JP3272581B2 - Superheated steam production equipment using waste incineration heat - Google Patents

Superheated steam production equipment using waste incineration heat

Info

Publication number
JP3272581B2
JP3272581B2 JP26238895A JP26238895A JP3272581B2 JP 3272581 B2 JP3272581 B2 JP 3272581B2 JP 26238895 A JP26238895 A JP 26238895A JP 26238895 A JP26238895 A JP 26238895A JP 3272581 B2 JP3272581 B2 JP 3272581B2
Authority
JP
Japan
Prior art keywords
steam
combustion
temperature
gas
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26238895A
Other languages
Japanese (ja)
Other versions
JPH0979537A (en
Inventor
静生 保田
裕二 貝原
敏 奥野
浩俊 堀添
進 西川
勝彦 小林
佳正 川見
雅治 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26238895A priority Critical patent/JP3272581B2/en
Publication of JPH0979537A publication Critical patent/JPH0979537A/en
Application granted granted Critical
Publication of JP3272581B2 publication Critical patent/JP3272581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等を焼却し、その燃焼排ガスの熱により蒸気を製造
して、例えば該蒸気を発電プラント等に用いる過熱蒸気
製造に関する発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of superheated steam by incinerating municipal refuse or industrial waste, producing steam by the heat of the combustion exhaust gas, and using the steam in a power plant or the like. .

【0002】[0002]

【従来の技術】従来より都市ごみ等の廃棄物を焼却する
焼却装置には流動床焼却装置が多く用いられ、かかる装
置は流動床焼却炉内の分散板(例えば多孔板)上に収容
された砂等の流動媒体に分散板下方より空気または焼却
排ガス等を吹き込むことにより流動媒体を流動化すると
ともに加熱し、そのようにして形成された流動床内に都
市ごみ等の廃棄物を投入して燃焼させる。この燃焼によ
り発生した燃焼ガスは、燃焼ガス出口ラインを経てボイ
ラに至り、該ボイラ内で温水との熱接触により蒸気を発
生させ、該蒸気を発電プラント等のタービン駆動源とし
て用いるものである。
2. Description of the Related Art Conventionally, fluidized bed incinerators are often used as incinerators for incinerating waste such as municipal solid waste, and such apparatuses are accommodated on a dispersion plate (for example, a perforated plate) in a fluidized bed incinerator. The fluidized medium is fluidized and heated by blowing air or incineration exhaust gas etc. from below the dispersion plate into the fluidized medium such as sand, and waste such as municipal solid waste is thrown into the fluidized bed thus formed. Burn. The combustion gas generated by the combustion reaches a boiler via a combustion gas outlet line, generates steam by thermal contact with hot water in the boiler, and uses the steam as a turbine drive source of a power plant or the like.

【0003】[0003]

【発明が解決しようとする課題】さてかかる都市ごみ等
の廃棄物中には塩ビプラスチック等の含塩素有機化合物
が混入しており、可燃分中にC1として約0.2〜0.
5%含有されている。そして都市ごみ等の廃棄物中に混
入した塩ビプラスチック等に含まれる塩素は、燃焼によ
ってHC1となり(通常、都市ごみ燃焼排ガス中のHC
1は約500〜1000ppm)、焼却炉の後流に設置さ
れた蒸気発生用ボイラのチューブに作用してこれを腐食
させる。特にチューブ表面温度が約350℃以上では温
度の増加とともに高温腐食が顕著となる。
The waste such as municipal solid waste contains a chlorine-containing organic compound such as PVC plastic, and the flammable component has a C1 content of about 0.2 to 0.1%.
Contains 5%. Chlorine contained in PVC plastic and the like mixed into waste such as municipal waste becomes HC1 by combustion (usually, HC1 contained in flue gas from municipal waste combustion).
(1 is about 500 to 1000 ppm), which acts on the tube of the steam generation boiler installed downstream of the incinerator to corrode it. In particular, when the tube surface temperature is about 350 ° C. or higher, high-temperature corrosion becomes remarkable as the temperature increases.

【0004】このため、従来、チューブ表面温度は35
0℃以下にする必要があり、製造される蒸気の温度は約
300℃が限界であった。その結果、従来のごみ焼却に
よる発電効率は約15%以下であって、塩素を殆ど含有
しない重油やLNG等を燃料とし、ボイラチューブ温度
を500〜600℃にできるプラントの発電効率約40
%に比べて著しく低く、その改善が強く望まれていた。
Therefore, conventionally, the tube surface temperature is 35
The temperature of the steam to be produced was limited to about 300 ° C. As a result, the power generation efficiency of the conventional refuse incineration is about 15% or less, and the power generation efficiency of a plant that can use boiler tube temperature of 500 to 600 ° C. using heavy oil or LNG containing almost no chlorine as fuel is used.
%, Which is significantly lower than the above, and its improvement has been strongly desired.

【0005】本発明者らはかかる技術的課題に鑑み、先
の出願において(出願番号:特願平6ー324843
号、特願平7−140484号)、前記焼却炉としての
流動床内で、温度300〜700℃で処理したところ、
該流動床からの未分解残渣および流動媒体から成るチャ
ー混合物からは実質的に塩素を含有しない未分解残渣が
得られることを見出した。すなわち、廃棄物中に含まれ
ていた塩素は、実質的に全て熱分解ガスに含まれて、熱
分解ガス出口ラインに排出されることを見出した。
[0005] In view of such technical problems, the present inventors have filed an earlier application (application number: Japanese Patent Application No. 6-324843).
, In a fluidized bed as the incinerator, at a temperature of 300 to 700 ° C.
It has been found that a char mixture consisting of the uncracked residue from the fluidized bed and the fluidized medium results in a substantially chlorine-free uncracked residue. That is, it was found that substantially all chlorine contained in the waste was contained in the pyrolysis gas and was discharged to the pyrolysis gas outlet line.

【0006】そして、かかる知見に基づき、焼却装置側
には、温度300℃以上の空間内に廃棄物を供給して熱
分解反応を行なわせ、その反応により発生した熱分解ガ
スと未分解残渣および流動媒体から成るチャー混合物と
不燃物とを互いに分離する第1の流動床(以下熱分解手
段という)とともに、前記チャー混合物を空気または燃
焼排ガスによって上方に吹き飛ばしながら前記未分解残
渣を完全燃焼させる第2の流動床(以下チャー燃焼手段
という)を設け、一方ボイラ側には第1及び第2のボイ
ラを実質的に直列に接続し、低段側のボイラで前記熱分
解ガスの熱を利用して約400℃以下、具体的には30
0℃前後の温水または蒸気を製造(以下第1の蒸気製造
手段という)し、次に該300℃前後の温水または蒸気
を第2のボイラに導入して前記チャー燃焼手段より得ら
れた燃焼ガスの熱により略500℃若しくはそれ以上の
過熱蒸気を製造(以下第2の蒸気製造手段という)する
ようにした過熱蒸気製造が提案されている。
[0006] Based on such knowledge, the incinerator side supplies waste to a space having a temperature of 300 ° C or higher to cause a pyrolysis reaction, and generates a pyrolysis gas generated by the reaction, undecomposed residues and A first fluidized bed (hereinafter referred to as a pyrolysis means) for separating a char mixture composed of a fluidized medium and an incombustible substance from each other, and a method for completely burning the undecomposed residue while blowing the char mixture upward by air or combustion exhaust gas. 2 fluidized beds (hereinafter referred to as char combustion means), while the first and second boilers are connected in series on the boiler side, and the heat of the pyrolysis gas is utilized in the lower stage boiler. About 400 ° C or less, specifically 30
Hot water or steam at about 0 ° C. is produced (hereinafter referred to as first steam producing means), and then the hot water or steam at about 300 ° C. is introduced into a second boiler to obtain combustion gas obtained from the char burning means. Has been proposed to produce superheated steam of about 500 ° C. or higher by the heat of the superheated steam (hereinafter referred to as second steam production means).

【0007】本発明は、かかる先願技術を更に発展さ
せ、塩素によるボイラチューブの高温腐食を防止しなが
ら高温・高圧の過熱蒸気を効率的(多量)に得ることの
できる過熱蒸気の製造にかかる発明を提供する事にあ
る。本発明の他の目的は前記先願技術に比較して更に効
率良く塩素の低減ともに且つ高温度の過熱蒸気を得るこ
との出来る過熱蒸気の製造にかかる発明を提供する事に
ある。
The present invention further develops such prior art and relates to the production of superheated steam capable of efficiently (in large quantities) producing high-temperature, high-pressure superheated steam while preventing high-temperature corrosion of the boiler tube due to chlorine. It is to provide an invention. Another object of the present invention is to provide an invention relating to the production of superheated steam capable of reducing chlorine more efficiently and obtaining high-temperature superheated steam as compared with the prior art.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
温度300℃以上の空間内に廃棄物を供給して熱分解反
応を行なわせ、その反応により発生した熱分解ガスと未
分解残渣および流動媒体から成るチャー混合物と不燃物
とを互いに分離する熱分解手段と、空気または燃焼排ガ
スによって上記チャー混合物を上方に吹き飛ばしながら
上記未分解残渣を完全燃焼させる燃焼手段と、上記熱分
解ガスを空気又は酸素富化空気により燃焼させ、温度1
300℃以上の高温を発生させ、該廃棄粉由来の灰分を
その高温部に導入して灰を溶融せしめる溶融灰と燃焼ガ
スに分解する灰溶融手段と、該燃焼ガスに空気を供給し
て完全燃焼させる熱分解ガス完全燃焼手段と、上記熱分
解ガス完全燃焼手段により得られた燃焼ガスの熱によ
り、約400℃以下の温水又は蒸気を製造する第1の蒸
気製造手段と、上記燃焼手段により得られた燃焼ガスの
熱により上記第1の蒸気製造手段で製造された温水また
は蒸気を過熱蒸気とする第2の蒸気製造手段を設けたこ
とを特徴とするものである。
According to the first aspect of the present invention,
Pyrolysis that supplies waste to a space having a temperature of 300 ° C. or higher to cause a pyrolysis reaction, and separates a pyrolysis gas generated by the reaction, a non-decomposed residue, a char mixture composed of a fluidized medium, and a non-combustible material from each other. Means for completely burning the undecomposed residue while blowing the char mixture upward with air or flue gas; and burning the pyrolyzed gas with air or oxygen-enriched air at a temperature of 1
Ash melting means for generating a high temperature of 300 ° C. or more and introducing ash derived from the waste powder into the high temperature portion to melt the ash and decompose it into a combustion gas; A pyrolysis gas complete combustion means to be burned, a first steam production means for producing hot water or steam of about 400 ° C. or less by heat of the combustion gas obtained by the pyrolysis gas complete combustion means, A second steam producing means is provided, in which the hot water or the steam produced by the first steam producing means is superheated by the heat of the obtained combustion gas.

【0009】請求項2記載の発明は、請求項1記載の
分解手段により得られた熱分解ガスの一部を分岐して熱
分解手段の入口側に供給することを特徴とするものであ
る。
According to a second aspect of the present invention , a portion of the pyrolysis gas obtained by the pyrolysis means is branched and supplied to the inlet side of the pyrolysis means. .

【0010】かかる発明によれば前記いずれの請求項に
おいても熱分解手段で分離されたチャー混合物には塩素
が実質的に含まれないので、これを第2の蒸気製造手段
の過熱源として用い500℃以上の過熱蒸気を得るよう
に構成しても、機器の高温腐食は生じない。
According to this invention, in any of the above-mentioned claims, since the char mixture separated by the pyrolysis means contains substantially no chlorine, it is used as a superheat source of the second steam production means. Even if it is configured to obtain superheated steam of not less than ° C, high-temperature corrosion of equipment does not occur.

【0011】また第1の蒸気製造手段の加熱源には、塩
素を含む熱分解ガスを用いるも、該熱を利用して約40
0℃以下、具体的には略300〜350℃以下の温水ま
たは蒸気を製造を製造するものである為に、高温腐食の
温度以下の温度しか加熱しないために、ボイラチューブ
等の腐食の恐れはない。
In addition, a pyrolysis gas containing chlorine is used as a heating source of the first steam producing means.
Since it is intended to manufacture hot water or steam at a temperature of 0 ° C. or less, specifically, about 300 to 350 ° C. or less, only a temperature lower than a high temperature corrosion temperature is heated. Absent.

【0012】更に請求項1記載の発明によれば、灰分の
溶融分離を行う為に、第1の蒸気製造手段に導入される
熱分解ガス中に灰分等が混入されることなく長期に亙っ
て安定して蒸気製造が可能になる。
Further, according to the first aspect of the present invention, in order to carry out the melting and separation of the ash, the ash or the like is not mixed into the pyrolysis gas introduced into the first steam producing means for a long period of time. And stable steam production becomes possible.

【0013】又請求項2記載の発明は、前記熱分解手段
により得られた熱分解ガスの一部を分岐して熱分解手段
の入口側に供給するものであるために、言換えれば35
0℃〜400℃の高温の可燃性ガスを熱分解手段に循環
供給する事が出来るために、熱分解ガスが空気又は燃焼
排ガス中のN2、CO2,H2O等の不活性ガスでの希釈
を最小限に抑えて、単位容積当りの発熱量を高くし、灰
溶融に必要な燃焼温度1300℃に容易にすることが可
能となる。
According to the second aspect of the present invention, a part of the pyrolysis gas obtained by the pyrolysis means is branched and supplied to the inlet side of the pyrolysis means.
Since a high temperature flammable gas of 0 ° C. to 400 ° C. can be circulated and supplied to the pyrolysis means, the pyrolysis gas is air or an inert gas such as N 2 , CO 2 , H 2 O in combustion exhaust gas. Can be minimized, the heat generation per unit volume can be increased, and the combustion temperature required for ash melting can be easily increased to 1300 ° C.

【0014】請求項3記載の発明においては、前記第1
若しくは第2の蒸気製造手段で加熱された蒸気若しくは
前記いずれかの製造手段に導入される温水若しくは蒸気
の一部を、前記燃焼手段の高温域側に配した熱交換手段
に適宜導入することを特徴とするものである。即ち、前
記燃焼手段では空気または燃焼排ガスによってチャー混
合物を上方に吹き飛ばしながら未分解残渣を分解させる
ので、その燃焼ガス中には高温の流動媒体が含まれる。
In the third aspect of the present invention, the first
Alternatively, the steam heated by the second steam manufacturing means or a portion of the hot water or steam introduced into any of the manufacturing means may be appropriately introduced into the heat exchange means arranged on the high temperature side of the combustion means. It is a feature. That is, since the combustion means decomposes the undecomposed residue while blowing the char mixture upward by air or combustion exhaust gas, the combustion gas contains a high-temperature fluid medium.

【0015】そこで本発明においては、その高温の流動
媒体を利用して、前記チャー燃焼手段の高温域側に熱交
換手段を配設して、前記第1若しくは第2の蒸気製造手
段で加熱された蒸気若しくは前記いずれかの製造手段に
導入される温水若しくは蒸気の一部と熱交換する事によ
り、後記する作用を営むことが出来る。即ち、前記第1
の蒸気製造手段に導入される温水を前記熱交換手段に導
入してある程度の昇温を図ることにより、熱交換手段−
第1の蒸気製造手段−第2の蒸気製造手段と、実質的に
直列の3段階昇温を図ることが出来、多量且つ十分加熱
された過熱蒸気を得ることが出来る。
Therefore, in the present invention, a heat exchange means is provided on the high temperature side of the char combustion means by utilizing the high temperature fluid medium, and is heated by the first or second steam production means. By performing heat exchange with the heated steam or a part of the hot water or the steam introduced into any of the above-mentioned production means, the following operation can be performed. That is, the first
By introducing warm water introduced into the steam producing means into the heat exchanging means so as to raise the temperature to some extent, the heat exchanging means
The temperature can be raised in three stages substantially in series with the first steam production means and the second steam production means, and a large amount of sufficiently heated superheated steam can be obtained.

【0016】又、前記第2の蒸気製造手段に導入される
温水又は蒸気を前記第1の蒸気製造手段とともに、前記
熱交換手段にパラレルに導入することにより、第2の蒸
気製造手段の加熱量を多くする事が出来、多量の過熱蒸
気を得ることが出来る。更に前記チャー燃焼手段の高温
域側は950〜1300℃前後に加熱されているため
に、第2の蒸気製造手段で加熱後の過熱蒸気を前記熱交
換手段に導入することにより、一層加熱された例えば5
00〜600℃の過熱蒸気を得ることも出来、十分加熱
された過熱蒸気を得ることが出来る。
Further, by introducing hot water or steam introduced into the second steam producing means together with the first steam producing means into the heat exchanging means in parallel, the heating amount of the second steam producing means is increased. And a large amount of superheated steam can be obtained. Furthermore, since the high temperature side of the char combustion means is heated to about 950 to 1300 ° C., the superheated steam after heating by the second steam production means is introduced into the heat exchange means, so that it is further heated. For example, 5
It is also possible to obtain a superheated steam of 00 to 600 ° C, and it is possible to obtain a sufficiently heated superheated steam.

【0017】又前記チャー燃焼手段の高温域側に熱交換
手段を配設する事は、950〜1300℃前後と無用に
高くなり、そのまま出口ラインに流すと通常の耐火材で
は温度的に持たないが、これを800〜950℃に落と
すことにより通常の耐火材の利用が可能となる。又前記
のように800〜950℃に落としても第2の蒸気製造
手段における蒸気温度を500〜600℃に維持する上
で何の支障もない。
Further, the provision of the heat exchange means on the high temperature side of the char combustion means is unnecessarily high at around 950 to 1300 ° C., and if it is passed through the outlet line as it is, the ordinary refractory material has no temperature. However, by dropping the temperature to 800 to 950 ° C., a normal refractory material can be used. Even if the temperature is lowered to 800 to 950 ° C. as described above, there is no problem in maintaining the steam temperature in the second steam producing means at 500 to 600 ° C.

【0018】請求項4記載の発明は、上記燃焼手段の出
口側に接続され該燃焼手段より燃焼ガスと上記流動媒体
とを分離する分離手段を含み、前記第1若しくは第2の
蒸気製造手段で加熱された蒸気若しくは前記いずれかの
製造手段に導入される温水若しくは蒸気の一部を、適宜
前記分離手段の流動媒体出口側に導入し、該流動媒体と
の熱接触により加熱することを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a separator connected to the outlet side of the combustion means for separating the combustion gas and the fluid medium from the combustion means. The heated steam or a part of the hot water or steam introduced into any one of the production means is appropriately introduced to the fluid medium outlet side of the separation means, and heated by thermal contact with the fluid medium. Is what you do.

【0019】かかる発明によれば、前記チャー燃焼手段
の出口側に燃焼ガスと前記流動媒体とを分離する分離手
段を設けた為に、言換えれば800〜950℃前後の高
温の流動媒体を熱分解手段とチャー燃焼手段夫々に戻入
することにより、目的とする温度の流動床形成や温度管
理が容易になる。
According to this invention, since the separation means for separating the combustion gas and the fluid medium is provided at the outlet side of the char combustion means, in other words, the high temperature fluid medium of about 800 to 950 ° C. is heated. By returning to the decomposition means and the char combustion means, it becomes easy to form a fluidized bed at a desired temperature and to control the temperature.

【0020】そして本発明においては、前記分離手段の
流動媒体出口側に熱交換手段を配置し、前記第1若しく
は第2蒸気製造手段で加熱された蒸気若しくは前記いず
れかの製造手段に導入される温水若しくは蒸気の一部
を、適宜該流動媒体との熱接触により加熱することによ
り、請求項1記載の発明と同様な作用を営むことが出来
る。
In the present invention, a heat exchange means is arranged on the fluid medium outlet side of the separation means, and is introduced into the steam heated by the first or second steam production means or any of the production means. By heating a portion of the hot water or steam by appropriate thermal contact with the fluidized medium, the same effect as in the first aspect of the invention can be achieved.

【0021】この場合、前記チャー燃焼手段の高温域側
に熱交換手段(以下第1熱交換手段という)と前記分離
手段の流動媒体出口側にも熱交換手段(以下第2熱交換
手段という)を配置してもよい。又、第1熱交換手段−
第1蒸気製造手段−第2蒸気製造手段−第2熱交換手段
と配置することにより、実質的に直列の4段階昇温を図
ることが出来、極めて高い十分加熱された過熱蒸気を得
ることが出来る。
In this case, heat exchange means (hereinafter referred to as first heat exchange means) is provided on the high-temperature side of the char combustion means, and heat exchange means (hereinafter referred to as second heat exchange means) is also provided on the fluid medium outlet side of the separation means. May be arranged. Also, the first heat exchange means
By arranging the first steam producing means, the second steam producing means, and the second heat exchanging means, it is possible to substantially increase the temperature in four stages in series, and to obtain an extremely high sufficiently heated superheated steam. I can do it.

【0022】又、後記実施例に示すように、(1熱交換
手段と第1蒸気製造手段を並列に)ー第2蒸気製造手段
ー第2熱交換手段とを直列に配置することにより、実質
的に並列/直列の3段階昇温を図ることが出来、多量且
つ十分加熱された過熱蒸気を得ることが出来る。又第1
熱交換手段と第2熱交換手段をいずれかを選択的に用い
ても良い。又、前記熱交換手段にはスーパヒータ若しく
はボイラを用いるのがよい。
Further, as shown in the embodiment described later, by arranging (1 heat exchange means and first steam production means in parallel) -second steam production means-second heat exchange means in series, The temperature can be raised in three stages in parallel / series, and a large amount of sufficiently heated superheated steam can be obtained. Also the first
Either the heat exchange means or the second heat exchange means may be selectively used. It is preferable to use a superheater or a boiler as the heat exchange means.

【0023】[0023]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
構成部品の寸法、材質、形状、その相対的配置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
は本発明の実施例に係る廃棄物の焼却熱を利用した過熱
蒸気製造装置を示し、図中、1は流動床からなる熱分解
炉で、多孔板等の分散板3上に流動砂等の流動媒体2が
収納されており、廃棄物供給ライン4及び砂循環ライン
5より流動砂と都市ごみ等の廃棄物が投入され、空気ま
たは燃焼排ガス入口ライン6より供給された空気または
燃焼排ガスにより温度300℃以上の流動床空間を生成
し、廃棄物の熱分解反応を行なわせ、その反応により発
生した熱分解ガスは熱分解ガス出口ライン7より、又未
分解残渣および流動砂から成るチャー混合物はチャー混
合物取り出しライン9より、不燃物は不燃物取り出しラ
イン8より、夫々互いに分離して取り出す。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG.
1 shows a superheated steam production apparatus utilizing the heat of incineration of waste according to an embodiment of the present invention. Fluid medium and waste such as municipal solid waste are supplied from a waste supply line 4 and a sand circulation line 5, and the temperature is controlled by air or flue gas supplied from air or flue gas inlet line 6. A fluidized bed space of 300 ° C. or higher is generated to cause a pyrolysis reaction of the waste, and the pyrolysis gas generated by the reaction is supplied to a pyrolysis gas outlet line 7. From the char mixture take-out line 9, incombustibles are separately taken out from the incombustibles take-out line 8.

【0024】尚前記空気または燃焼排ガス入口ライン6
より熱分解炉1に供給される空気または燃焼排ガスは、
300〜700℃の範囲で熱分解を効率的に行うため
に、酸素の少ない(3〜5%程度)且つ温度が100〜
300℃の温度を維持している燃焼排ガス、具体的には
第1ボイラ24の出口ライン25より取り出された燃焼
排ガスを用いるのが良い。熱分解ガス出口ライン7より
取り出された熱分解ガスは、灰溶融炉31及び熱分解ガ
ス燃焼炉34を経て第1ボイラ24に導入される。
The air or flue gas inlet line 6
The air or combustion exhaust gas supplied to the pyrolysis furnace 1 is
In order to perform the thermal decomposition efficiently in the range of 300 to 700 ° C, the oxygen content is low (about 3 to 5%) and the temperature is 100 to
It is preferable to use the combustion exhaust gas maintaining the temperature of 300 ° C., specifically, the combustion exhaust gas extracted from the outlet line 25 of the first boiler 24. The pyrolysis gas taken out from the pyrolysis gas outlet line 7 is introduced into the first boiler 24 through the ash melting furnace 31 and the pyrolysis gas combustion furnace 34.

【0025】即ち、前記灰溶融炉31は、旋回流により
砂混合熱分解ガス灰を旋回分離させながら、該溶融炉3
1内に空気若しくは酸素富化空気を前記熱分解ガスと共
に、導入して該熱分解ガス燃焼熱により1300℃以上
の高温を形成せしめ、その熱により灰分を溶融して、該
溶融した灰分を溶融灰出口ライン32を介して水貯溜部
32Aに落下させ、数mm程度の水冷スラッグを生成
し、該スラッグを建築用骨材として利用する。
That is, the ash melting furnace 31 swirls and separates the sand-mixed pyrolysis gas ash by swirling flow.
1, air or oxygen-enriched air is introduced together with the pyrolysis gas to form a high temperature of 1300 ° C. or more by the heat of combustion of the pyrolysis gas, the ash is melted by the heat, and the melted ash is melted. The slag is dropped into the water reservoir 32A through the ash outlet line 32 to generate a water-cooled slag of about several mm, and the slag is used as an aggregate for construction.

【0026】そして、灰分を除去した熱分解ガスは出口
ライン33を介して熱分解ガス燃焼炉に導入し、空気供
給ラインより供給された空気により完全燃焼を行い、そ
の出口ライン35/23を介して第1ボイラ24に導入
する。
The pyrolysis gas from which the ash has been removed is introduced into the pyrolysis gas combustion furnace through an outlet line 33, and is completely burned by air supplied from an air supply line. To the first boiler 24.

【0027】10は塔式の流動床炉からなるチャー燃焼
炉で、底部に配した分散板11上にチャー混合物取り出
しライン9より供給されたチャー混合物、及び砂循環ラ
イン19より循環された流動砂が収納される。そして前
記分散板11下方の空気供給ライン12より更にチャー
燃焼炉10中域の空気供給ライン13より夫々空気が供
給されて未分解残渣の燃焼を行い、約950〜1300
℃前後の燃焼ガスを生成すると共に、そのチャー燃焼炉
10中の上方域に分岐ライン26’よりボイラー水を導
入する水冷壁ボイラ36又はスーパヒータを配設し、9
50〜1300℃前後と無用に高くなった燃焼ガスを8
00〜950℃に落とすと共に、第1ボイラ24に供給
するボイラ水の一部を加熱する。該ボイラ水の加熱温度
は300℃前後になる。
Reference numeral 10 denotes a char combustion furnace consisting of a tower type fluidized bed furnace. The char mixture supplied from the char mixture take-out line 9 on the dispersion plate 11 disposed at the bottom and the fluidized sand circulated from the sand circulation line 19 Is stored. Further, air is further supplied from the air supply line 12 below the dispersion plate 11 from the air supply line 13 in the middle region of the char combustion furnace 10, and the undecomposed residue is burned.
A water-cooled wall boiler 36 or a super heater for generating a combustion gas of about 0 ° C. and introducing boiler water from a branch line 26 ′ in an upper region of the char combustion furnace 10 is provided.
Unnecessarily high combustion gas of about 50 to 1300 ° C
The temperature is lowered to 00 to 950 ° C., and a part of the boiler water supplied to the first boiler 24 is heated. The heating temperature of the boiler water is about 300 ° C.

【0028】尚前記のように燃焼ガス温度を800〜9
50℃に落としても第2ボイラ20における蒸気温度を
500〜600℃に維持する上で何の支障もない。そし
て前記燃焼炉10で燃焼されない小型の不燃物は不燃物
取り出しライン14より取り出される。
As described above, the combustion gas temperature is set to 800 to 9
Even if the temperature is lowered to 50 ° C., there is no problem in maintaining the steam temperature in the second boiler 20 at 500 to 600 ° C. Small incombustibles that are not burned in the combustion furnace 10 are taken out from an incombustibles take-out line 14.

【0029】そして前記のように高温化された砂混合の
燃焼ガスは、流動砂/燃焼ガス出口ライン15より気・
固分離装置例えばサイクロン16に導入され、ここで流
動砂と燃焼ガスを分離し、燃焼ガスはガス出口ライン1
7より第2ボイラ20に導入される。流動砂は砂出口ラ
イン18より取り出され、砂循環ライン19より燃焼炉
10と、砂循環ライン5より熱分解炉1に夫々供給され
る。
Then, the combustion gas of the sand mixture heated to a high temperature as described above is supplied to
It is introduced into a solid separation device such as a cyclone 16 where fluidized sand and combustion gas are separated, and the combustion gas is supplied to a gas outlet line 1.
7 to the second boiler 20. The fluidized sand is taken out from a sand outlet line 18 and supplied to a combustion furnace 10 from a sand circulation line 19 and to the pyrolysis furnace 1 from a sand circulation line 5, respectively.

【0030】20は第2ボイラ及び24は第1ボイラ
で、第1ボイラ24では熱分解ガス出口ライン7より取
り出された熱分解ガスが、空気入口ライン21より取込
んだ空気により再燃焼されて第2ボイラガス出口より排
出された燃焼排ガスと共に、第1ボイラ24に導入さ
れ、ボイラ水入口26より取込んだボイラ水を300℃
前後に加熱し、第1ボイラ蒸気出口27より第2ボイラ
20に蒸気を供給する。
Reference numeral 20 denotes a second boiler and reference numeral 24 denotes a first boiler. In the first boiler 24, the pyrolysis gas taken out from the pyrolysis gas outlet line 7 is reburned by the air taken in from the air inlet line 21. The boiler water introduced into the first boiler 24 together with the combustion exhaust gas discharged from the second boiler gas outlet and taken in from the boiler water inlet 26 is heated to 300 ° C.
The steam is heated back and forth, and steam is supplied to the second boiler 20 from the first boiler steam outlet 27.

【0031】第2ボイラ20では前記第1ボイラ24の
第1ボイラ蒸気出口ライン27より取り出した蒸気及び
水冷壁ボイラ36により加熱され分岐蒸気ライン27’
を介してとりだされた蒸気を導入して、前記燃焼ガスラ
イン17を介して供給された燃焼ガスで加熱し、500
〜600℃前後の過熱蒸気を製造し、第2ボイラ蒸気出
口28より取り出す。
In the second boiler 20, the steam extracted from the first boiler steam outlet line 27 of the first boiler 24 and the branch steam line 27 'heated by the water-cooled wall boiler 36 are used.
Through the combustion gas supplied through the combustion gas line 17,
A superheated steam of about 600 ° C. is produced and taken out from the second boiler steam outlet 28.

【0032】次に前記実施例の作用について詳述する。
熱分解炉1に供給される都市ごみ等の廃棄物中には塩ビ
プラスチック等の含塩素有機化合物が混入しており、可
燃分中にC1として約0.2〜0.5%含有されてい
る。そして、廃棄物供給ライン4から都市ごみ、砂循環
ライン5から高温の循環砂を、それぞれ熱分解炉1に供
給し、下部の空気または燃焼排ガス入口ライン6から空
気または燃焼排ガスを供給して流動砂2を流動させた流
動床内で、温度300〜700℃で処理することによ
り、チャー混合物取り出しライン9からは実質的に塩素
を含有しない未分解残渣が得られる。すなわち、廃棄物
中に含まれていた塩素は、実質的に全て熱分解ガスに含
まれて、熱分解ガス出口ライン7に排出されることにな
る。なお、熱分解炉1内の熱分解反応で分離された大型
の不燃物は、不燃物取り出しライン8から炉外に取り出
される。
Next, the operation of the above embodiment will be described in detail.
Chlorine-containing organic compounds such as PVC plastics are mixed in the waste such as municipal waste supplied to the pyrolysis furnace 1, and the combustibles contain about 0.2 to 0.5% as C1. . Then, municipal solid waste from the waste supply line 4 and high-temperature circulating sand from the sand circulation line 5 are supplied to the pyrolysis furnace 1, respectively, and air or combustion exhaust gas is supplied from the lower air or combustion exhaust gas inlet line 6 to flow. By treating at a temperature of 300 to 700 ° C. in the fluidized bed in which the sand 2 is fluidized, an undecomposed residue substantially free of chlorine is obtained from the char mixture removal line 9. That is, substantially all of the chlorine contained in the waste is contained in the pyrolysis gas and discharged to the pyrolysis gas outlet line 7. The large-sized incombustibles separated by the thermal decomposition reaction in the thermal decomposition furnace 1 are taken out of the furnace through an incombustibles take-out line 8.

【0033】熱分解炉1で熱分解炉1の熱分解出口ライ
ン7から取り出された上記熱分解ガスには、低カロリー
ガス、油分、タールおよびHC1が含まれているが、こ
れを灰溶融炉31及び熱分解ガス燃焼炉34で完全燃焼
させた後、第2ボイラガス出口ライン22よりの燃焼排
ガスとともに第1ボイラガス入口23から第1ボイラ2
4に供給する。
The pyrolysis gas extracted from the pyrolysis outlet line 7 of the pyrolysis furnace 1 by the pyrolysis furnace 1 contains low calorie gas, oil, tar and HC1, which are converted into an ash melting furnace. After complete combustion in the first boiler gas inlet 23 and the first boiler 2 together with the combustion exhaust gas from the second boiler gas outlet line 22
4

【0034】従って、第1ボイラ24に導入される熱分
解ガスの燃焼ガス中に灰分等が混入されることなく長期
に亙って安定して蒸気製造が可能になるとともに、又第
1ボイラ24に導入される熱分解ガス温度を略850〜
900℃(最大950℃前後)程度に高く設定できるた
めに、該ボイラで製造される300℃前後の蒸気を多量
に製造できる。
Accordingly, it is possible to stably produce steam over a long period of time without incorporation of ash or the like into the combustion gas of the pyrolysis gas introduced into the first boiler 24. The temperature of the pyrolysis gas introduced into the
Since the temperature can be set as high as about 900 ° C. (about 950 ° C. at the maximum), a large amount of steam at about 300 ° C. produced by the boiler can be produced.

【0035】第1ボイラガス入口23のガスにはHC1
が約500〜1000ppm含まれているので、ボイラ水
の流量を調整して第1ボイラ24のチューブ表面温度は
従来並みの約350℃以下として、高温腐食を抑制す
る。このため、第1ボイラ24では高温の過熱蒸気は得
られないが、約300℃までは加熱できるので、これを
更に第2ボイラ20で加熱すれば、約500〜600℃
の高温の過熱蒸気を得ることができる。
The gas at the first boiler gas inlet 23 is HC1
Is contained at about 500 to 1000 ppm, so that the flow rate of the boiler water is adjusted to keep the tube surface temperature of the first boiler 24 at about 350 ° C. or less, which is the same as the conventional one, thereby suppressing high-temperature corrosion. For this reason, high-temperature superheated steam cannot be obtained in the first boiler 24, but can be heated up to about 300 ° C., and if this is further heated in the second boiler 20, about 500 to 600 ° C.
High temperature superheated steam can be obtained.

【0036】熱分解炉1でチャー混合物取り出しライン
9から取り出されたチャー混合物砂と未分解残渣から成
り、実質的に塩素を含有しないチャー混合物を、燃焼炉
10では、空気供給ライン12から分散板11を介して
供給される空気によって燃焼させる。この場合、空気供
給ライン12から供給する空気量を調整して、流動砂を
上方に吹き飛ばしながら未分解残渣を燃焼させる。完全
燃焼のために空気供給ライン13から更に空気を供給す
ることもある。燃焼炉10の温度は燃焼発熱反応によっ
て上昇する。この温度値は、チャー混合物取り出しライ
ン9から供給される未分解残渣の発熱量と空気供給ライ
ン12、13の空気および砂循環ライン19の流動砂の
量と温度によって決まるが、950〜1300℃前後の
高温になる場合がある。そこで水冷壁ボイラ36により
分岐管26より導入されたボイラ水と熱交換することに
より砂混合燃焼ガス800〜950℃にすることは容易
である。ガラスや缶類等の小型化された不燃物は不燃物
取り出しライン14から抜き出す。
In the pyrolysis furnace 1, the char mixture consisting of the char mixture sand taken out from the char mixture take-out line 9 and the undecomposed residue and containing substantially no chlorine is dispersed in the combustion furnace 10 from the air supply line 12 through a dispersion plate. Combustion by air supplied via 11. In this case, the amount of air supplied from the air supply line 12 is adjusted, and the non-decomposed residue is burned while blowing the fluidized sand upward. Further air may be supplied from the air supply line 13 for complete combustion. The temperature of the combustion furnace 10 rises due to a combustion exothermic reaction. This temperature value is determined by the calorific value of the undecomposed residue supplied from the char mixture take-out line 9, the amount of air in the air supply lines 12, 13 and the amount of fluidized sand in the sand circulation line 19 and the temperature. May become hot. Therefore, it is easy to make the mixed sand combustion gas 800 to 950 ° C. by exchanging heat with the boiler water introduced from the branch pipe 26 by the water-cooled wall boiler 36. Miniaturized incombustibles such as glass and cans are extracted from the incombustibles take-out line 14.

【0037】燃焼炉10で生成し800〜950℃の高
温でかつ塩素を実質的に含有しない排ガスは、流動砂と
ともに砂・燃焼ガス出口ライン15を経てサイクロン1
6に導入され、流動砂は砂出口ライン18から、排ガス
はガス出口ライン17からそれぞれ分離して取り出され
る。そして砂出口ライン18から取り出された800〜
950℃の高温の流動砂の一部は砂循環ライン5を経て
熱分解炉1へ戻され、熱分解炉1内部の温度を所定温度
に保持するために用いられる。また残りは砂循環ライン
19を経て燃焼炉10に戻される。
Exhaust gas generated in the combustion furnace 10 at a high temperature of 800 to 950 ° C. and containing substantially no chlorine passes through the sand / combustion gas outlet line 15 together with the fluidized sand, and the cyclone 1
The fluidized sand is taken out from the sand outlet line 18 and the exhaust gas is taken out from the gas outlet line 17 separately. And 800-taken out from the sand exit line 18
Part of the 950 ° C. high-temperature fluidized sand is returned to the pyrolysis furnace 1 through the sand circulation line 5 and is used to maintain the temperature inside the pyrolysis furnace 1 at a predetermined temperature. The remainder is returned to the combustion furnace 10 via the sand circulation line 19.

【0038】一方、上記サイクロン16のガス出口ライ
ン17から取り出された800〜950℃の高温排ガス
は、第2ボイラ20で第2ボイラ20に導入され、第1
ボイラ24で製造された蒸気を更に加熱して過熱蒸気と
するために用いられる。ガス出口ライン17を経て来た
排ガスは実質的に塩素を含有していないので、第2ボイ
ラ20のボイラチューブ表面温度を350℃以上として
も高温腐食は大幅に軽減される。したがってチューブ内
の蒸気温度を約500〜600℃、100Kgf/cm
2とすることができ、第2ボイラ蒸気出口28からは安
定して高温の過熱蒸気が得られる。
On the other hand, the high temperature exhaust gas of 800 to 950 ° C. taken out from the gas outlet line 17 of the cyclone 16 is introduced into the second boiler 20 by the second
It is used to further heat the steam produced by the boiler 24 to produce superheated steam. Since the exhaust gas passing through the gas outlet line 17 does not substantially contain chlorine, even if the surface temperature of the boiler tube of the second boiler 20 is set to 350 ° C. or higher, high-temperature corrosion is greatly reduced. Therefore, the steam temperature in the tube is set to about 500 to 600 ° C. and 100 kgf / cm.
2, and a high-temperature superheated steam can be stably obtained from the second boiler steam outlet 28.

【0039】前記熱分解炉1で熱分解炉1の温度を所定
温度300℃以上に維持するには、空気または燃焼排ガ
ス入口ライン6から供給される流動気体の酸素量を調
節、言換えれば第1ボイラ24よりの排ガス流量を調整
するか、サイクロン16よりの砂出口ライン18から取
り出される高温約800〜950℃の流動砂の一部を砂
循環ライン5から供給して熱源とすることが好ましい。
そのためには、燃焼炉10ではガスの空搭速度(炉内の
ガス流量/炉の断面積)を3〜6m/sとして、チャー混
合物取り出しライン9から供給された流動砂を吹き飛ば
しながら未分解残渣を燃焼し、流動砂はサイクロン16
で燃焼ガスと分離して熱分解炉1と燃焼炉10に循環供
給する高速循環型流動床が適している。そして本発明を
より効率的に実施するには、チャー混合物取り出しライ
ン9から取り出される実質的に塩素を含有しないチャー
混合物の量をできるだけ多くし好ましくは原料中可燃物
の40%以上、燃焼炉10で発生する熱量を多くして、
第2ボイラ20における回収熱量を多くすることが望ま
しい。その結果、発電効率は約30%(従来の2倍程
度)以上が得られる。そこで本実施例においては、ごみ
中の塩素を実質的に分離除去しチャーの回収率を50%
以上にできる条件として、熱分解炉1の温度を300〜
700℃、好ましくは350〜450℃とすることが望
ましい。
In order to maintain the temperature of the pyrolysis furnace 1 at a predetermined temperature of 300 ° C. or higher in the pyrolysis furnace 1, the amount of oxygen in the air or the flowing gas supplied from the combustion exhaust gas inlet line 6 is adjusted. It is preferable to adjust the flow rate of exhaust gas from one boiler 24 or to supply a part of the fluidized sand having a high temperature of about 800 to 950 ° C. taken out from the sand outlet line 18 from the cyclone 16 from the sand circulation line 5 as a heat source. .
For that purpose, in the combustion furnace 10, the unloaded residue is blown off the fluidized sand supplied from the char mixture take-out line 9 by setting the gas emptying speed (gas flow rate in the furnace / cross-sectional area of the furnace) to 3 to 6 m / s. And the fluid sand is cyclone 16
A high-speed circulating fluidized bed that is separated from the combustion gas and supplied to the pyrolysis furnace 1 and the combustion furnace 10 by circulation is suitable. In order to carry out the present invention more efficiently, the amount of the substantially chlorine-free char mixture taken out from the char mixture take-out line 9 is made as large as possible, preferably 40% or more of the combustible material in the raw material, and the combustion furnace 10 Increase the amount of heat generated by
It is desirable to increase the amount of heat recovered in the second boiler 20. As a result, a power generation efficiency of about 30% or more (about twice as much as the conventional one) can be obtained. Therefore, in this embodiment, chlorine in the garbage is substantially separated and removed, and the char recovery rate is 50%.
As a condition that can be achieved as described above, the temperature of the pyrolysis furnace 1 is set to 300 to
700 ° C., preferably 350 to 450 ° C.

【0040】さてサイクロン16よりの砂出口ライン1
8から取り出される流動砂は約800〜950℃前後の
高温であるために、これをそのまま砂循環ライン5から
熱分解炉1に供給すると、熱分解炉1の温度を350〜
450℃に維持するのが困難になる場合がある。このよ
うな場合は図2に示すように、前記サイクロン16の砂
出口ライン18側にスーパーヒータその他の熱交換手段
を配置し、前記第2ボイラ20で加熱された過熱蒸気に
より熱交換して該流動砂の温度を500〜800℃前後
に下げると共に、第2ボイラ20の加熱量の不足を補え
ることが出来る。
Now, the sand exit line 1 from the cyclone 16
Since the fluidized sand taken out of 8 has a high temperature of about 800 to 950 ° C., if it is supplied to the pyrolysis furnace 1 from the sand circulation line 5 as it is, the temperature of the pyrolysis furnace 1 becomes 350 to
It may be difficult to maintain the temperature at 450 ° C. In such a case, as shown in FIG. 2, a superheater or other heat exchange means is arranged on the sand outlet line 18 side of the cyclone 16 and heat exchange is performed by superheated steam heated by the second boiler 20. The temperature of the fluidized sand can be reduced to around 500 to 800 ° C., and the shortage of the amount of heating of the second boiler 20 can be compensated.

【0041】特に第2ボイラ20は第1ボイラ24とと
もに水冷壁ボイラ36の蒸気が導入されるために、熱不
足が生じやすいが、本実施例ではこれを円滑に解消でき
る。
In particular, the second boiler 20 is apt to suffer from heat shortage due to the introduction of the steam from the water-cooled wall boiler 36 together with the first boiler 24, but this embodiment can smoothly solve this problem.

【0042】さて図3は本発明の他の実施例で、前記熱
分解炉により得られた熱分解ガスの一部を灰溶融炉31
の上流側で、分岐ライン7aを介して熱分解炉の分散板
3下方の入口側に供給するものであるために、言換えれ
ば350℃〜400℃の高温の可燃性ガスを熱分解炉1
に循環供給する事が出来るために、熱分解ガスが空気又
は燃焼排ガス中のN2、CO2,H2O等の不活性ガスで
の希釈を最小限に抑えて、単位容積当りの発熱量を高く
し、灰溶融に必要な燃焼温度1300℃に容易にするこ
とが可能となるとともに、温度変動を抑制して安定した
熱分解が可能となる。
FIG. 3 shows another embodiment of the present invention, in which a part of the pyrolysis gas obtained by the pyrolysis furnace is partially converted into an ash melting furnace 31.
In other words, the high-temperature combustible gas of 350 ° C. to 400 ° C. is supplied to the pyrolysis furnace 1 on the upstream side of the pyrolysis furnace through the branch line 7a to the inlet side below the dispersion plate 3 of the pyrolysis furnace.
The amount of heat generated per unit volume can be minimized by minimizing dilution of the pyrolysis gas with air or inert gas such as N 2 , CO 2 , H 2 O, etc. in the combustion exhaust gas. And the combustion temperature required for melting the ash can be easily increased to 1300 ° C., and the temperature fluctuation can be suppressed to achieve stable thermal decomposition.

【0043】[0043]

【発明の効果】以上記載した如く本発明によれば、塩素
によるボイラチューブの高温腐食を防止しながら高温・
高圧の過熱蒸気を効率的に得ることのできる。又本発明
によれば前記先願技術に比較して熱分配及び熱吸収を効
率良く行い、更に効率良く熱分解とチャー燃焼を可能に
すると共に、且つ高温度の過熱蒸気を得ることの出来
る。等の種々の著効を有す。
As described above, according to the present invention, it is possible to prevent high temperature corrosion of a boiler tube by chlorine while preventing high temperature corrosion.
High-pressure superheated steam can be obtained efficiently. Further, according to the present invention, heat distribution and heat absorption can be performed more efficiently than in the prior application, and moreover, pyrolysis and char combustion can be performed more efficiently, and high-temperature superheated steam can be obtained. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は請求項1、3記載の発明に対応する実施
例に係る廃棄物の焼却熱を利用した過熱蒸気製造装置を
示す系統図である。
FIG. 1 is a system diagram showing an apparatus for producing a superheated steam using incineration heat of waste according to an embodiment corresponding to the first and third aspects of the present invention.

【図2】図2は請求項4記載の発明に対応する実施例に
係る廃棄物の焼却熱を利用した過熱蒸気製造装置を示す
系統図である。
FIG. 2 is a system diagram showing an apparatus for producing superheated steam using incineration heat of waste according to an embodiment corresponding to the fourth aspect of the present invention.

【図3】図3は請求項2記載の発明に対応する実施例に
係る廃棄物の焼却熱を利用した過熱蒸気製造装置を示す
系統図である。
FIG. 3 is a system diagram showing an apparatus for producing superheated steam using the heat of incineration of waste according to an embodiment corresponding to the second aspect of the present invention.

【符号の説明】[Explanation of symbols]

1 熱分解炉(熱分解手段) 2 砂等の流動媒体 7a 分岐ライン 10 燃焼炉(チャー燃焼手段) 11 分散板 16 サイクロン(分離手段) 20 第2ボイラ(第2蒸気製造手段) 24 第1ボイラ(第1蒸気製造手段) 31 灰溶融炉 34 熱分解ガス燃焼炉 36 水冷壁ボイラ(チャー燃焼手段の高温域側に
配した熱交換手段) 129 ス−パ−ヒ−タ(前記分離手段の流動媒体出
口側の熱交換手段)
DESCRIPTION OF SYMBOLS 1 Pyrolysis furnace (pyrolysis means) 2 Fluid medium, such as sand 7a Branch line 10 Combustion furnace (char combustion means) 11 Dispersion plate 16 Cyclone (separation means) 20 2nd boiler (2nd steam production means) 24 1st boiler (First steam production means) 31 Ash melting furnace 34 Pyrolysis gas combustion furnace 36 Water-cooled wall boiler (Heat exchange means arranged on the high temperature side of char combustion means) 129 Super heater (Flow of the separation means) Heat exchange means on the medium outlet side)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F23G 5/00 115 F23G 5/16 ZABE ZAB 5/30 ZABK 5/16 ZAB 5/32 ZAB 5/30 ZAB 5/46 ZABA 5/32 ZAB ZABB 5/46 ZAB 7/00 103A ZAB 7/00 103 F23J 1/00 ZABB ZAB F23C 11/02 ZAB F23J 1/00 ZAB 312 (72)発明者 堀添 浩俊 横浜市金沢区幸浦一丁目8番地1 三菱 重工業株式会社横浜研究所内 (72)発明者 西川 進 横浜市金沢区幸浦一丁目8番地1 三菱 重工業株式会社横浜研究所内 (72)発明者 小林 勝彦 横浜市金沢区幸浦一丁目8番地1 三菱 重工業株式会社横浜研究所内 (72)発明者 川見 佳正 横浜市中区錦町12番地 三菱重工業株式 会社横浜製作所内 (72)発明者 吉良 雅治 横浜市中区錦町12番地 三菱重工業株式 会社横浜製作所内 (56)参考文献 特開 平5−346204(JP,A) 特開 昭58−95104(JP,A) 特開 昭52−117302(JP,A) 特開 平1−252806(JP,A) 特開 平7−35322(JP,A) 特開 平5−141636(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/027 F22B 1/18 F22G 1/16 F23C 10/00 F23C 10/20 F23G 5/00 115 F23G 5/16 F23G 5/30 F23G 5/32 F23G 5/46 ZAB F23G 7/00 103 F23J 1/00 ZAB ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI F23G 5/00 115 F23G 5/16 ZABE ZAB 5/30 ZABK 5/16 ZAB 5/32 ZAB 5/30 ZAB 5/46 ZABA 5 / 32 ZAB ZABB 5/46 ZAB 7/00 103A ZAB 7/00 103 F23J 1/00 ZABB ZAB F23C 11/02 ZAB F23J 1/00 ZAB 312 (72) Inventor Hirotoshi Horizoe Hirotoshi Kanazawa-ku, Kanazawa-ku, Yokohama-shi 1-8 Address 1 Yokohama Research Institute, Mitsubishi Heavy Industries, Ltd. (72) Susumu Nishikawa, Inventor 1-8-1, Koura, Kanazawa-ku, Yokohama-shi Yokohama Research Institute (72) Inventor Katsuhiko Kobayashi 1-8-1, Koura, Kanazawa-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd.Yokohama Research Laboratory (72) Inventor Yoshimasa Kawami 12 Nishikicho, Naka-ku, Yokohama-shi Mitsubishi Heavy Industries Inside Yokohama Works Co., Ltd. (72) Masaharu Kira 12, Nishikicho, Naka-ku, Yokohama-shi Inside Mitsubishi Heavy Industries, Ltd. Yokohama Works Co., Ltd. (56) References JP-A-5-346204 (JP, A) JP-A-58-95104 (JP) JP-A-52-117302 (JP, A) JP-A-1-252806 (JP, A) JP-A-7-35322 (JP, A) JP-A-5-141636 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) F23G 5/027 F22B 1/18 F22G 1/16 F23C 10/00 F23C 10/20 F23G 5/00 115 F23G 5/16 F23G 5/30 F23G 5/32 F23G 5/46 ZAB F23G 7/00 103 F23J 1/00 ZAB

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 空気または燃焼排ガスによって上記チャー混合物を上方
に吹き飛ばしながら上記未分解残渣を完全燃焼させる燃
焼手段と、 上記熱分解ガスを空気又は酸素富化空気により燃焼さ
せ、温度1300℃以上の高温を発生させ、 該廃棄粉由来の灰分をその高温部に導入して灰を溶融せ
しめる溶融灰と燃焼ガスに分解する灰溶融手段と、 該燃焼ガスに空気を供給して完全燃焼させる熱分解ガス
完全燃焼手段と、 上記熱分解ガス完全燃焼手段により得られた燃焼ガスの
熱により、約400℃以下の温水又は蒸気を製造する第
1の蒸気製造手段と、 上記燃焼手段により得られた燃焼ガスの熱により上記第
1の蒸気製造手段で製造された温水または蒸気を過熱蒸
気とする第2の蒸気製造手段を設けたことを特徴とする
廃棄物の焼却熱を利用した過熱蒸気製造装置。
1. A waste material is supplied into a space having a temperature of 300 ° C. or more to cause a pyrolysis reaction, and a pyrolysis gas generated by the reaction, a char mixture composed of an undecomposed residue and a fluid medium, and an incombustible material are separated. A pyrolyzing means for separating each other, a burning means for completely burning the undecomposed residue while blowing the char mixture upward by air or flue gas, and burning the pyrolyzed gas with air or oxygen-enriched air at a temperature of 1300. Ash melting means for generating a high temperature of at least ℃ and introducing the ash derived from the waste powder into the high temperature portion to melt the ash and decompose it into a combustion gas; and supplying air to the combustion gas to complete combustion. A first steam for producing hot water or steam having a temperature of about 400 ° C. or less by using the heat of the combustion gas obtained by the complete pyrolysis gas combustion means; Disposal means for producing hot water or steam produced by the first steam producing means by means of heat of the combustion gas obtained by the combustion means and superheated steam. Superheated steam production equipment that uses the heat of incineration of materials.
【請求項2】記熱分解手段により得られた熱分解ガ
スの一部を分岐して熱分解手段の入口側に供給すること
を特徴とする廃棄物の焼却熱を利用した請求項1記載の
過熱蒸気製造装置。
2. A pre-Symbol claim 1, wherein the branched part of the pyrolysis gas obtained by thermal decomposition means utilizing incineration heat of waste and supplying the inlet side of the thermal decomposition section Superheated steam production equipment.
【請求項3】 前記第1若しくは第2の蒸気製造手段で
加熱された蒸気若しくは前記いずれかの製造手段に導入
される温水若しくは蒸気の一部を、前記燃焼手段の高温
域側に配した熱交換手段に適宜導入することを特徴とす
ることを特徴とする請求項1記載の廃棄物の焼却熱を利
用した過熱蒸気製造装置。
3. A method in which steam heated by the first or second steam producing means or a portion of hot water or steam introduced into any of the producing means is disposed on a high temperature side of the combustion means. exchange means superheated steam producing device using the incineration heat of claim 1 Symbol placement of waste, characterized in that said introducing appropriate.
【請求項4】 上記燃焼手段の出口側に接続され該燃焼
手段より燃焼ガスと上記流動媒体とを分離する分離手段
を含み、 前記第1若しくは第2の蒸気製造手段で加熱された蒸気
若しくは前記いずれかの製造手段に導入される温水若し
くは蒸気の一部を、適宜前記分離手段の流動媒体出口側
に導入し、該流動媒体との熱接触により加熱することを
特徴とする請求項1記載の廃棄物の焼却熱を利用した過
熱蒸気製造装置。
4. A separating means connected to an outlet side of said combustion means for separating combustion gas and said fluid medium from said combustion means, wherein said steam heated by said first or second steam producing means or a portion of the hot water or steam is introduced into any of the production means, and introduced into the fluidized medium outlet side of suitable separating means, according to claim 1 Symbol mounting, characterized in that heated by thermal contact with the flowable medium Superheated steam production equipment using the heat of incineration of waste.
JP26238895A 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat Expired - Fee Related JP3272581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26238895A JP3272581B2 (en) 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26238895A JP3272581B2 (en) 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat

Publications (2)

Publication Number Publication Date
JPH0979537A JPH0979537A (en) 1997-03-28
JP3272581B2 true JP3272581B2 (en) 2002-04-08

Family

ID=17375076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26238895A Expired - Fee Related JP3272581B2 (en) 1995-09-13 1995-09-13 Superheated steam production equipment using waste incineration heat

Country Status (1)

Country Link
JP (1) JP3272581B2 (en)

Also Published As

Publication number Publication date
JPH0979537A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
KR100264723B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
JP3936824B2 (en) Waste heat recovery boiler and waste treatment facility
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JP3272581B2 (en) Superheated steam production equipment using waste incineration heat
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3305172B2 (en) Superheated steam production equipment using waste incineration heat
JP3276274B2 (en) Superheated steam production equipment using waste incineration heat
JP3408678B2 (en) Superheated steam production equipment using waste incineration heat
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP3276273B2 (en) Superheated steam production equipment using waste incineration heat
JP3924285B2 (en) Incinerator
JP3408686B2 (en) Superheated steam production equipment using waste incineration heat
JP3534552B2 (en) Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste
JP3477327B2 (en) Superheated steam production method and apparatus using waste incineration heat
JP3322557B2 (en) Superheated steam production equipment using waste incineration heat
JP3276272B2 (en) Superheated steam production equipment using waste incineration heat
JP3276286B2 (en) Superheated steam production equipment using waste incineration heat
JP2001280615A (en) Melting furnace
JP3268214B2 (en) Superheated steam production equipment using waste incineration heat
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JPH0960847A (en) Method and device for generating superheated steam by waste incineration
JPH09236232A (en) Manufacture of superheated steam utilizing incineration heat of waste

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees