を経て来た
排ガスは実質的に塩素を含有していないので、第2ボイ
ラ20のボイラチューブ表面温度を350℃以上として
も高温腐食は大幅に軽減される。したがってチューブ内
流体の温度を約500〜600℃とすることができ、第
2ボイラ蒸気出口28からは安定して高温の過熱蒸気が
得られる。
On the other hand, the high temperature exhaust gas at 800 to 950 ° C. taken out from the gas outlet line 17 of the cyclone 16 is introduced into the second boiler 20 by the second boiler 20, and
It is used to further heat the steam produced in the boiler 24 into superheated steam. Since the exhaust gas that has passed through the gas outlet line 17 does not substantially contain chlorine, even if the boiler tube surface temperature of the second boiler 20 is 350 ° C. or higher, high temperature corrosion is greatly reduced. Therefore, the temperature of the fluid in the tube can be set to about 500 to 600 ° C., and high-temperature superheated steam can be stably obtained from the second boiler steam outlet 28.

【0034】前記熱分解炉1で熱分解炉1の温度を所定
温度300℃以上に維持するには、空気または燃焼排ガ
ス入口ライン6から供給される流動気体の酸素量を調
節、言換えれば第1ボイラ24よりの排ガスを多く供給
するとともに、サイクロン16よりの砂出口ライン18
から取り出される高温約800〜950℃の流動砂の一
部を砂循環ライン5から供給して熱源とすることが好ま
しい。そのためには、燃焼炉10ではガスの空搭速度
(炉内のガス流量/炉の断面積)を3〜6m/sとして、
チャー混合物取り出しライン9から供給された流動砂を
吹き飛ばしながら未分解残渣を燃焼し、流動砂はサイク
ロン16で燃焼ガスと分離して熱分解炉1と燃焼炉10
に循環供給する高速循環型流動床が適している。そして
本発明をより効率的に実施するには、チャー混合物取り
出しライン9から取り出される実質的に塩素を含有しな
いチャー混合物の量をできるだけ多くし好ましくは原料
中可燃物の40%以上、燃焼炉10で発生する熱量を多
くして、第2ボイラ20における回収熱量を多くするこ
とが望ましい。そこで本実施例においては、ごみ中の塩
素を実質的に分離除去しチャーの回収率を40%以上に
できる条件として、熱分解炉1の温度を300〜700
℃、好ましくは350〜450℃とすることが望まし
い。
In order to maintain the temperature of the pyrolysis furnace 1 at a predetermined temperature of 300 ° C. or higher in the pyrolysis furnace 1, the oxygen amount of the fluid gas supplied from the air or the combustion exhaust gas inlet line 6 is adjusted, in other words, While supplying a large amount of exhaust gas from the 1 boiler 24, the sand outlet line 18 from the cyclone 16
It is preferable to supply a part of the fluidized sand having a high temperature of about 800 to 950 ° C. taken out from the sand circulation line 5 as a heat source. For that purpose, in the combustion furnace 10, the empty loading speed of gas (gas flow rate in the furnace / cross-sectional area of the furnace) is set to 3 to 6 m / s,
The undecomposed residue is burned while blowing the fluidized sand supplied from the char mixture take-out line 9, and the fluidized sand is separated from the combustion gas by the cyclone 16 to separate the pyrolysis furnace 1 and the combustion furnace 10.
A high-speed circulation type fluidized bed, which circulates and supplies to, is suitable. In order to carry out the present invention more efficiently, the amount of the substantially chlorine-free char mixture taken out from the char mixture take-out line 9 should be as large as possible, preferably 40% or more of the combustible material in the raw material, and the combustion furnace 10. It is desirable to increase the amount of heat generated in the second boiler 20 and increase the amount of heat recovered in the second boiler 20. Therefore, in the present embodiment, the temperature of the pyrolysis furnace 1 is set to 300 to 700 under the condition that the chlorine in the waste can be substantially separated and removed and the char recovery rate can be 40% or more.
It is desirable to set the temperature to 350C, preferably 350 to 450C.

【0035】図2は本発明の他の実施例に係る廃棄物の
焼却熱を利用した過熱蒸気製造装置を示し前記実施例と
の差異を中心に説明するに、前記熱分解ガス出口ライン
7の空気入口ライン21より導入される空気によりター
ルの部分燃焼を行った後、予混合器47に導入される前
に灰溶融炉31に導入される。前記灰溶融炉31は、旋
回流により砂混合熱分解ガス灰を旋回分離させながら、
該灰溶融炉31内に空気若しくは酸素富化空気を前記熱
分解ガスと共に、ライン30より導入して該熱分解ガス
燃焼熱により1300℃以上として灰分を溶融して、該
溶融した灰分を溶融灰出口ライン32を介して水貯溜部
32Aに落下させ、数mm程度の水冷スラッグを生成
し、該スラッグを建築用骨材として利用するように構成
する。
FIG. 2 shows an apparatus for producing superheated steam using the heat of incineration of waste according to another embodiment of the present invention. The difference from the above embodiment will be mainly described. After the partial combustion of tar is performed by the air introduced from the air inlet line 21, it is introduced into the ash melting furnace 31 before being introduced into the premixer 47. The ash melting furnace 31 swirls and separates the sand-mixed pyrolysis gas ash by swirling flow,
Air or oxygen-enriched air is introduced into the ash melting furnace 31 together with the pyrolysis gas through the line 30 to melt the ash at 1300 ° C. or higher by the heat of combustion of the pyrolysis gas to melt the molten ash. It is configured to be dropped into the water reservoir 32A through the outlet line 32 to generate a water-cooled slug of about several mm and to use the slug as a building aggregate.

【0036】又、前記灰溶融炉31には後記するガス出
口ライン17に設けた高温フィルタ40より分離した灰
分がダストライン29及びサイクロンの砂出口ライン1
8に設けた灰分分離器41(スクリーン)より分離した
灰分がダストライン29aを介して夫々導入され、これ
らも溶融分離される。灰分を除去した熱分解ガスはライ
ン33及び及び熱分解ガス燃焼炉34、及びライン35
を経て第1ボイラ24に導入される。
Further, in the ash melting furnace 31, the ash separated from the high temperature filter 40 provided in the gas outlet line 17, which will be described later, contains the dust line 29 and the cyclone sand outlet line 1.
The ash separated from the ash separator 41 (screen) provided in 8 is introduced via the dust line 29a, respectively, and these are also melt-separated. The pyrolysis gas from which the ash has been removed is supplied to the line 33, the pyrolysis gas combustion furnace 34, and the line 35.
And then introduced into the first boiler 24.

【0037】そして前記燃焼炉15で高温化された砂混
合の燃焼ガスは、流動砂/燃焼ガス出口ライン15より
気・固分離装置例えばサイクロン16に導入され、ここ
で流動砂と燃焼ガスを分離し、燃焼ガスはガス出口ライ
ン17より第2ボイラ20に導入される。砂出口ライン
18より取り出された流動砂は、灰分分離器41(スク
リーン)で灰分を分離した後、砂循環ライン19より燃
焼炉10と、砂循環ライン5より熱分解炉1に夫々供給
される。
Then, the combustion gas of the sand mixture whose temperature is raised in the combustion furnace 15 is introduced from the fluidized sand / combustion gas outlet line 15 into a gas / solid separation device such as a cyclone 16, where the fluidized sand and the combustion gas are separated. Then, the combustion gas is introduced into the second boiler 20 through the gas outlet line 17. The fluidized sand taken out from the sand outlet line 18 is supplied to the combustion furnace 10 through the sand circulation line 19 and the pyrolysis furnace 1 through the sand circulation line 5 after separating the ash by the ash separator 41 (screen). .

【0038】又灰分分離器41(スクリーン)で分離さ
れた灰分は、ダストライン29a/29を介して灰溶融
炉31に導入される。又前記燃焼炉10と第2ボイラ2
0間の燃焼ガスライン17には、スーパーヒータからな
る熱交換器37とライン39を介して高温フィルタ40
が直列に配設され、例えば900℃前後に加熱された燃
焼ガスが熱交換器37でライン28を介して導入された
第2ボイラで加熱後の過熱蒸気と熱交換され、加熱温度
を600℃前後に落としてライン39を介して高温フィ
ルタ40に導入される。
The ash separated by the ash separator 41 (screen) is introduced into the ash melting furnace 31 through the dust line 29a / 29. Further, the combustion furnace 10 and the second boiler 2
In the combustion gas line 17 between 0, a high temperature filter 40 is provided via a heat exchanger 37 composed of a super heater and a line 39.
Are arranged in series, for example, the combustion gas heated to around 900 ° C. is heat-exchanged with the superheated steam after heating in the second boiler introduced through the line 28 in the heat exchanger 37, and the heating temperature is 600 ° C. It is dropped back and forth and introduced into a high temperature filter 40 through a line 39.

【0039】そして該高温フィルタ40で燃焼ガス中の
灰分の分離を行った後、ライン141を介して第2ボイ
ラ20に導入される。又過熱蒸気はライン38を介して
不図示の発電機に送られる。一方前記高温フィルタ40
で分離された灰分は、ダストライン29を介して灰溶融
炉31に導入される。
Then, after the ash content in the combustion gas is separated by the high temperature filter 40, it is introduced into the second boiler 20 through the line 141. Further, the superheated steam is sent to a generator (not shown) via the line 38. On the other hand, the high temperature filter 40
The ash separated in (1) is introduced into the ash melting furnace 31 via the dust line 29.

【0040】次に前記実施例の作用について詳述する。
熱分解炉1で熱分解炉1の熱分解出口ライン7から取り
出された上記熱分解ガスは前記熱分解ガス出口ライン7
の空気入口ライン21より導入される空気によりタール
の部分燃焼を行いながらタール付着やコーキングを防止
した後、予混合器41に導入される前に灰溶融炉31に
導入され、灰溶融が行われ、その後熱分解ガス燃焼炉3
4で完全燃焼させた後、ライン35を介して第2ボイラ
ガス出口ライン22よりの燃焼排ガスとともに第1ボイ
ラガス入口23から第1ボイラ24に供給する。従っ
て、第1ボイラ24に導入される熱分解ガス中に灰分等
が混入されることなく長期に亙って安定して蒸気製造が
可能になるとともに、又第1ボイラ24に導入される熱
分解ガス温度を略850〜900℃(最大950℃前
後)程度に高く設定できるために、該ボイラで製造され
る300℃前後の蒸気を多量に製造できる。
Next, the operation of the above embodiment will be described in detail.
The pyrolysis gas extracted from the pyrolysis exit line 7 of the pyrolysis furnace 1 in the pyrolysis furnace 1 is the pyrolysis gas exit line 7
After the tar is partially burned by the air introduced from the air inlet line 21 of the above while preventing tar adhesion and coking, it is introduced into the ash melting furnace 31 before being introduced into the premixer 41, and ash melting is performed. , Then pyrolysis gas combustion furnace 3
After complete combustion in No. 4, it is supplied from the first boiler gas inlet 23 to the first boiler 24 together with the combustion exhaust gas from the second boiler gas outlet line 22 via the line 35. Therefore, ash etc. are not mixed in the pyrolysis gas introduced into the first boiler 24, and stable steam production is possible over a long period of time, and the pyrolysis gas introduced into the first boiler 24 is also possible. Since the gas temperature can be set as high as about 850 to 900 ° C. (around 950 ° C. at the maximum), a large amount of steam around 300 ° C. produced by the boiler can be produced.

【0041】燃焼炉10で生成し800〜950℃の高
温でかつ塩素を実質的に含有しない燃焼ガスは、流動砂
とともに砂・燃焼ガス出口ライン15を経てサイクロン
16に導入され、流動砂は砂出口ライン18から、排ガ
スはガス出口ライン17からそれぞれ分離して取り出さ
れる。そして砂出口ライン18から取り出された800
〜950℃の高温の流動砂は灰分分離器41により灰分
が分離された後、その一部は砂循環ライン5を経て熱分
解炉1へ戻され、熱分解炉1内部の温度を所定温度に保
持するために用いられる。また残りは砂循環ライン19
を経て燃焼炉10に戻される。
The combustion gas generated in the combustion furnace 10 at a high temperature of 800 to 950 ° C. and containing substantially no chlorine is introduced into the cyclone 16 through the sand / combustion gas outlet line 15 together with the fluid sand, and the fluid sand is sand. The exhaust gas is separated and taken out from the gas outlet line 17 from the outlet line 18. And 800 taken out from the sand outlet line 18
After the ash is separated by the ash separator 41, a part of the high temperature fluidized sand at a temperature of up to 950 ° C. is separated by the ash separator 41 and then returned to the thermal decomposition furnace 1 through the sand circulation line 5 to bring the temperature inside the thermal decomposition furnace 1 to a predetermined temperature. Used to hold. The rest is sand circulation line 19
And is returned to the combustion furnace 10.

【0042】従って本実施例によれば前記サイクロン1
6の砂出口ライン18側に流動砂と灰分の分離を行う灰
分分離器41とを設けた為に、熱分解炉1とチャー燃焼
炉10夫々に戻入する流動媒体に灰分等が混入されるこ
となく、安定した熱分解とチャー燃焼が長期に亙って達
成出来る。一方前記灰分は前記した灰溶融炉31に導入
する事により、前記溶融灰を利用して骨材等の製造が可
能となるとともに、前記灰分は高温であるためにその熱
を利用して分離された熱分解ガスの再加熱を行うことも
可能である。
Therefore, according to this embodiment, the cyclone 1
Since the ash separator 41 for separating the fluidized sand and the ash is provided on the side of the sand outlet line 18 of 6, the ash and the like are mixed in the fluidizing medium returning to the pyrolysis furnace 1 and the char combustion furnace 10, respectively. In addition, stable pyrolysis and char combustion can be achieved over a long period of time. On the other hand, by introducing the ash into the ash melting furnace 31 described above, it becomes possible to manufacture aggregate or the like by using the molten ash, and the ash is separated by utilizing its heat because of its high temperature. It is also possible to reheat the pyrolysis gas.

【0043】一方、上記サイクロン16のガス出口ライ
ン17から取り出された800〜950℃の高温燃焼ガ
スは、ライン28より導入される過熱蒸気との熱交換に
より、熱交換器37で予冷した後、ライン39を介して
高温フィルタ40に導入して、該フィルタ40で燃焼ガ
ス中の灰分の分離を行う為に、第2のボイラ20に導入
される燃焼ガス中に灰分等が混入されることなく長期に
亙って安定して蒸気製造が可能になるとともに、又前記
燃焼ガス中の未燃焼塩素化合物の燃焼を行う為に、いわ
ゆるダイオキシンを確実に行う事ができる。
On the other hand, the high temperature combustion gas of 800 to 950 ° C. taken out from the gas outlet line 17 of the cyclone 16 is pre-cooled in the heat exchanger 37 by heat exchange with the superheated steam introduced from the line 28, and then, Since the ash content in the combustion gas is separated by being introduced into the high temperature filter 40 through the line 39, the ash content and the like are not mixed in the combustion gas introduced into the second boiler 20. It is possible to stably produce steam over a long period of time, and to carry out combustion of the unburned chlorine compound in the combustion gas, so that so-called dioxin can be surely performed.

【0044】そして、前記高温フィルタ40の入口側に
熱交換器37を配し、前記第2ボイラ20の加熱された
過熱蒸気を熱交換器37に導入して前記高温フィルタ4
0に導入される燃焼ガスの予冷を行う事により、高温フ
ィルタ40に加わる負荷を大幅に低減できる。又前記熱
交換器37に第2ボイラ20で加熱後の過熱蒸気を導入
することにより、一層加熱された過熱蒸気を得ることも
出来、特に第2ボイラ20には第1ボイラ24と水冷壁
ボイラ36の蒸気を導入するために、過熱容量不足にな
ることもあるが、本実施例では又前記熱交換器37に第
2ボイラ20で加熱後の過熱蒸気を導入する為に熱容量
不足を解消して十分加熱された過熱蒸気を得ることが出
来る。
A heat exchanger 37 is arranged on the inlet side of the high temperature filter 40, and the superheated steam heated by the second boiler 20 is introduced into the heat exchanger 37 to introduce the high temperature filter 4 into the heat exchanger 37.
By pre-cooling the combustion gas introduced to 0, the load applied to the high temperature filter 40 can be significantly reduced. Further, by introducing the superheated steam that has been heated in the second boiler 20 into the heat exchanger 37, it is possible to obtain further heated superheated steam. Particularly, in the second boiler 20, the first boiler 24 and the water-cooled wall boiler are used. Although there is a case where the superheat capacity is insufficient due to the introduction of steam of No. 36, in the present embodiment, since the superheated steam after being heated by the second boiler 20 is introduced into the heat exchanger 37, the lack of heat capacity is eliminated. It is possible to obtain sufficiently heated superheated steam.

【0045】更に高温フィルタ40と灰分分離器41に
より分離された灰分は灰分溶融分離炉手段に導入するこ
とにより、前記溶融灰を利用して骨材等の製造が可能と
なる。又前記灰分はいずれも高温であるためにその熱を
利用して分離された熱分解ガスの再加熱を行うことも可
能である。
Further, by introducing the ash separated by the high temperature filter 40 and the ash separator 41 into the ash melting / separating furnace means, it becomes possible to manufacture the aggregate or the like by using the molten ash. Further, since the ash content is high in temperature, it is possible to reheat the separated pyrolysis gas by utilizing the heat.

【0046】[0046]

【発明の効果】以上記載した如く本発明によれば、熱分
解手段出口側のの熱分解ガス通路中に、理論空気量より
少ない量の空気を導入してタール付着やコーキングトラ
ブルの防止を行うために、長期に亙って安定して高温・
高圧の過熱蒸気を効率的に得ることのできる。又本発明
によれば前記先願技術に比較して熱分配及び熱吸収を効
率良く行い、更に効率良く熱分解とチャー燃焼を可能に
すると共に、且つ高温度の過熱蒸気を得ることの出来
る。等の種々の著効を有す。
As described above, according to the present invention, the amount of air smaller than the theoretical amount of air is introduced into the pyrolysis gas passage on the outlet side of the pyrolysis means to prevent tar adhesion and coking trouble. For long-term stable and high temperature
High-pressure superheated steam can be obtained efficiently. In addition, according to the present invention, heat distribution and heat absorption can be performed more efficiently than in the above-mentioned prior art, and more efficient thermal decomposition and char combustion can be performed, and superheated steam at a high temperature can be obtained. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の第1実施例に係る廃棄物の焼
却熱を利用した過熱蒸気製造装置を示す系統図、(B)
は予混合器と燃焼ダクトからなる再加熱手段40Aの拡
大図である。
FIG. 1 (A) is a system diagram showing an overheated steam production apparatus using heat of incineration of waste according to a first embodiment of the present invention, (B).
FIG. 4 is an enlarged view of a reheating means 40A including a premixer and a combustion duct.

【図2】図2は本発明の第2実施例に係る廃棄物の焼却
熱を利用した過熱蒸気製造装置を示す系統図である。
FIG. 2 is a system diagram showing an apparatus for producing superheated steam using incineration heat of waste according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 熱分解炉(熱分解手段) 2 砂等の流動媒体 10 燃焼炉(チャー燃焼手段) 11 分散板 16 サイクロン(分離手段) 20 第2ボイラ(第2の蒸気製造手段) 24 第1ボイラ(第1の蒸気製造手段) 36 水冷壁ボイラ(チャー燃焼手段の高温域側に
配した熱交換手段) 40 燃焼ダクト 40A 再燃焼手段 47 予混合器 41a 散気管
1 Pyrolysis Furnace (Pyrolysis Means) 2 Fluid Medium such as Sand 10 Combustion Furnace (Char Combustion Means) 11 Dispersion Plate 16 Cyclone (Separation Means) 20 Second Boiler (Second Steam Production Means) 24 First Boiler (No. 1 steam production means) 36 water-cooled wall boiler (heat exchange means arranged on the high temperature side of the char combustion means) 40 combustion duct 40A recombustion means 47 premixer 41a diffuser

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/00 ZAB F23G 5/00 ZAB 115 115Z 5/16 ZAB 5/16 ZABE 5/30 ZAB 5/30 ZABK ZABM ZABE 5/32 ZAB 5/32 ZAB 5/46 ZAB 5/46 ZABA ZABB 7/00 ZAB 7/00 ZAB 103 103A F23J 1/00 ZAB F23J 1/00 ZABB (72)発明者 保田 静生 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 (72)発明者 小河 秀太 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F23G 5/00 ZAB F23G 5/00 ZAB 115 115Z 5/16 ZAB 5/16 ZABE 5/30 ZAB 5 / 30 ZABK ZABM ZABE 5/32 ZAB 5/32 ZAB 5/46 ZAB 5/46 ZABA ZABB 7/00 ZAB 7/00 ZAB 103 103A F23J 1/00 ZAB F23J 1/00 ZABB 12 Nishiki-cho, Naka-ku, Yokohama City Yokohama Works, Mitsubishi Heavy Industries Ltd. (72) Inventor Shuta Ogawa 12 Nishiki-cho, Naka-ku Yokohama City, Yokohama Works, Mitsubishi Heavy Industries Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 空気または燃焼排ガスによって前記チャー混合物を上方
に吹き飛ばしながら前記未分解残渣を完全燃焼させるチ
ャー燃焼手段と、 前記熱分解ガスを直接若しくは再燃焼させた後、その熱
を利用して約400℃以下の温水または蒸気を製造する
第1の蒸気製造手段と、 前記チャー燃焼手段により得られた燃焼ガスの熱により
前記第1の蒸気製造手段で製造された温水または蒸気を
過熱蒸気とする第2の蒸気製造手段を含み、 前記熱分解ガス通路中に、空気を導入し、予燃焼又は/
及びタール燃焼を行う事をことを特徴とする廃棄物の焼
却熱を利用した過熱蒸気製造装置。
1. A waste material is supplied into a space having a temperature of 300 ° C. or higher to cause a pyrolysis reaction, and a pyrolysis gas generated by the reaction, a char mixture composed of an undecomposed residue and a fluid medium and an incombustible material are separated. Pyrolysis means for separating from each other, char combustion means for completely combusting the undecomposed residue while blowing the char mixture upward by air or combustion exhaust gas, and directly or after recombusting the pyrolysis gas A first steam producing means for producing hot water or steam having a temperature of about 400 ° C. or lower, and the hot water or steam produced by the first steam producing means by the heat of the combustion gas obtained by the char combustion means. A second steam producing means for producing superheated steam, wherein air is introduced into the pyrolysis gas passage for pre-combustion or /
And an overheated steam manufacturing apparatus utilizing the heat of incineration of waste, which is characterized by performing tar combustion.
【請求項2】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 空気または燃焼排ガスによって前記チャー混合物を上方
に吹き飛ばしながら前記未分解残渣を完全燃焼させるチ
ャー燃焼手段と、 前記熱分解ガスを直接若しくは再燃焼させた後、その熱
を利用して約400℃以下の温水または蒸気を製造する
第1の蒸気製造手段と、 前記チャー燃焼手段により得られた燃焼ガスの熱により
前記第1の蒸気製造手段で製造された温水または蒸気を
過熱蒸気とする第2の蒸気製造手段を含み、 前記熱分解手段出口側の熱分解ガス通路中に、理論空気
量より少ない量の空気を導入する事を特徴とする請求項
1記載の廃棄物の焼却熱を利用した過熱蒸気製造装置。
2. A waste material is supplied into a space having a temperature of 300 ° C. or higher to cause a pyrolysis reaction, and a pyrolysis gas generated by the reaction, a char mixture composed of an undecomposed residue and a fluid medium and an incombustible material are separated. Pyrolysis means for separating from each other, char combustion means for completely combusting the undecomposed residue while blowing the char mixture upward by air or combustion exhaust gas, and directly or after recombusting the pyrolysis gas A first steam producing means for producing hot water or steam having a temperature of about 400 ° C. or lower, and the hot water or steam produced by the first steam producing means by the heat of the combustion gas obtained by the char combustion means. A second steam producing means for producing superheated steam, and introducing a smaller amount of air than the theoretical air amount into the pyrolysis gas passage on the outlet side of the pyrolysis means. That claim 1 superheated steam producing device using the incineration heat of waste according.
【請求項3】 前記第1若しくは第2の蒸気製造手段で
加熱された蒸気若しくは前記いずれかの製造手段に導入
される温水若しくは蒸気の一部を、前記チャー燃焼手段
の高温域側に配した熱交換手段に適宜導入することを特
徴とすることを特徴とする請求項1、2若しくは3記載
の廃棄物の焼却熱を利用した過熱蒸気製造装置。
3. The steam heated by the first or second steam producing means, or hot water or a part of the steam introduced into any one of the producing means is arranged on the high temperature side of the char combustion means. The superheated steam manufacturing apparatus utilizing the heat of incineration of waste according to claim 1, 2 or 3, which is appropriately introduced into a heat exchange means.
【請求項4】 前記チャー燃焼手段の出口側に接続され
該チャー燃焼手段より燃焼ガスと前記流動媒体とを分離
する分離手段を含み、 前記第1若しくは第2の蒸気製造手段で加熱された蒸気
若しくは前記いずれかの製造手段に導入される温水若し
くは蒸気の一部を、適宜前記分離手段の流動媒体出口側
に導入し、該流動媒体との熱接触により加熱することを
特徴とする請求項1乃至4記載の廃棄物の焼却熱を利用
した過熱蒸気製造装置。
4. Steam which is connected to the outlet side of said char combustion means and which separates combustion gas and said fluidized medium from said char combustion means, and which is heated by said first or second steam producing means. Alternatively, a part of the hot water or steam introduced into any one of the manufacturing means is appropriately introduced into the fluid medium outlet side of the separating means and heated by thermal contact with the fluid medium. An overheated steam manufacturing apparatus utilizing the incineration heat of the waste according to any one of 4 to 4.
JP26247495A 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat Expired - Fee Related JP3305172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26247495A JP3305172B2 (en) 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26247495A JP3305172B2 (en) 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat

Publications (2)

Publication Number Publication Date
JPH0979542A true JPH0979542A (en) 1997-03-28
JP3305172B2 JP3305172B2 (en) 2002-07-22

Family

ID=17376293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26247495A Expired - Fee Related JP3305172B2 (en) 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat

Country Status (1)

Country Link
JP (1) JP3305172B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96183A1 (en) * 1996-02-29 2003-05-23 Mitsubishi Heavy Ind Ltd Method and apparatus for producing superheated steam using heat from the incineration of waste material
JP2013155302A (en) * 2012-01-30 2013-08-15 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for preventing occurrence of pyrolysis deposit in pyrolysis gasification system and pyrolysis gasification system
US10377952B2 (en) 2013-07-11 2019-08-13 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Method for inhibiting occurrence of pyrolysis deposit in pyrolysis gasification system, and pyrolysis gasification system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96183A1 (en) * 1996-02-29 2003-05-23 Mitsubishi Heavy Ind Ltd Method and apparatus for producing superheated steam using heat from the incineration of waste material
JP2013155302A (en) * 2012-01-30 2013-08-15 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for preventing occurrence of pyrolysis deposit in pyrolysis gasification system and pyrolysis gasification system
US10377952B2 (en) 2013-07-11 2019-08-13 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Method for inhibiting occurrence of pyrolysis deposit in pyrolysis gasification system, and pyrolysis gasification system

Also Published As

Publication number Publication date
JP3305172B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
KR100264723B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
JP2001153347A (en) Waste heat recovery boiler and facility for treating waste
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3305172B2 (en) Superheated steam production equipment using waste incineration heat
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JP3276274B2 (en) Superheated steam production equipment using waste incineration heat
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP3408678B2 (en) Superheated steam production equipment using waste incineration heat
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JP3272581B2 (en) Superheated steam production equipment using waste incineration heat
JP3924285B2 (en) Incinerator
JP3276273B2 (en) Superheated steam production equipment using waste incineration heat
JP3276272B2 (en) Superheated steam production equipment using waste incineration heat
JP2000304235A (en) Method and apparatus for controlling gasification melting system for waste
JP3534552B2 (en) Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste
JP3408686B2 (en) Superheated steam production equipment using waste incineration heat
JP3276286B2 (en) Superheated steam production equipment using waste incineration heat
JP3310853B2 (en) Superheated steam production equipment using waste incineration heat
JP3477327B2 (en) Superheated steam production method and apparatus using waste incineration heat
JPH09236231A (en) Manufacture of superheated steam utilizing incineration heat of waste
JP3285752B2 (en) Superheated steam production equipment using waste incineration heat
JP2001280615A (en) Melting furnace
JP3268214B2 (en) Superheated steam production equipment using waste incineration heat

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees