JP3285752B2 - Superheated steam production equipment using waste incineration heat - Google Patents

Superheated steam production equipment using waste incineration heat

Info

Publication number
JP3285752B2
JP3285752B2 JP06909096A JP6909096A JP3285752B2 JP 3285752 B2 JP3285752 B2 JP 3285752B2 JP 06909096 A JP06909096 A JP 06909096A JP 6909096 A JP6909096 A JP 6909096A JP 3285752 B2 JP3285752 B2 JP 3285752B2
Authority
JP
Japan
Prior art keywords
pyrolysis
steam
gas
combustion
char
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06909096A
Other languages
Japanese (ja)
Other versions
JPH09236221A (en
Inventor
浩俊 堀添
静生 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06909096A priority Critical patent/JP3285752B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to SG9904761A priority patent/SG96183A1/en
Priority to EP97903617A priority patent/EP0823590B1/en
Priority to DE69732394T priority patent/DE69732394T2/en
Priority to PCT/JP1997/000573 priority patent/WO1997032161A1/en
Priority to US08/945,591 priority patent/US6133499A/en
Priority to KR1019970707702A priority patent/KR100264723B1/en
Publication of JPH09236221A publication Critical patent/JPH09236221A/en
Application granted granted Critical
Publication of JP3285752B2 publication Critical patent/JP3285752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等を焼却し、その燃焼排ガスの熱により蒸気を製造
して、例えば該蒸気を発電プラント等に用いる過熱蒸気
製造に関する発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of superheated steam by incinerating municipal refuse or industrial waste, producing steam by the heat of the combustion exhaust gas, and using the steam in a power plant or the like. .

【0002】[0002]

【従来の技術】従来より都市ごみ等の廃棄物を焼却する
焼却装置には流動床焼却装置が多く用いられ、かかる装
置は流動床焼却炉内の分散板(例えば多孔板)上に収容
された砂等の流動媒体に分散板下方より空気または焼却
排ガス等を吹き込むことにより流動媒体を流動化すると
ともに加熱し、そのようにして形成された流動床内に都
市ごみ等の廃棄物を投入して燃焼させる。この燃焼によ
り発生した燃焼ガスは、燃焼ガス出口ラインを経てボイ
ラに至り、該ボイラ内で温水との熱接触により蒸気を発
生させ、該蒸気を発電プラント等のタービン駆動源とし
て用いるものである。
2. Description of the Related Art Conventionally, fluidized bed incinerators are often used as incinerators for incinerating waste such as municipal solid waste, and such apparatuses are accommodated on a dispersion plate (for example, a perforated plate) in a fluidized bed incinerator. The fluidized medium is fluidized and heated by blowing air or incineration exhaust gas etc. from below the dispersion plate into the fluidized medium such as sand, and waste such as municipal solid waste is thrown into the fluidized bed thus formed. Burn. The combustion gas generated by the combustion reaches a boiler via a combustion gas outlet line, generates steam by thermal contact with hot water in the boiler, and uses the steam as a turbine drive source of a power plant or the like.

【0003】[0003]

【発明が解決しようとする課題】さてかかる都市ごみ等
の廃棄物中には塩ビプラスチック等の含塩素有機化合物
が混入しており、可燃分中にC1として約0.2〜0.
5%含有されている。そして都市ごみ等の廃棄物中に混
入した塩ビプラスチック等に含まれる塩素は、燃焼によ
ってHC1となり(通常、都市ごみ燃焼排ガス中のHC
1は約500〜1000ppm)、焼却炉の後流に設置さ
れた蒸気発生用ボイラのチューブに作用してこれを腐食
させる。特にチューブ表面温度が約350℃以上では温
度の増加とともに高温腐食が顕著となる。このため、従
来、チューブ表面温度は350℃以下にする必要があ
り、製造される蒸気の温度は約300℃が限界であっ
た。その結果、従来のごみ焼却による発電効率は約15
%以下であって、塩素を殆ど含有しない重油やLNG等
を燃料とし、ボイラチューブ温度を500〜600℃に
できるプラントの発電効率約30〜40%に比べて著し
く低く、その改善が強く望まれていた。
The waste such as municipal solid waste contains a chlorine-containing organic compound such as PVC plastic, and the flammable component has a C1 content of about 0.2 to 0.1%.
Contains 5%. Chlorine contained in PVC plastic and the like mixed into waste such as municipal waste becomes HC1 by combustion (usually, HC1 contained in flue gas from municipal waste combustion).
(1 is about 500 to 1000 ppm), which acts on the tube of the steam generation boiler installed downstream of the incinerator to corrode it. In particular, when the tube surface temperature is about 350 ° C. or higher, high-temperature corrosion becomes remarkable as the temperature increases. For this reason, conventionally, the tube surface temperature had to be 350 ° C. or less, and the temperature of the produced steam was limited to about 300 ° C. As a result, the power generation efficiency of conventional waste incineration is about 15
% Or less, which is fueled by heavy oil or LNG containing almost no chlorine, and has a remarkably low power generation efficiency of about 30 to 40%, which is a plant capable of setting the boiler tube temperature to 500 to 600 ° C. I was

【0004】本発明者らはかかる技術的課題に鑑み、塩
素によるボイラチューブの高温腐食を防止しながら高温
・高圧の過熱蒸気を効率的に得ることのできる過熱蒸気
の製造にかかる発明を同時出願の特許願(整理番号96
P0191)に提案している。かかる基本発明は、略2
00℃〜320℃前後に沸点を有するように加圧させた
蒸気水を用い、該蒸気水の加熱を少なくとも2段階以上
の複数段階とし、前記略沸点温度までの加熱を含塩素熱
エネルギで行ない、前記略沸点温度から所定温度の過熱
蒸気を得る過熱を塩素を含まない脱塩素熱エネルギで行
なう事を特徴とするものである。
[0004] In view of such technical problems, the present inventors have filed a simultaneous application for an invention relating to the production of superheated steam capable of efficiently obtaining high-temperature, high-pressure superheated steam while preventing high-temperature corrosion of the boiler tube due to chlorine. Patent application (reference number 96
P0191). Such a basic invention is substantially as follows:
Using steam water pressurized so as to have a boiling point at about 00 ° C. to 320 ° C., the heating of the steam water is performed in at least two or more stages, and the heating up to the substantially boiling point temperature is performed using chlorine-containing heat energy. The superheating for obtaining the superheated steam at a predetermined temperature from the substantially boiling point is performed by dechlorination heat energy containing no chlorine.

【0005】かかる基本発明によれば例えば図4に示す
ように、都市ごみ等の廃棄物を、例えば熱分解してその
熱分解ガス中にHC1等が含有する含塩素熱分解ガスで
あっても、該含塩素熱分解ガスの熱エネルギによる蒸気
水の加熱は、略200℃〜320℃前後の略沸点温度と
している為に、含塩素熱分解ガスが蒸気発生用ボイラの
チューブに作用してもチューブ表面温度が約350℃以
下にでき、これを腐食させる事にならない。この場合前
記蒸気水は加圧により沸点を略200℃〜320℃前後
に設定してある為に前記含塩素熱分解ガスの蒸気水への
熱エネルギの付与にバラツキが生じていてもそれは該蒸
気水の潛熱の吸収(言い換えれば水から蒸気への相変換
にのみ使用され温度上昇分として作用しない)に使用さ
れるために、蒸気水の熱交換チューブの表面温度が塩素
腐触温度以上に上昇する事なく、安定した加熱温度の蒸
気水若しくは蒸気を得る事が出来る。
According to the basic invention, for example, as shown in FIG. 4, waste such as municipal waste is pyrolyzed, for example, even if it is a chlorine-containing pyrolysis gas containing HC1 or the like in the pyrolysis gas. Since the steam water is heated by the thermal energy of the chlorine-containing pyrolysis gas at a substantially boiling point of about 200 ° C. to 320 ° C., even if the chlorine-containing pyrolysis gas acts on the tube of the steam generating boiler. The tube surface temperature can be reduced to about 350 ° C. or less, which does not corrode. In this case, since the boiling point of the steam water is set to about 200 ° C. to 320 ° C. by pressurization, even if the application of heat energy to the steam water of the chlorine-containing pyrolysis gas varies, it is not affected by the steam. The surface temperature of the heat exchange tube of steam water rises above the chlorine corrosion temperature because it is used to absorb the latent heat of water (in other words, it is used only for the phase conversion from water to steam and does not act as a temperature rise) Thus, steam water or steam at a stable heating temperature can be obtained without performing the above.

【0006】そして前記略350℃〜500℃の熱分解
により分解されなかった未分解残渣は既に脱塩素されて
いるために、これを燃焼させて得られる、例えば500
〜950℃前後の熱エネルギを利用して前記略200℃
〜320℃前後に一次加熱した蒸気水若しくは蒸気を二
次〜三次加熱して400〜550℃の過熱蒸気を得ても
チューブ腐触が生じる恐れがない。これによりごみ焼却
による発電を行なった場合においても、塩素を殆ど含有
しない重油やLNG等を燃料としたプラントと同様な約
30〜40%前後の発電効率を得る事が出来る。
The undecomposed residue which has not been decomposed by the thermal decomposition at about 350 ° C. to 500 ° C. has already been dechlorinated.
Approximately 200 ° C. using heat energy of about 950 ° C.
Even if superheated steam of 400 to 550 ° C. is obtained by performing secondary to tertiary heating of steam water or steam that has been primarily heated to about 320 ° C., there is no risk of tube corrosion. As a result, even when power is generated by refuse incineration, a power generation efficiency of about 30 to 40% can be obtained as in a plant using fuel oil, LNG, or the like containing almost no chlorine as a fuel.

【0007】そしてかかる発明を具体化させる装置とし
て、温度300℃以上、好ましくは温度350〜500
℃の空間内に廃棄物を供給して熱分解反応を行なわせ、
その反応により発生した熱分解ガスと未分解残渣および
流動媒体から成るチャー混合物と不燃物とを互いに分離
する例えば流動床、ロータリキルン、横型スクリュー攪
拌槽等を利用した熱分解手段と、空気によって前記チャ
ー混合物を流動させながら前記未分解残渣を燃焼させる
例えば高速流動床や気泡流動床その他の流動床等からな
るチャー燃焼手段と、前記熱分解ガスを直接若しくは再
燃焼させた後、その熱を利用して約400℃以下、具体
的には200〜320℃の温水または蒸気を製造する第
1の蒸気製造手段と、前記チャー燃焼手段により得られ
た燃焼ガスの熱により前記第1の蒸気製造手段で製造さ
れた温水または蒸気を過熱蒸気とする第2の蒸気製造手
段を含む廃棄物の焼却熱を利用した過熱蒸気製造装置を
前記基本発明にて提案している。
[0007] An apparatus embodying the present invention is a temperature of 300 ° C or more, preferably a temperature of 350 to 500 ° C.
Supply waste into the space of ℃ to cause thermal decomposition reaction,
For example, a fluidized bed, a rotary kiln, a pyrolysis means using a horizontal screw stirring tank or the like for separating a char mixture and a non-flammable substance comprising a pyrolysis gas generated by the reaction, an undecomposed residue and a fluidized medium, Char combustion means, such as a high-speed fluidized bed, a bubble fluidized bed, or another fluidized bed for burning the undecomposed residue while flowing the char mixture, and utilizing the heat after directly or reburning the pyrolysis gas. And a first steam producing means for producing hot water or steam at a temperature of about 400 ° C. or less, specifically 200 to 320 ° C., and the first steam producing means by the heat of the combustion gas obtained by the char burning means. A superheated steam production apparatus utilizing the heat of incineration of wastes including a second steam production means for converting the produced hot water or steam into superheated steam is used in the basic invention. It is draft.

【0008】本発明は、かかる基本技術を更に発展さ
せ、前記基本技術に比較して更に効率良く塩素の低減と
もに且つ高温度の過熱蒸気を得ることの出来る過熱蒸気
の製造装置を提供する事にある。本発明の他の目的は、
前記いずれの蒸気製造装置においても、長期に亙って安
定して蒸気の製造を可能にした過熱蒸気の製造にかかる
発明を提供する事にある。又本発明の他の目的は、前記
熱分解ガスの一層の効率利用を図った過熱蒸気の製造装
置を提供する事にある。又本発明の他の目的は、前記熱
分解ガス若しくは燃焼ガスを分離して得られた灰を溶融
して骨材等の製造が可能となる過熱蒸気の製造装置を提
供する事にある。
The present invention is to further develop such a basic technology and to provide an apparatus for producing superheated steam capable of more efficiently reducing chlorine and obtaining superheated steam at a high temperature as compared with the aforementioned basic technology. is there. Another object of the present invention is to
It is an object of the present invention to provide an invention relating to the production of superheated steam which enables stable production of steam over a long period of time in any of the above-mentioned steam production apparatuses. Another object of the present invention is to provide an apparatus for producing superheated steam, which makes more efficient use of the pyrolysis gas. Another object of the present invention is to provide an apparatus for producing superheated steam capable of producing aggregates by melting ash obtained by separating the pyrolysis gas or combustion gas.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
温度300℃以上の空間内に廃棄物を供給して熱分解反
応を行なわせ、その反応により発生した熱分解ガスと未
分解残渣および流動媒体から成るチャー混合物と不燃物
とを互いに分離する熱分解手段と、前記熱分解手段より
取り出された未分解残渣および流動媒体から成るチャー
混合物を、空気によって流動させながら前記未分解残渣
を燃焼させるチャー燃焼手段と、前記熱分解ガスの燃焼
熱エネルギーを利用して約400℃以下の温水または蒸
気を製造する第1の蒸気製造手段と、前記チャー燃焼手
段により得られた熱エネルギにより前記第1の蒸気製造
手段で製造された温水または蒸気を過熱蒸気とする第2
の蒸気製造手段を含み、前記熱分解手段と第1の蒸気製
造手段との間に、前記熱分解ガスの第1次燃焼熱によ
り、チャー燃焼手段若しくは熱分解手段より取り出され
た夫々のガスより分離された灰分の溶融分離を行う灰分
溶融分離手段を設けるとともに、前記灰分が分離された
熱分解ガスの2次燃焼を行う2次燃焼手段を設け、 前記
熱分解手段により得られた熱分解ガスを灰分溶融分離手
段とともに、その一部を分岐して前記2次燃焼手段に供
給することを特徴とする。
According to the first aspect of the present invention,
Pyrolysis that supplies waste to a space having a temperature of 300 ° C. or higher to cause a pyrolysis reaction, and separates a pyrolysis gas generated by the reaction, a non-decomposed residue, a char mixture composed of a fluidized medium, and a non-combustible material from each other. Means, char combustion means for burning the undecomposed residue while air-flowing a char mixture comprising the undecomposed residue and the fluidized medium taken out by the pyrolysis means, and utilizing the combustion heat energy of the pyrolysis gas A first steam producing means for producing hot water or steam having a temperature of about 400 ° C. or less, and the hot water or steam produced by the first steam producing means is converted into superheated steam by thermal energy obtained by the char combustion means. Second
Between the pyrolysis means and the first steam production means, by the primary combustion heat of the pyrolysis gas, from the respective gases extracted from the char combustion means or the pyrolysis means. provided with an ash melting separation means for performing melt separation of the separated ash, provided secondary combustion means before Symbol ash make a secondary combustion of the separated pyrolysis gas, wherein
The pyrolysis gas obtained by the pyrolysis means is melted and separated by ash.
Along with the stage, a part thereof is branched and supplied to the secondary combustion means.
It is characterized by feeding .

【0010】かかる発明によれば次のような効果を有す
る。即ち、チャー燃焼手段内では炭化状態にあるチャー
混合物と流動砂の熱接触により燃焼ガス中に灰分が混入
するのを避けられない。これは熱分解手段により得られ
る熱分解ガスについても同様である。そこで前記必要に
応じガス分離した後、若しくはガス分離をしながら灰分
の溶融分離を行う灰分溶融分離手段を設けることによ
り、前記溶融灰を利用して骨材等の製造が可能となる。
更に、熱分解ガスを利用して2次燃焼を行い、該2次燃
焼手段内にボイラ等の第1の蒸気製造手段を配設する事
により、一層効率良くボイラ水の一次加熱が可能であ
る。
According to this invention, the following effects can be obtained. That is, in the char combustion means, it is inevitable that ash is mixed into the combustion gas due to the thermal contact between the char mixture in the carbonized state and the fluidized sand. The same applies to the pyrolysis gas obtained by the pyrolysis means. Therefore, by providing ash melt separation means for performing ash melt separation after gas separation or while performing gas separation as required, it is possible to produce aggregates and the like using the molten ash.
Further, by performing secondary combustion using the pyrolysis gas and arranging the first steam production means such as a boiler in the secondary combustion means, it is possible to more efficiently perform primary heating of the boiler water. .

【0011】さて前記熱分解ガス中に含まれる灰及び燃
焼ガス中に含まれる灰は、廃棄物に対し1割程度であ
り、従ってこれを供給される熱分解ガス全てを使用して
溶融することは必ずしも必要なく、却って過剰熱エネル
ギになりやすい。又前記熱分解ガスを灰が溶融出来るま
での高温燃焼させるために必要な酸素富化空気も多くな
る。そこで前記発明は、前記熱分解手段により得られた
熱分解ガスを灰分溶融分離手段とともに、その一部を分
岐して前記2次燃焼手段に供給することも特徴としてい
る。また、請求項記載の発明は、温度300℃以上の
空間内に廃棄物を供給して熱分解反応を行なわせ、その
反応により発生した熱分解ガスと未分解残渣および流動
媒体から成るチャー混合物と不燃物とを互いに分離する
熱分解手段と、 前記熱分解手段より取り出された未分解
残渣および流動媒体から成るチャー混合物を、空気によ
って流動させながら前記未分解残渣を燃焼させるチャー
燃焼手段と、 前記熱分解ガスの燃焼熱エネルギーを利用
して約400℃以下の温水または蒸気を製造する第1の
蒸気製造手段と、 前記チャー燃焼手段により得られた熱
エネルギにより前記第1の蒸気製造手段で製造された温
水または蒸気を過熱蒸気とする第2の蒸気製造手段を含
み、 前記熱分解手段と第1の蒸気製造手段との間に、前
記熱分解ガスの第1次燃焼熱により、チャー燃焼手段若
しくは熱分解手段より取り出された夫々のガスより分離
された灰分の溶融分離を行う灰分溶融分離手段を設ける
とともに、前記灰分が分離された熱分解ガスの2次燃焼
を行う2次燃焼手段を設け、前記熱分解手段により得ら
れた熱分解ガスの一部を分岐して熱分解手段の入口側に
供給することを特徴とする。かかる発明によれば、前記
熱分解手段により得られた熱分解ガスの一部を分岐して
熱分解手段の入口側に供給するものであるために、言換
えれば350℃〜500℃の高温の可燃性ガスを熱分解
手段に循環供給する事が出来るために、熱分解ガスが空
気又は燃焼排ガス中のN 2 、CO 2 ,H 2 O等の不活性ガ
スでの希釈を 最小限に抑えて、単位容積当りの発熱量を
高くし、灰溶融炉の温度保持が容易になる。
The ash contained in the pyrolysis gas and the ash contained in the combustion gas account for about 10% of the waste. Therefore, it is necessary to melt the ash using all the pyrolysis gas supplied. Is not always necessary, but rather tends to be excessive heat energy. Also, the amount of oxygen-enriched air required for burning the pyrolysis gas at a high temperature until the ash can be melted increases. Therefore the invention, together with ash melt separation means pyrolysis gas obtained by the pyrolysis unit, it also has features to supply to the secondary combustion unit branches a part of
You. The invention according to claim 2 is characterized in that the temperature of 300 ° C. or more
The waste is supplied into the space to cause a thermal decomposition reaction,
Pyrolysis gas generated by reaction, undecomposed residue and flow
Separates medium char mixture and incombustibles from each other
Pyrolysis means, and undecomposed taken out by the pyrolysis means
The char mixture consisting of the residue and the flowing medium is
To burn the undecomposed residue while flowing
Utilizing combustion means and combustion heat energy of the pyrolysis gas
To produce hot water or steam below about 400 ° C.
Steam production means and heat obtained by the char combustion means
The temperature produced by the first steam producing means by energy
Including a second steam production means that uses water or steam as superheated steam
Between the pyrolysis means and the first steam producing means.
The primary combustion heat of the pyrolysis gas generates char combustion means.
Or from each gas extracted from the pyrolysis means
Ash melt separation means to perform melt separation of ash
And secondary combustion of the pyrolysis gas from which the ash has been separated
Secondary combustion means for performing
A part of the pyrolysis gas is branched off to the inlet side of the pyrolysis means.
It is characterized by supplying . According to the invention,
Part of the pyrolysis gas obtained by the pyrolysis means is branched
Since it is supplied to the inlet side of the pyrolysis means,
Thermal decomposition of high temperature flammable gas of 350 ℃ ~ 500 ℃
The pyrolysis gas is empty because it can be circulated to the means.
Inert gas such as N 2 , CO 2 , H 2 O etc.
Heat dilution per unit volume by minimizing dilution
Higher temperature makes it easier to maintain the temperature of the ash melting furnace.

【0012】さらに、好ましくは前記発明において、
求項3記載の発明のごとく、温度300℃以上の酸素過
小空間内に廃棄物を供給して熱分解反応を行なわせ、そ
の反応により発生した熱分解ガスを2次燃焼手段若しく
は熱交換手段に供給するため熱分解ガス出口経路中に絞
り部を設け、該絞り部の入口側と出口側に夫々設けた圧
力取り出し口に少量の空気(支燃性ガスを含む気体)
適宜流す空気流入手段を設けて差圧を計測して熱分解ガ
スの流量を計測するとよい。
[0012] Still preferably, in the invention, as the invention described in claim 3, by supplying the waste to a temperature 300 ° C. or more oxygen under-space to perform the thermal decomposition reaction, pyrolysis generated by the reaction A throttle is provided in the pyrolysis gas outlet path to supply gas to the secondary combustion means or the heat exchange means, and a small amount of air (combustion-resistant) is provided at pressure outlets provided at the inlet and outlet sides of the throttle, respectively . (A gas containing gas) is provided, and an air inflow means is provided to flow the pyrolysis gas by measuring the differential pressure.
The flow rate of the gas should be measured.

【0013】さて、灰分の溶融に必要な熱分解ガスの流
量を計測して、制御するために熱分解ガスの経路中にオ
リフィス等の差圧計を配し、その流量(流速)測定を行
なう必要がある。このため前記熱分解手段よりの出口経
路中にオリフィス等の差圧計(絞り)を配し、流量測定
を行なう必要があるが、前記熱分解手段よりの出口ガス
はその出口温度が350〜500℃前後の為に、タール
分を含んだガスが出てくる場合があり、そのタール分が
絞り部や圧力タップ(細孔状の圧力取り出し口)に付着
し、円滑な流量測定が困難になる。そこで本発明は、絞
り部の入口側と出口側に夫々設けた圧力取り出し口に少
量の空気(支燃性ガスを含む気体の意味で空気という言
葉を用いている。)を適宜流す空気流入手段を設けるこ
とにより、前記タール分を燃焼させて付着等を防止し
て、安定して圧力を測定できる。
Now, it is necessary to arrange a differential pressure gauge such as an orifice in the path of the pyrolysis gas to measure and control the flow rate of the pyrolysis gas required for melting the ash, and to measure the flow rate (flow rate). There is. For this reason, it is necessary to arrange a differential pressure gauge (throttle) such as an orifice in the outlet path from the thermal decomposition means and measure the flow rate. The outlet gas from the thermal decomposition means has an outlet temperature of 350 to 500 ° C. Because of before and after, a gas containing a tar component may come out, and the tar component adheres to the throttle portion and the pressure tap (pore-shaped pressure outlet), making it difficult to measure the flow rate smoothly. Accordingly, the present invention provides an air inflow means for appropriately flowing a small amount of air (the term air is used to mean a gas containing a supporting gas) into pressure outlets provided on the inlet side and the outlet side of the throttle unit, respectively. By providing the above, the tar component is burned to prevent adhesion and the like, and the pressure can be measured stably.

【0014】[0014]

【0015】[0015]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
構成部品の寸法、材質、形状、その相対的配置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
は本発明の実施例に係る廃棄物の焼却熱を利用した過熱
蒸気製造装置を示し、図中、1は流動床からなる熱分解
炉で、多孔板等の分散板3上に流動砂等の流動媒体2−
1が収納されており、廃棄物供給ライン4及び砂循環
(戻入)ライン5より流動砂と都市ごみ等の廃棄物が投
入され、燃焼排ガス入口ライン6より供給された燃焼排
ガス等(本熱分解炉は基本的には燃焼ではなく熱分解の
為に、供給されるガスは酸素を消費した燃焼排ガスが大
部分であるが、温度制御を行なう為に必要に応じ空気を
僅かに入れる)により温度300℃以上の流動床空間を
生成し、廃棄物の熱分解反応を行なわせ、その反応によ
り発生した熱分解ガスは熱分解ガス出口ライン7より、
又未分解残渣および流動砂から成るチャー混合物はチャ
ー混合物取り出しライン9より、不燃物は不燃物取り出
しライン8より、夫々互いに分離して取り出す。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG.
1 shows an apparatus for producing superheated steam using the heat of incineration of wastes according to an embodiment of the present invention. In the drawing, reference numeral 1 denotes a pyrolysis furnace comprising a fluidized bed, wherein fluidized sand or the like is dispersed on a dispersion plate 3 such as a perforated plate. Fluid medium 2-
1 is stored therein, and waste such as fluidized sand and municipal solid waste is supplied from a waste supply line 4 and a sand circulation (return) line 5, and the combustion exhaust gas and the like supplied from a combustion exhaust gas inlet line 6 (this thermal decomposition The furnace is basically not for combustion but for thermal decomposition, so the supplied gas is mostly flue gas that consumes oxygen, but air is slightly added as needed for temperature control.) A fluidized bed space of 300 ° C. or higher is generated to cause a pyrolysis reaction of waste, and a pyrolysis gas generated by the reaction is supplied from a pyrolysis gas outlet line 7.
The char mixture composed of the undecomposed residue and the fluidized sand is taken out of the char mixture take-out line 9 and the incombustibles are taken out of the incombustibles take-out line 8 separately from each other.

【0016】この際熱分解ガスとチャー混合物の熱カロ
リー比が「約7(熱分解ガス):約3(チャー混合
物)」になるように熱分解を行うことが好ましい。これ
は、加温すべきボイラ水を100Kgf/cm2前後に
加圧してその沸点を309℃前後に設定している為に、
熱分解ガスでは水冷壁ボイラ36及び第1のボイラ24
でボイラ水を常温より「沸点309℃+蒸発潜熱」言換
えれば309℃で殆ど蒸気化するまで立上げるカロリー
と、該立上げた蒸気を沸点309℃より500℃まで立
上げるカロリーの比は、約7:3である事による。又熱
分解炉1出口側の熱分解ガス出口ライン7には図3に示
す差圧計測手段100が形成してもよく、特に図2に示
すように熱分解ガス出口ライン7をライン7’、7−1
として分岐する場合は差圧計測手段100により分岐流
量を測定する必要がある。この差圧計測手段100は、
熱分解炉1より取り出された熱分解ガスの流量(流速)
を測定するとともに、前記差圧計測手段100を形成す
る絞り部110の入口側と出口側に夫々設けた圧力取り
出し口109、109に少量の空気を適宜流すことによ
り、熱分解ガス中に含まれるタール等を燃焼させ、絞り
部110及び圧力取り出し口109におけるタール付着
防止やコーキング防止を図る。
At this time, it is preferable to carry out the thermal decomposition so that the thermal calorie ratio of the pyrolysis gas and the char mixture becomes "about 7 (pyrolysis gas): about 3 (char mixture)". This is because the boiler water to be heated is pressurized to about 100 kgf / cm 2 and its boiling point is set at about 309 ° C.
In the case of the pyrolysis gas, the water-cooled wall boiler 36 and the first boiler 24
Then, the ratio of the calorie that starts boiler water from room temperature to “boiling point 309 ° C. + latent heat of vaporization” until it is almost vaporized at 309 ° C. and the calorie that raises the started steam from the boiling point 309 ° C. to 500 ° C. is: It is about 7: 3. The pyrolysis gas outlet line 7 on the outlet side of the pyrolysis furnace 1 may be formed with a differential pressure measuring means 100 shown in FIG. 3, and in particular, as shown in FIG. 7-1
In the case of branching, it is necessary to measure the branch flow rate by the differential pressure measuring means 100. This differential pressure measuring means 100
Flow rate (flow rate) of pyrolysis gas taken out of pyrolysis furnace 1
Is measured, and a small amount of air is appropriately flowed through the pressure outlets 109, 109 provided on the inlet side and the outlet side of the throttle unit 110 forming the differential pressure measuring means 100, respectively. The tar and the like are burned to prevent tar adhesion and caulking in the narrowed portion 110 and the pressure outlet 109.

【0017】図3(A)はオリフィスを用いて形成した
差圧計測手段で、101、101’は出口ライン7を形
成する配管、102はフランジ、103はオリフィスプ
レート、104は差圧計、105、106、107、1
08は空気導入管、109は圧力取り出し口としての圧
力タップ、110は絞り部、111は空気量調整弁、1
12はフローメータその他の流量計である。圧力タップ
109はAーA線断面図で示すように、周方向に90°
づつ変角させた位置に、4個設ける。図3(B)はラッ
パ状の絞り部110を用いて形成した差圧計測手段10
0で、その構成は図3(A)と同様である。
FIG. 3A shows a differential pressure measuring means formed by using an orifice, 101 and 101 'are pipes forming an outlet line 7, 102 is a flange, 103 is an orifice plate, 104 is a differential pressure gauge, 105 106, 107, 1
08 is an air introduction pipe, 109 is a pressure tap as a pressure outlet, 110 is a throttle, 111 is an air amount adjustment valve, 1
Reference numeral 12 denotes a flow meter and other flow meters. The pressure tap 109 is 90 ° in the circumferential direction as shown in the sectional view along the line AA.
Four are provided at the positions where the angles are changed. FIG. 3B shows a differential pressure measuring unit 10 formed by using a trumpet-shaped throttle unit 110.
0, the configuration is the same as that of FIG.

【0018】熱分解ガス出口ライン7よりの熱分解ガ
ス、又図2のように分岐され前記差圧計測手段100を
通過後の熱分解ガスは、灰溶融炉31に導入される。前
記灰溶融炉31は、例えば旋回流により砂混合熱分解ガ
ス灰を旋回分離させながら、該灰溶融炉31内に空気若
しくは酸素富化空気を前記熱分解ガスと共に、ライン3
0より導入して該熱分解ガス燃焼熱により1300℃以
上として灰分を溶融して、該溶融した灰分を溶融灰出口
ライン32を介して水貯溜部32Aに落下させ、数mm
程度の水冷スラッグを生成し、該スラッグを建築用骨材
として利用するように構成する。又前記灰溶融炉31に
はサイクロン16の出口ライン18/ダストライン29
を介して灰が導入され、又、ライン14の不燃物も又は
/及びバブフィルターや電気集塵機の捕集灰も、これも
溶融分離される。
The pyrolysis gas from the pyrolysis gas outlet line 7 and the pyrolysis gas branched as shown in FIG. 2 and having passed through the differential pressure measuring means 100 are introduced into an ash melting furnace 31. The ash melting furnace 31, for example, swirls and separates the sand-mixed pyrolysis gas ash by a swirling flow, and feeds air or oxygen-enriched air into the ash melting furnace 31 together with the pyrolysis gas into a line 3.
0, the ash is melted at 1300 ° C. or more by the heat of combustion of the pyrolysis gas, and the melted ash is dropped into the water reservoir 32A through the molten ash outlet line 32, and a few mm
A degree of water-cooled slag is generated, and the slag is configured to be used as building aggregate. The ash melting furnace 31 has an outlet line 18 of the cyclone 16 and a dust line 29.
The ash is introduced via the ash, and also the incombustibles in the line 14 and / or the ash collected by the bub filter or the electric precipitator are also melted and separated.

【0019】又、前記灰溶融炉31の出口ライン33の
下流端には、燃焼ダクトからなる熱分解ガス燃焼炉34
が配設され、前記熱分解ガスに十分な空気をライン21
Aより供給して該熱分解ガスの完全燃焼を行う。従って
本実施例によれば前記サイクロン16で分離した灰分及
び/又はライン14の不燃物は前記した灰溶融炉31に
導入する事により、前記溶融灰を利用して骨材等の製造
が可能となる。又、熱分解ガス燃焼炉34及び第1ボイ
ラ24に導入される熱分解ガス中に灰分等が混入される
ことなく長期に亙って安定して蒸気製造が可能になると
ともに、又熱分解ガス燃焼炉34及び第1ボイラ24に
導入される熱分解ガス温度を略800〜900℃(最大
950℃前後)程度に高く設定できるために、該ボイラ
等で製造されるボイラ水/蒸気を更に多量に製造でき
る。
At the downstream end of the outlet line 33 of the ash melting furnace 31, a pyrolysis gas combustion furnace 34 comprising a combustion duct is provided.
Is provided, and sufficient air is supplied to the pyrolysis gas through a line 21.
A to complete combustion of the pyrolysis gas. Therefore, according to the present embodiment, the ash separated in the cyclone 16 and / or the incombustibles in the line 14 are introduced into the ash melting furnace 31 described above, so that aggregates can be manufactured using the molten ash. Become. Further, it is possible to stably produce steam over a long period of time without mixing ash or the like in the pyrolysis gas introduced into the pyrolysis gas combustion furnace 34 and the first boiler 24. Since the temperature of the pyrolysis gas introduced into the combustion furnace 34 and the first boiler 24 can be set as high as about 800 to 900 ° C. (up to about 950 ° C.), a larger amount of boiler water / steam is produced by the boiler or the like. Can be manufactured.

【0020】10は気泡流動床炉からなるチャー燃焼炉
で、底部に配した分散板11上にチャー混合物取り出し
ライン9より供給されたチャー混合物、及び砂循環ライ
ン19ー2/19−1を介して副チャー燃焼炉10Bと
の間で循環された流動砂が収納される。そして前記分散
板11下方の空気供給ライン12より空気が供給されて
流動床2−3内で700〜800℃に加熱して未分解残
渣の燃焼を行い、更にチャー燃焼炉10中域の空気供給
ライン13より空気が導入されて更に加熱し約800〜
1300℃前後の燃焼ガスを生成すると共に、そのチャ
ー燃焼炉10中の上方域に第2スーパヒータ29−1又
は/及びボイラを配設し、第2の蒸気製造手段(第1ス
ーパヒータ20)よりライン28−1を介して導入され
た過熱蒸気の過熱とともに、950〜1300℃前後と
無用に高くなった燃焼ガスを800〜950℃に落と
す。尚、前記第2ス−パヒ−タ29−1の代わりに水冷
壁ボイラの加熱に供しても良い。
Reference numeral 10 denotes a char combustion furnace consisting of a bubble fluidized bed furnace, which is supplied on a dispersion plate 11 disposed at the bottom through a char mixture take-out line 9 and a sand circulation line 19-2 / 19-1. The fluidized sand circulated between the auxiliary char combustion furnace 10B is stored. Then, air is supplied from an air supply line 12 below the dispersion plate 11 and is heated to 700 to 800 ° C. in the fluidized bed 2-3 to burn undecomposed residues. Air is introduced from line 13 and further heated to about 800-
A combustion gas of about 1300 ° C. is generated, and a second superheater 29-1 and / or a boiler is disposed in an upper region of the char combustion furnace 10, and a line is provided from a second steam production means (the first superheater 20). Along with the superheating of the superheated steam introduced via 28-1, the combustion gas that has become unnecessarily high, around 950 to 1300 ° C, is dropped to 800 to 950 ° C. The second super heater 29-1 may be used for heating a water-cooled wall boiler.

【0021】尚前記のように燃焼ガス温度を800〜9
50℃に落としても第1スーパヒータ20における蒸気
温度を400〜520℃に維持する上で何の支障もな
い。そして前記チャー燃焼炉10で燃焼されない小型の
不燃物は不燃物取り出しライン14より取り出される。
As described above, the combustion gas temperature is set to 800-9.
Even if the temperature is lowered to 50 ° C., there is no problem in maintaining the steam temperature in the first superheater 20 at 400 to 520 ° C. Small incombustibles that are not burned in the char combustion furnace 10 are taken out from an incombustibles take-out line 14.

【0022】一方、チャー燃焼炉10には副流動床とし
ての副チャー燃焼炉10Bが付設されており、砂循環ラ
イン19ー2/19−1を介して副チャー燃焼炉10B
との間で流動砂が流動するように構成し、そして前記副
チャー燃焼炉10Bの流動媒体内に第3スーパヒータ2
9−2を配設し、第2スーパヒータ29−1の出口側と
ライン28−2を介して接続している。
On the other hand, the char combustion furnace 10 is provided with a sub-char combustion furnace 10B as a sub-fluidized bed, and the sub-char combustion furnace 10B is provided via a sand circulation line 19-2 / 19-1.
And the third superheater 2 in the flowing medium of the auxiliary char combustion furnace 10B.
9-2, and is connected to the outlet side of the second superheater 29-1 via the line 28-2.

【0023】尚、副チャー燃焼炉10Bは、独立して設
けてもよいが、前記チャー燃焼炉10より加熱された流
動媒体を熱分解炉1に戻入する流動媒体経路19−1/
5中に、第3スーパヒータ29−2を設けた副チャー燃
焼炉10Bを介在させるのがよい。
The auxiliary char combustion furnace 10B may be provided independently, but a fluid medium path 19-1 / for returning the fluid medium heated from the char combustion furnace 10 to the pyrolysis furnace 1.
5, it is preferable to interpose a sub-char combustion furnace 10 </ b> B provided with a third superheater 29-2.

【0024】さて前記第2スーパヒータ29−1で熱交
換された燃焼ガスは、砂/燃焼ガス出口ライン15より
気・固分離装置例えば必要に応じサイクロン16に導入
され、ここでダストや灰と燃焼ガスとを分離し、燃焼ガ
スはガス出口ライン17より第1スーパヒータ20に導
入される。
The combustion gas heat-exchanged by the second superheater 29-1 is introduced from a sand / combustion gas outlet line 15 into a gas / solid separation device, for example, a cyclone 16 as necessary, where it is combusted with dust and ash. The gas is separated from the gas, and the combustion gas is introduced into the first superheater 20 through the gas outlet line 17.

【0025】20は第1スーパヒータ及び24は第1ボ
イラで、第1ボイラ24では熱分解ガス出口ライン7よ
り取り出された熱分解ガスは、水冷壁ボイラ36が内装
されている燃焼ガス燃焼炉34内で燃焼されて第1スー
パヒータ20のボイラガス出口22より排出された燃焼
排ガスと共に、第1のボイラ24に導入され、ボイラ水
入口26より取込んだボイラ水を300℃前後に加熱
し、第1ボイラ出口ライン27より第1スーパヒータ2
0に蒸気若しくは加熱水を供給する。25は、排ガス排
出ラインである。
Reference numeral 20 denotes a first superheater and reference numeral 24 denotes a first boiler. In the first boiler 24, the pyrolysis gas extracted from the pyrolysis gas outlet line 7 is supplied to a combustion gas combustion furnace 34 in which a water-cooled wall boiler 36 is installed. The boiler water introduced into the first boiler 24 and taken in from the boiler water inlet 26 together with the combustion exhaust gas discharged from the boiler gas outlet 22 of the first superheater 20 through the boiler gas outlet 22 is heated to about 300 ° C. 1st superheater 2 from boiler outlet line 27
Supply steam or heated water to zero. 25 is an exhaust gas discharge line.

【0026】ボイラ水は分岐ライン26’を介して燃焼
ガス燃焼炉34内の水冷壁ボイラ36にも導入され分岐
ライン27’を介して第1スーパヒータ20に蒸気若し
くは加熱水を供給する。尚、100Kgf/cm2前後
に加圧してその沸点を309℃前後に設定している前記
ボイラ水は水冷壁ボイラ36及び第1のボイラ24に導
入されて第1段階の加熱を行うわけであるが、その加熱
温度が前記沸点近くの309℃前後になるようにその通
水量を制御している。
The boiler water is also introduced into a water wall boiler 36 in a combustion gas combustion furnace 34 via a branch line 26 'and supplies steam or heated water to the first superheater 20 via a branch line 27'. The boiler water, which is pressurized to about 100 kgf / cm 2 and its boiling point is set at about 309 ° C., is introduced into the water-cooled wall boiler 36 and the first boiler 24 to perform the first-stage heating. However, the flow rate of water is controlled so that the heating temperature is about 309 ° C., which is near the boiling point.

【0027】この結果、水冷壁ボイラ36及び第1のボ
イラ24のチューブ表面壁温度は、前記加温水に追従し
て309℃前後に維持でき、例え熱交換される熱分解ガ
スに塩素若しくはHClを含んでいても腐食が生じる事
はない。
As a result, the tube surface wall temperature of the water-cooled wall boiler 36 and the first boiler 24 can be maintained at about 309 ° C. following the heated water, for example, chlorine or HCl is added to the heat-exchanged pyrolysis gas. Even if included, corrosion does not occur.

【0028】第1スーパヒータ20では前記第1ボイラ
24及び水冷壁ボイラ36の出口ライン27、27’よ
り取り出した蒸気/加熱水及び水冷壁ボイラ36により
加熱され分岐蒸気ライン27’を介してとりだされた蒸
気/加熱水を導入して、前記燃焼ガスライン17を介し
て供給された燃焼ガスで加熱し、400〜550℃前後
の過熱蒸気を製造し、以下蒸気出口ライン28ー1より
第2スーパヒータ29−1に、更にライン28ー2より
第3スーパヒータ29−2に夫々直列に導入して400
〜550℃に過熱された過熱蒸気を取り出し、発電機に
送給する。
In the first superheater 20, steam / heated water taken out from the outlet lines 27 and 27 'of the first boiler 24 and the water-cooled wall boiler 36 and heated by the water-cooled wall boiler 36 and taken out through a branch steam line 27'. The heated steam / heated water is introduced and heated with the combustion gas supplied through the combustion gas line 17 to produce superheated steam at about 400 to 550 ° C. The super heater 29-1 and the third super heater 29-2 are introduced in series from the line 28-2 to the third super heater 29-2, respectively.
Take out the superheated steam heated to 過 550 ° C. and feed it to the generator.

【0029】既に前記実施例の作用は構成とともに、説
明したが簡単に繰返し説明するに、熱分解炉1に供給さ
れる都市ごみ等の廃棄物中には塩ビプラスチック等の含
塩素有機化合物が混入しており、可燃分中にC1として
約0.2〜0.5%含有されている。そして、廃棄物供
給ライン4から都市ごみ、流動砂循環ライン5から高温
の循環流動砂を、それぞれ熱分解炉1に供給し、下部の
空気または燃焼排ガス入口ライン6から燃焼排ガスに僅
かな温度調整用空気を供給して流動砂2を流動させた流
動床内で、温度300〜500℃で処理することによ
り、チャー混合物取り出しライン9からは実質的に塩素
を含有しない未分解残渣が得られる。すなわち、廃棄物
中に含まれていた塩素は、実質的に全て熱分解ガスに含
まれて、熱分解ガス出口ライン7に排出されることにな
る。なお、熱分解炉1内の熱分解反応で分離された大型
の不燃物は、不燃物取り出しライン8から炉外に取り出
される。
Although the operation of the above embodiment has been described together with the structure, the repetition will be briefly described. The chlorine-containing organic compound such as PVC plastic is mixed in the waste such as municipal waste supplied to the pyrolysis furnace 1. And about 0.2 to 0.5% as C1 in combustibles. Then, municipal solid waste from the waste supply line 4 and high-temperature circulating fluidized sand from the fluidized sand circulation line 5 are supplied to the pyrolysis furnace 1, respectively, and the temperature is slightly adjusted to the combustion air from the lower air or the combustion exhaust gas inlet line 6. By processing at a temperature of 300 to 500 ° C. in a fluidized bed in which the fluidized sand 2 is fluidized by supplying air for use, an undecomposed residue substantially free of chlorine is obtained from the char mixture removal line 9. That is, substantially all of the chlorine contained in the waste is contained in the pyrolysis gas and discharged to the pyrolysis gas outlet line 7. The large-sized incombustibles separated by the thermal decomposition reaction in the thermal decomposition furnace 1 are taken out of the furnace through an incombustibles take-out line 8.

【0030】さて、図5に示すように前記熱分解炉によ
り得られた熱分解ガスの一部を灰溶融炉31の上流側
で、分岐ライン7ー2を介して熱分解炉の分散板3下方
の入口側に供給するように構成してもよい。これにより
ライン7−1の熱分解ガスが流動化ガス(N2、CO2
2O主成分の不活性ガス)で希釈されないので高カロ
リガスとなり、灰溶融炉31の温度を容易に1300〜
1500℃にすることが出来る。
Now, as shown in FIG. 5, a part of the pyrolysis gas obtained by the pyrolysis furnace is distributed upstream of the ash melting furnace 31 through the branch line 7-2 to the dispersion plate 3 of the pyrolysis furnace. You may comprise so that it may supply to the lower entrance side. As a result, the pyrolysis gas in the line 7-1 is converted into a fluidizing gas (N 2 , CO 2 ,
Since not diluted with H 2 O the main component of the inert gas) becomes high calorie, easily 1300 to the temperature of the ash melting furnace 31
It can be 1500 ° C.

【0031】熱分解炉1の熱分解出口ライン7から取り
出された上記熱分解ガスは、差圧計測手段100の絞り
部110を通過する事により、その入口側と出口側の圧
力タップ109より取り出した圧力を差圧計104で検
知し、そのガス流量(流速)を測定し灰溶融炉に必要な
熱分解ガスを供給する。そしてかかる差圧計測手段10
0の場合、熱分解ガス中のタール分が圧力タップ109
の入口部や絞り部110に付着する。そこで本実施例に
おいては空気量調整弁111、空気導入管105〜10
8を介して流量計112により制御された常に少量の空
気を供給して、該空気により前記付着タールを燃焼さ
せ、絞り部110や出口ライン7におけるタール付着防
止やコーキングを防止する。
The pyrolysis gas taken out of the pyrolysis outlet line 7 of the pyrolysis furnace 1 is taken out from the pressure tap 109 on the inlet side and the outlet side by passing through the throttle 110 of the differential pressure measuring means 100. The detected pressure is detected by the differential pressure gauge 104, the gas flow rate (flow rate) is measured, and the necessary pyrolysis gas is supplied to the ash melting furnace. And such a differential pressure measuring means 10
In the case of 0, the tar content in the pyrolysis gas is
Adheres to the entrance portion and the squeezing portion 110. Therefore, in this embodiment, the air amount adjustment valve 111 and the air introduction pipes 105 to 10
A small amount of air, always controlled by the flow meter 112, is supplied via the air 8, and the adhered tar is burned by the air to prevent tar adhesion and caulking in the throttle unit 110 and the outlet line 7.

【0032】前記灰溶融炉31では、前記したように前
記熱分解ガスとともに、サイクロン16の出口ライン1
8/ダストライン29を介して燃焼ガスの灰が導入さ
れ、ライン30より導入した空気若しくは酸素富化空気
を前記熱分解ガスと共に燃焼して灰分を溶融して、該溶
融した灰分を水貯溜部32Aに落下させ、数mm程度の
水冷スラッグを生成し、該スラッグを建築用骨材として
利用する。又、前記灰溶融炉31の出口ライン33の下
流端には、燃焼ダクトからなる熱分解ガス燃焼炉34が
配設され、前記熱分解ガスに十分なライン21Aより空
気を供給して該熱分解ガスの完全燃焼を行う。この結果
熱分解燃焼炉34内の熱分解ガス温度を高く設定できる
ために、水冷壁ボイラ36及び第一ボイラ24に導入さ
れ沸点200〜309℃近くまで立上げる蒸気/ボイラ
水を多量に製造できる。
In the ash melting furnace 31, together with the pyrolysis gas, as described above, the outlet line 1 of the cyclone 16 is used.
8 / Ash of the combustion gas is introduced through the dust line 29, and the air or oxygen-enriched air introduced from the line 30 is burned together with the pyrolysis gas to melt the ash, and the melted ash is stored in the water storage section. It is dropped to 32A to generate a water-cooled slag of about several mm, and the slag is used as building aggregate. At the downstream end of the outlet line 33 of the ash melting furnace 31, a pyrolysis gas combustion furnace 34 composed of a combustion duct is disposed, and sufficient air is supplied to the pyrolysis gas from a line 21A to perform the pyrolysis. Complete combustion of gas. As a result, since the temperature of the pyrolysis gas in the pyrolysis combustion furnace 34 can be set high, a large amount of steam / boiler water that is introduced into the water-cooled wall boiler 36 and the first boiler 24 and rises to a boiling point of about 200 to 309 ° C. can be produced. .

【0033】又熱分解燃焼炉34内で水冷壁ボイラ36
と熱交換した熱分解ガスは、第1スーパヒータボイラガ
ス出口ライン22よりの燃焼排ガスとともに第1ボイラ
ガス入口23から第1ボイラ24に供給する。前記熱分
解燃焼炉34内及び第1ボイラ24内に導入されるガス
にはHC1が約500〜1000ppm含まれているの
で、ボイラ水の流量を調整して水冷壁ボイラ36及び第
1ボイラ24のチューブ表面温度は従来並みの約350
℃以下として、高温腐食を抑制する。このため、水冷壁
ボイラ36及び第1ボイラ24では高温の過熱蒸気は得
られないが、約200〜320℃までは加熱できるの
で、これを更に第1スーパヒータ20以降のスーパヒー
タ29−1、29−2で加熱すれば、約400〜550
℃の高温の過熱蒸気を得ることができる。
The water-cooled wall boiler 36 in the pyrolysis combustion furnace 34
The pyrolysis gas exchanged with the heat is supplied to the first boiler 24 from the first boiler gas inlet 23 together with the combustion exhaust gas from the first superheater boiler gas outlet line 22. Since the gas introduced into the pyrolysis combustion furnace 34 and the first boiler 24 contains about 500 to 1000 ppm of HC1, the flow rate of the boiler water is adjusted to adjust the flow rate of the water-cooled wall boiler 36 and the first boiler 24. Tube surface temperature is about 350
C. or lower to suppress high-temperature corrosion. For this reason, high-temperature superheated steam cannot be obtained in the water-cooled wall boiler 36 and the first boiler 24, but can be heated up to about 200 to 320 ° C., which is further reduced by the superheaters 29-1 and 29- after the first superheater 20. If heated in 2, it will be about 400-550
It is possible to obtain superheated steam at a high temperature of ° C.

【0034】熱分解炉1でチャー混合物取り出しライン
9から取り出されたチャー混合物は流動砂と未分解残渣
から成り、実質的に塩素を含有しないチャー混合物を、
燃焼炉10では燃焼炉10の下部に供給し、空気供給ラ
イン12から分散板11を介して供給される空気によっ
て燃焼させる。この場合、空気供給ライン12から供給
する空気量を調整して、流動砂を流動させながら未分解
残渣を燃焼させる。完全燃焼のために空気供給ライン1
3又は/及びライン19−3から更に空気を供給するこ
ともある。燃焼炉10の温度は燃焼発熱反応によって上
昇する。この温度値は、チャー混合物取り出しライン9
から供給される未分解残渣の発熱量と空気供給ライン1
2、13の空気および砂循環ライン19の流動砂の量と
温度によって決まるが、1000〜1200℃前後の高
温になる場合がある。
The char mixture taken out from the char mixture take-out line 9 in the pyrolysis furnace 1 is composed of fluidized sand and uncracked residue, and is substantially free of chlorine.
In the combustion furnace 10, the air is supplied to a lower part of the combustion furnace 10 and is burned by air supplied from an air supply line 12 through a dispersion plate 11. In this case, the amount of air supplied from the air supply line 12 is adjusted, and the undecomposed residue is burned while flowing the fluidized sand. Air supply line 1 for complete combustion
3 and / or additional air may be supplied from line 19-3. The temperature of the combustion furnace 10 rises due to a combustion exothermic reaction. This temperature value is determined by the char mixture removal line 9
Calorific value of undecomposed residue and air supply line 1
It depends on the amount of air and the temperature of the flowing sand in the sand circulation line 19, and the temperature in the sand circulation line 19 may be as high as 1000 to 1200C.

【0035】そこで第2スーパヒータ29ー1によりラ
イン28ー1を介して第1スーパヒータ20よりの過熱
蒸気と熱交換することにより燃焼ガスを800〜950
℃にすることは容易である。ガラスや缶類等の溶融によ
り小型化された不燃物は不燃物取り出しライン14から
抜き出す。
Then, the second superheater 29-1 exchanges heat with the superheated steam from the first superheater 20 through the line 28-1 to thereby reduce the combustion gas to 800 to 950.
It is easy to reach ° C. The incombustibles reduced in size by melting glass, cans, and the like are extracted from the incombustibles take-out line 14.

【0036】尚、前記チャー燃焼炉10の流動媒体は熱
分解炉1との間を循環する為、チャー燃焼炉10の流動
媒体の温度は略600〜850℃、一方熱分解炉1の流
動媒体の温度は350〜500℃であり、両者間の熱落
差が大きく、この為チャー燃焼炉10の流動媒体を熱分
解炉1側に直接導入すると、前記熱落差により熱分解炉
1内の熱分解温度が高くなったり熱変動が生じる恐れが
あり、従って前記戻入される流動媒体の量の調整が煩雑
化する。
The fluid medium of the char combustion furnace 10 circulates between the pyrolysis furnace 1 and the temperature of the fluid medium of the char combustion furnace 10 is approximately 600 to 850 ° C. Is 350-500 ° C., and the heat drop between the two is large. Therefore, when the fluid medium of the char combustion furnace 10 is directly introduced into the pyrolysis furnace 1 side, the pyrolysis in the pyrolysis furnace 1 is caused by the heat drop. There is a risk that the temperature will rise or heat fluctuations will occur, thus complicating the adjustment of the amount of the fluid medium to be returned.

【0037】そこで、前記チャー燃焼炉10より加熱さ
れた流動媒体を熱分解炉1に戻入する流動媒体経路19
−1/5中に、第3スーパヒータ29−2を設けた副チ
ャー燃焼炉10Bを介在させることにより、第1のチャ
ー燃焼炉10で700〜800℃に加熱した流動媒体
を、ライン12’により空気を導入し、流動させながら
前記副チャー燃焼炉10Bで第3スーパヒータ29−2
による奪熱により500〜700℃に落とし、該500
〜700℃に落とした流動媒体を熱分解炉1に戻入する
事が出来るためになだらかな熱傾斜が可能であり、この
結果前記熱分解炉1内の熱分解温度を350℃から50
0℃前後に安定して制御が可能である。
Therefore, the fluidized medium path 19 for returning the fluidized medium heated from the char combustion furnace 10 to the pyrolysis furnace 1
During 媒体, the fluid medium heated to 700 to 800 ° C. in the first char combustion furnace 10 is supplied by the line 12 ′ by interposing the sub-char combustion furnace 10 B provided with the third superheater 29-2. The third superheater 29-2 is introduced in the sub-char combustion furnace 10B while introducing and flowing air.
To 500-700 ° C.
Since the fluidized medium dropped to ~ 700 ° C can be returned to the pyrolysis furnace 1, a gentle thermal gradient is possible. As a result, the pyrolysis temperature in the pyrolysis furnace 1 is increased from 350 ° C to 50 ° C.
Control is stable around 0 ° C.

【0038】一方チャー燃焼炉10で生成し800〜9
50℃の高温でかつ塩素を実質的に含有しない燃焼ガス
は燃焼ガス出口ライン15を経てサイクロン16に導入
され、ダスト及び灰は出口ライン18から、排ガスはガ
ス出口ライン17からそれぞれ分離して取り出される。
そして出口ライン18から取り出された高温の灰は前記
した灰溶融炉31に送給される。
On the other hand, 800 to 9
A combustion gas having a high temperature of 50 ° C. and substantially containing no chlorine is introduced into a cyclone 16 through a combustion gas outlet line 15, dust and ash are separated and taken out from an outlet line 18, and exhaust gas is taken out from a gas outlet line 17. It is.
The high-temperature ash taken out of the outlet line 18 is sent to the ash melting furnace 31 described above.

【0039】一方、上記サイクロン16のガス出口ライ
ン17から取り出された800〜950℃の高温排ガス
は、第1スーパヒータ20に導入され、第1ボイラ24
及び水冷壁ボイラ36で製造された200〜320℃前
後の蒸気/ボイラ水を加熱して過熱蒸気とするために用
いられる。ガス出口ライン17を経て来た排ガスは実質
的に塩素を含有していないので、第1スーパヒータ20
のボイラチューブ表面温度を350℃以上としても高温
腐食は大幅に軽減される。したがってチューブ内流体の
温度を約400〜550℃とすることができ、第1スー
パヒータボイラ蒸気出口28からは安定して高温の過熱
蒸気が得られる。
On the other hand, the high temperature exhaust gas of 800 to 950 ° C. taken out from the gas outlet line 17 of the cyclone 16 is introduced into the first superheater 20 and the first boiler 24.
And it is used for heating steam / boiler water at about 200 to 320 ° C. produced by the water-cooled wall boiler 36 to produce superheated steam. Since the exhaust gas passing through the gas outlet line 17 does not substantially contain chlorine, the first superheater 20
Even when the surface temperature of the boiler tube is set to 350 ° C. or higher, high-temperature corrosion is greatly reduced. Therefore, the temperature of the fluid in the tube can be set to about 400 to 550 ° C., and a high-temperature superheated steam can be stably obtained from the first superheater boiler steam outlet 28.

【0040】前記熱分解炉1で熱分解炉1の温度を所定
温度300℃以上に維持するには、燃焼排ガス入口ライ
ン6から供給される流動気体の酸素量を調節、言換えれ
ば第1ボイラ24よりの燃焼排ガスとともに空気を僅か
に供給するとともに、副チャー燃焼手段10Bよりの高
温約500〜700℃の流動砂の一部を砂循環ライン5
から供給して熱源としている。
In order to maintain the temperature of the pyrolysis furnace 1 at a predetermined temperature of 300 ° C. or higher in the pyrolysis furnace 1, the amount of oxygen in the flowing gas supplied from the flue gas inlet line 6 is adjusted, in other words, the first boiler A small amount of air is supplied together with the combustion exhaust gas from the combustion chamber 24, and a part of the fluidized sand at a high temperature of about 500 to 700 ° C.
And heat source.

【0041】尚、11、3−1、3−2は分散板、2−
1、2−2、2−3は流動床である。
Reference numerals 11, 3-1 and 3-2 denote dispersion plates,
1, 2-2 and 2-3 are fluidized beds.

【0042】さて図2は本発明の他の実施例に係る廃棄
物の焼却熱を利用した過熱蒸気製造装置を示し既に前記
実施例の説明で説明されているが、主に前記図1の実施
例との相違点を説明するに、前記熱分解炉1により得ら
れた熱分解ガスの一部を灰溶融炉31の上流側で、分岐
ライン7’を介して熱分解ガス燃焼炉34に供給するよ
うに構成している。即ち前記熱分解ガスや燃焼ガス中に
含まれる灰は、廃棄物に対し1割程度であり、従ってこ
れを供給される熱分解ガス全てを使用して溶融すること
は必ずしも必要なく、却って過剰設備の熱エネルギにな
ることを防止する。この為前記した熱分解ガス出口ライ
ン7の分岐された灰溶融炉31上流側若しくは分岐ライ
ン7’に前記図3に示す差圧計測手段100を配し、そ
の流量調整を行う必要がある。
FIG. 2 shows an apparatus for producing superheated steam using the heat of incineration of waste according to another embodiment of the present invention, which has already been described in the above embodiment. To explain the difference from the example, a part of the pyrolysis gas obtained by the pyrolysis furnace 1 is supplied to the pyrolysis gas combustion furnace 34 via the branch line 7 'on the upstream side of the ash melting furnace 31. It is configured to be. That is, the ash contained in the pyrolysis gas or the combustion gas is about 10% of the waste, so it is not always necessary to use the entire pyrolysis gas supplied to melt it. To prevent heat energy from being generated. For this reason, it is necessary to arrange the differential pressure measuring means 100 shown in FIG. 3 on the upstream side or the branch line 7 'of the ash melting furnace 31 where the pyrolysis gas outlet line 7 is branched, and to adjust the flow rate thereof.

【0043】[0043]

【発明の効果】以上記載した如く本発明によれば、高価
な高級材料を用いることなく廃棄物を燃焼して過熱蒸気
を得る場合に塩素によるボイラチューブの高温腐食を防
止しながら高温・高圧の過熱蒸気を効率的に得ることの
できる。又本発明によれば、前記いずれの蒸気製造装置
においても、長期に亙って安定して蒸気の製造を可能に
する。又本発明によれば、前記熱分解ガス若しくは燃焼
ガスを分離して得られた灰を溶融して骨材等の製造が可
能となる。等の種々の著効を有す。
As described above, according to the present invention, when waste is burned to obtain superheated steam without using expensive high-grade materials, it is possible to prevent high-temperature corrosion of the boiler tube by chlorine while preventing high-temperature and high-pressure corrosion. Superheated steam can be obtained efficiently. Further, according to the present invention, any of the above-mentioned steam production apparatuses enables stable production of steam over a long period of time. Further, according to the present invention, it is possible to melt the ash obtained by separating the pyrolysis gas or the combustion gas to produce an aggregate or the like. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る廃棄物の焼却熱を利
用した過熱蒸気製造装置を示す系統図である。
FIG. 1 is a system diagram showing an apparatus for producing superheated steam using heat of waste incineration according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る廃棄物の焼却熱を利
用した過熱蒸気製造装置を示す系統図である。
FIG. 2 is a system diagram showing an apparatus for producing superheated steam using waste heat of incineration according to a second embodiment of the present invention.

【図3】図3は熱分解ガス出口ラインに配設した差圧計
測手段で、(A)はオリフィスを用いて形成した差圧計
測手段、(B)はラッパ状絞りを用いて形成した差圧計
測手段である。
FIGS. 3A and 3B show differential pressure measuring means provided in a pyrolysis gas outlet line, wherein FIG. 3A shows a differential pressure measuring means formed using an orifice, and FIG. 3B shows a differential pressure formed using a trumpet-shaped throttle. It is a pressure measuring means.

【図4】本発明の基本構成に係る廃棄物の焼却熱を利用
した過熱蒸気の製造手順を示すグラフ図である。
FIG. 4 is a graph showing a procedure for producing superheated steam using waste heat of incineration according to the basic configuration of the present invention.

【図5】本発明の第3実施例に係る廃棄物の焼却熱を利
用した過熱蒸気製造装置を示す系統図である。
FIG. 5 is a system diagram showing an apparatus for producing superheated steam using waste incineration heat according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 熱分解炉(熱分解手段) 10 燃焼炉(チャー燃焼手段) 11 分散板 20 第1スーパヒータ(第2の蒸気製造手段) 29−1 第2スーパヒータ(第2の蒸気製造手段) 20−2 第3スーパヒータ(第2の蒸気製造手段) 24 第1ボイラ(第1の蒸気製造手段) 31 灰溶融炉 34 熱分解ガス燃焼炉 36 水冷壁ボイラ(第1の蒸気製造手段) DESCRIPTION OF SYMBOLS 1 Pyrolysis furnace (pyrolysis means) 10 Combustion furnace (char combustion means) 11 Dispersion plate 20 1st superheater (2nd steam production means) 29-1 2nd superheater (2nd steam production means) 20-2 3 Superheater (second steam producing means) 24 First boiler (first steam producing means) 31 Ash melting furnace 34 Pyrolysis gas combustion furnace 36 Water-cooled wall boiler (first steam producing means)

フロントページの続き (51)Int.Cl.7 識別記号 FI F23G 5/48 ZAB F23G 5/48 ZAB F23J 1/00 F23J 1/00 B (58)調査した分野(Int.Cl.7,DB名) F23G 5/027 F22B 1/18 F23G 5/16 F23G 5/30 F23G 5/48 F23J 1/00 Continuation of the front page (51) Int.Cl. 7 identification code FI F23G 5/48 ZAB F23G 5/48 ZAB F23J 1/00 F23J 1/00 B (58) Field surveyed (Int.Cl. 7 , DB name) F23G 5/027 F22B 1/18 F23G 5/16 F23G 5/30 F23G 5/48 F23J 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 前記熱分解手段より取り出された未分解残渣および流動
媒体から成るチャー混合物を、空気によって流動させな
がら前記未分解残渣を燃焼させるチャー燃焼手段と、 前記熱分解ガスの燃焼熱エネルギーを利用して約400
℃以下の温水または蒸気を製造する第1の蒸気製造手段
と、 前記チャー燃焼手段により得られた熱エネルギにより前
記第1の蒸気製造手段で製造された温水または蒸気を過
熱蒸気とする第2の蒸気製造手段を含み、 前記熱分解手段と第1の蒸気製造手段との間に、前記熱
分解ガスの第1次燃焼熱により、チャー燃焼手段若しく
は熱分解手段より取り出された夫々のガスより分離され
た灰分の溶融分離を行う灰分溶融分離手段を設けるとと
もに、前記灰分が分離された熱分解ガスの2次燃焼を行
う2次燃焼手段を設け、 前記熱分解手段により得られた熱分解ガスを灰分溶融分
離手段とともに、その一部を分岐して前記2次燃焼手段
に供給すること を特徴とする廃棄物の焼却熱を利用した
過熱蒸気製造装置。
(1) providing waste in a space having a temperature of 300 ° C. or more;
To cause the thermal decomposition reaction, which is generated by the reaction
Char consisting of pyrolysis gas, uncracked residue and flowing medium
A pyrolyzing means for separating the mixture and the incombustible material from each other;
Do not allow the char mixture consisting of the medium to flow with air.
Char combustion means for burning the undecomposed residue; and about 400 using the heat energy of combustion of the pyrolysis gas.
First steam production means for producing hot water or steam at a temperature of not more than ℃
And the thermal energy obtained by the char combustion means.
The hot water or steam produced by the first steam production means
A second steam producing means for producing hot steam, wherein the heat is provided between the thermal decomposition means and the first steam producing means.
Due to the primary combustion heat of the cracked gas, the char combustion means
Is separated from each gas extracted from the pyrolysis means
Ash melt separation means to perform melt separation of waste ash
To,PreviousSecondary combustion of pyrolysis gas from which ash was separated
U secondary combustion meansProvided, The pyrolysis gas obtained by the pyrolysis means is converted to an ash
The secondary combustion means is partially branched together with the separation means.
To supply Utilizes waste incineration heat
Superheated steam production equipment.
【請求項2】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 前記熱分解手段より取り出された未分解残渣および流動
媒体から成るチャー混合物を、空気によって流動させな
がら前記未分解残渣を燃焼させるチャー燃焼手段と、 前記熱分解ガスの燃焼熱エネルギーを利用して約400
℃以下の温水または蒸気を製造する第1の蒸気製造手段
と、 前記チャー燃焼手段により得られた熱エネルギにより前
記第1の蒸気製造手段で製造された温水または蒸気を過
熱蒸気とする第2の蒸気製造手段を含み、 前記熱分解手段と第1の蒸気製造手段との間に、前記熱
分解ガスの第1次燃焼 熱により、チャー燃焼手段若しく
は熱分解手段より取り出された夫々のガスより分離され
た灰分の溶融分離を行う灰分溶融分離手段を設けるとと
もに、前記灰分が分離された熱分解ガスの2次燃焼を行
う2次燃焼手段を設け、前記熱分解手段により得られた
熱分解ガスの一部を分岐して熱分解手段の入口側に供給
することを特徴とする廃棄物の焼却熱を利用した過熱蒸
気製造装置。
(2)Provide waste in a space with a temperature of 300 ° C or higher.
To cause the thermal decomposition reaction, which is generated by the reaction
Char consisting of pyrolysis gas, uncracked residue and flowing medium
Pyrolysis means for separating the mixture and incombustibles from each other, Undecomposed residue and fluid removed from the pyrolysis means
Do not allow the char mixture consisting of the medium to flow with air.
Char burning means for burning the undecomposed residue, Approximately 400 using the combustion heat energy of the pyrolysis gas
First steam production means for producing hot water or steam at a temperature of not more than ℃
When, The heat energy obtained by the char combustion means causes
The hot water or steam produced by the first steam production means
A second steam producing means for producing hot steam, Between the thermal decomposition means and the first steam producing means,
Primary combustion of cracked gas By heat, char combustion means
Is separated from each gas extracted from the pyrolysis means
Ash melt separation means to perform melt separation of waste ash
In addition, secondary combustion of the pyrolysis gas from which the ash has been separated is performed.
The secondary combustion means is provided and obtained by the thermal decomposition means.
Part of the pyrolysis gas is branched and supplied to the inlet of the pyrolysis means
Superheated steam using the heat of incineration of waste
Qi production equipment.
【請求項3】 温度300℃以上の酸素過小空間内に廃
棄物を供給して熱分解反応を行なわせ、その反応により
発生した熱分解ガスを2次燃焼手段若しくは熱交換手段
に供給するため熱分解ガス出口経路中に絞り部を設け、
該絞り部の入口側と出口側に夫々設けた圧力取り出し口
に少量の空気(支燃性ガスを含む気体)を適宜流す空気
流入手段を設けて差圧を計測して熱分解ガスの流量を計
測する事を特徴とする請求項1若しくは2記載の廃棄物
の焼却熱を利用した過熱蒸気製造装置。
3. A method in which waste is supplied to an under-oxygen space having a temperature of 300 ° C. or more to cause a pyrolysis reaction, and a pyrolysis gas generated by the reaction is supplied to a secondary combustion means or a heat exchange means. A throttle section is provided in the cracked gas outlet path,
An air inflow means for appropriately flowing a small amount of air (a gas containing a supporting gas) is provided at a pressure outlet provided at each of the inlet side and the outlet side of the throttle section, and the differential pressure is measured to determine the flow rate of the pyrolysis gas. The superheated steam production apparatus using the heat of waste incineration according to claim 1 or 2, wherein the measurement is performed.
JP06909096A 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat Expired - Fee Related JP3285752B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP06909096A JP3285752B2 (en) 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat
EP97903617A EP0823590B1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes
DE69732394T DE69732394T2 (en) 1996-02-29 1997-02-27 METHOD AND DEVICE FOR PRODUCTION OF OVERHEATED STEAM BY THE HEAT OF WASTE INCINERATION
PCT/JP1997/000573 WO1997032161A1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes
SG9904761A SG96183A1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat from the incineration of waste material
US08/945,591 US6133499A (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat from the incineration of waste material
KR1019970707702A KR100264723B1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06909096A JP3285752B2 (en) 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat

Publications (2)

Publication Number Publication Date
JPH09236221A JPH09236221A (en) 1997-09-09
JP3285752B2 true JP3285752B2 (en) 2002-05-27

Family

ID=13392559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06909096A Expired - Fee Related JP3285752B2 (en) 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat

Country Status (1)

Country Link
JP (1) JP3285752B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248121A (en) * 1998-03-02 1999-09-14 Ishikawajima Harima Heavy Ind Co Ltd City waste incinerator and operating method thereof

Also Published As

Publication number Publication date
JPH09236221A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
EP0823590B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
US4356778A (en) Underfire air and steam system and incinerating process for a controlled starved-air incinerator
JP4378360B2 (en) Power generation method and apparatus using waste
JP3964043B2 (en) Waste disposal method
JP3285752B2 (en) Superheated steam production equipment using waste incineration heat
JP2001280863A (en) Heat exchanger and electric power generator comprising it
PL179698B1 (en) Fluidised bed furnace for performing heat treatment of waste materials
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JP3322557B2 (en) Superheated steam production equipment using waste incineration heat
JP3310853B2 (en) Superheated steam production equipment using waste incineration heat
JP3276274B2 (en) Superheated steam production equipment using waste incineration heat
JP3305172B2 (en) Superheated steam production equipment using waste incineration heat
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3276286B2 (en) Superheated steam production equipment using waste incineration heat
Ryabov et al. Energy recovery of solid waste disposal in Russia, State of the Art and operation experience
JP3408686B2 (en) Superheated steam production equipment using waste incineration heat
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP3408678B2 (en) Superheated steam production equipment using waste incineration heat
JP3272581B2 (en) Superheated steam production equipment using waste incineration heat
JP3276273B2 (en) Superheated steam production equipment using waste incineration heat
JP3477327B2 (en) Superheated steam production method and apparatus using waste incineration heat
JP3276272B2 (en) Superheated steam production equipment using waste incineration heat
JPH0849821A (en) Device and method for treating waste

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees