JPH09236232A - Manufacture of superheated steam utilizing incineration heat of waste - Google Patents

Manufacture of superheated steam utilizing incineration heat of waste

Info

Publication number
JPH09236232A
JPH09236232A JP6938896A JP6938896A JPH09236232A JP H09236232 A JPH09236232 A JP H09236232A JP 6938896 A JP6938896 A JP 6938896A JP 6938896 A JP6938896 A JP 6938896A JP H09236232 A JPH09236232 A JP H09236232A
Authority
JP
Japan
Prior art keywords
pyrolysis
char
fluidized bed
combustion
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6938896A
Other languages
Japanese (ja)
Other versions
JP3310853B2 (en
Inventor
Hirotoshi Horizoe
浩俊 堀添
Shizuo Yasuda
静生 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06938896A priority Critical patent/JP3310853B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to SG9904761A priority patent/SG96183A1/en
Priority to EP97903617A priority patent/EP0823590B1/en
Priority to DE69732394T priority patent/DE69732394T2/en
Priority to PCT/JP1997/000573 priority patent/WO1997032161A1/en
Priority to US08/945,591 priority patent/US6133499A/en
Priority to KR1019970707702A priority patent/KR100264723B1/en
Publication of JPH09236232A publication Critical patent/JPH09236232A/en
Application granted granted Critical
Publication of JP3310853B2 publication Critical patent/JP3310853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to efficiently reduce chlorine and to obtain superheated steam of high temperature by providing char mixture supply port supplied from pyrolysis means at the lower part of falling or rising flow area of circulating fluid area. SOLUTION: Fluid medium 2-1 such as fluid sand is contained on a dispersing plate 3 such as a porous plate in a pyrolysis furnace 1 having a fluidized bed, the sand and waste such as municipal refuse are introduced from a waste supply line 4 and sand circulation line 5, a fluidized bed space at 300 deg.C or higher is generated from combustion exhaust gas supplied from a combustion exhaust gas inlet line 6, and the pyrolysis reaction of the waste is conducted. The pyrolysis gas generated by the reaction is separately removed from a pyrolysis gas outlet line 7, char mixture having undecomposed residue and sand is removed from a char mixture removal line 9, and unburned matter is removed from an unburned matter removing line 8. Accordingly, the removal of the unburned matter and the separation of the medium are efficiently conducted, and stable pyrolysis and char combustion can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等を焼却し、その燃焼排ガスの熱により蒸気を製造
して、例えば該蒸気を発電プラント等に用いる過熱蒸気
製造に関する発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of superheated steam by incinerating municipal refuse or industrial waste, producing steam by the heat of the combustion exhaust gas, and using the steam in a power plant or the like. .

【0002】[0002]

【従来の技術】従来より都市ごみ等の廃棄物を焼却する
焼却装置には流動床焼却装置が多く用いられ、かかる装
置は流動床焼却炉内の分散板(例えば多孔板)上に収容
された砂等の流動媒体に分散板下方より空気または焼却
排ガス等を吹き込むことにより流動媒体を流動化すると
ともに加熱し、そのようにして形成された流動床内に都
市ごみ等の廃棄物を投入して燃焼させる。この燃焼によ
り発生した燃焼ガスは、燃焼ガス出口ラインを経てボイ
ラに至り、該ボイラ内で温水との熱接触により蒸気を発
生させ、該蒸気を発電プラント等のタービン駆動源とし
て用いるものである。
2. Description of the Related Art Conventionally, fluidized bed incinerators are often used as incinerators for incinerating waste such as municipal solid waste, and such apparatuses are accommodated on a dispersion plate (for example, a perforated plate) in a fluidized bed incinerator. The fluidized medium is fluidized and heated by blowing air or incineration exhaust gas etc. from below the dispersion plate into the fluidized medium such as sand, and waste such as municipal solid waste is thrown into the fluidized bed thus formed. Burn. The combustion gas generated by the combustion reaches a boiler via a combustion gas outlet line, generates steam by thermal contact with hot water in the boiler, and uses the steam as a turbine drive source of a power plant or the like.

【0003】[0003]

【発明が解決しようとする課題】さてかかる都市ごみ等
の廃棄物中には塩ビプラスチック等の含塩素有機化合物
が混入しており、可燃分中にClとして約0.2〜0.
5%含有されている。そして都市ごみ等の廃棄物中に混
入した塩ビプラスチック等に含まれる塩素は、燃焼によ
ってHClとなり(通常、都市ごみ燃焼排ガス中のHC
lは約500〜1000ppm)、焼却炉の後流に設置さ
れた蒸気発生用ボイラのチューブに作用してこれを腐食
させる。特にチューブ表面温度が約350℃以上では温
度の増加とともに高温腐食が顕著となる。このため、従
来、チューブ表面温度は350℃以下にする必要があ
り、製造される蒸気の温度は約300℃が限界であっ
た。その結果、従来のごみ焼却による発電効率は約15
%以下であって、塩素を殆ど含有しない重油やLNG等
を燃料とし、ボイラチューブ温度を500〜600℃に
できるプラントの発電効率約30〜40%に比べて著し
く低く、その改善が強く望まれていた。
The waste such as municipal waste contains chlorine-containing organic compounds such as vinyl chloride plastic, and the combustible content of Cl is about 0.2 to 0.
Contains 5%. Then, chlorine contained in PVC plastics mixed in waste such as municipal waste becomes HCl by combustion (usually, HC in exhaust gas from combustion of municipal waste is
(1 is about 500 to 1000 ppm), which acts on the tube of the steam generating boiler installed downstream of the incinerator to corrode it. In particular, when the tube surface temperature is about 350 ° C. or higher, high-temperature corrosion becomes remarkable as the temperature increases. For this reason, conventionally, the tube surface temperature had to be 350 ° C. or less, and the temperature of the produced steam was limited to about 300 ° C. As a result, the power generation efficiency of conventional waste incineration is about 15
% Or less and the fuel efficiency is about 30 to 40%, which is significantly lower than the plant power generation efficiency of about 30 to 40%, in which the boiler tube temperature can be set to 500 to 600 ° C. by using heavy oil or LNG, which contains almost no chlorine, as fuel. Was there.

【0004】本発明者らはかかる技術的課題に鑑み、塩
素によるボイラチューブの高温腐食を防止しながら高温
・高圧の過熱蒸気を効率的に得ることのできる過熱蒸気
の製造にかかる発明を同時出願の特許願(整理番号96
P0191)に提案している。かかる基本発明は、略2
00℃〜320℃前後に沸点を有するように加圧させた
蒸気水を用い、該蒸気水の加熱を少なくとも2段階以上
の複数段階とし、前記略沸点温度までの加熱を含塩素熱
エネルギで行ない、前記略沸点温度から所定温度の過熱
蒸気を得る過熱を塩素を含まない脱塩素熱エネルギで行
なう事を特徴とするものである。
In view of the above technical problems, the present inventors simultaneously applied for an invention relating to the production of superheated steam capable of efficiently obtaining high temperature and high pressure superheated steam while preventing high temperature corrosion of a boiler tube due to chlorine. Patent application (reference number 96
P0191). The basic invention is approximately 2
Steam water pressurized to have a boiling point of around 00 ° C. to 320 ° C. is used, the heating of the steam water is performed in a plurality of stages of at least two stages, and heating up to the above-mentioned boiling point temperature is performed with chlorine-containing heat energy. The heating is performed by dechlorination heat energy containing no chlorine to obtain superheated steam at a predetermined temperature from the substantially boiling point.

【0005】かかる基本発明によれば例えば図2に示す
ように、都市ごみ等の廃棄物を、例えば熱分解してその
熱分解ガス中にHCl等が含有する含塩素熱分解ガスで
あっても、該含塩素熱分解ガスの熱エネルギによる蒸気
水の加熱は、略200℃〜320℃前後の略沸点温度と
している為に、含塩素熱分解ガスが蒸気発生用ボイラの
チューブに作用してもチューブ表面温度が約350℃以
上とならない為に、これを腐食させる事にならない。こ
の場合前記蒸気水は加圧により沸点を略200℃〜32
0℃前後に設定してある為に前記含塩素熱分解ガスの蒸
気水への熱エネルギの付与にバラツキが生じていてもそ
れは該蒸気水の潛熱の吸収(言い換えれば水から蒸気へ
の相変換にのみ使用され温度上昇分として作用しない)
に使用されるために、蒸気水の熱交換チューブの表面温
度が塩素腐触温度以上に上昇する事なく、安定した加熱
温度の蒸気水若しくは蒸気を得る事が出来る。
According to the basic invention, for example, as shown in FIG. 2, even if the waste such as municipal waste is pyrolyzed, for example, a chlorine-containing pyrolysis gas containing HCl or the like in the pyrolysis gas is generated. Since the steam water is heated by the thermal energy of the chlorine-containing pyrolysis gas to a boiling point of about 200 ° C. to 320 ° C., the chlorine-containing pyrolysis gas may act on the tube of the steam generating boiler. Since the tube surface temperature does not rise above 350 ° C, it does not corrode. In this case, the steam water has a boiling point of approximately 200 ° C. to 32 ° C. when pressurized.
Since there is a variation in the application of heat energy to the steam water of the chlorine-containing pyrolysis gas because it is set to around 0 ° C, it is due to absorption of the heat of the steam water (in other words, phase conversion from water to steam). Used only for and does not act as a temperature rise)
Therefore, it is possible to obtain steam water or steam having a stable heating temperature without the surface temperature of the heat exchange tube of the steam water rising above the chlorine corrosion temperature.

【0006】そして前記略350℃〜500℃の熱分解
により分解されなかった未分解残渣は既に脱塩素されて
いるために、これを燃焼させて得られる、例えば500
〜950℃前後の熱エネルギを利用して前記略200℃
〜320℃前後に一次加熱した蒸気水若しくは蒸気を二
次〜三次加熱して400〜500℃の加熱蒸気(ボイラ
チューブ温度を450〜550℃)を得てもチューブ腐
触が生じる恐れがない。これによりごみ焼却による発電
を行なった場合においても、塩素を殆ど含有しない重油
やLNG等を燃料としたプラントと同様な約30〜40
%前後の発電効率を得る事が出来る。
Since the undecomposed residue that has not been decomposed by the thermal decomposition at about 350 ° C. to 500 ° C. has already been dechlorinated, it can be obtained by burning it, for example, 500
Approximately 200 ° C. using heat energy of about 950 ° C.
Even if steam water or steam that is primarily heated to around 320 ° C is secondarily to thirdly heated to obtain heated steam of 400 to 500 ° C (boiler tube temperature is 450 to 550 ° C), tube corrosion does not occur. Even when power is generated by incineration by this, about 30 to 40, which is the same as in a plant that uses fuel oil or LNG containing almost no chlorine, as fuel.
Power generation efficiency of around% can be obtained.

【0007】そしてかかる発明を具体化させる装置とし
て、温度300℃以上、好ましくは温度350〜500
℃の空間内に廃棄物を供給して熱分解反応を行なわせ、
その反応により発生した熱分解ガスと未分解残渣および
流動媒体から成るチャー混合物と不燃物とを互いに分離
する例えば流動床、ロータリキルン、スクリュー攪拌槽
等を利用した熱分解手段と、空気または燃焼排ガスによ
って前記チャー混合物を流動させながら前記未分解残渣
を燃焼させる例えば高速流動床や気泡流動床その他の流
動床等からなるチャー燃焼手段と、前記熱分解ガスを直
接若しくは再燃焼させた後、その熱を利用して約400
℃以下、具体的には略200〜320℃以下の温水また
は蒸気を製造する第1の蒸気製造手段と、前記チャー燃
焼手段により得られた燃焼ガスの熱により前記第1の蒸
気製造手段で製造された温水または蒸気を過熱蒸気とす
る第2の蒸気製造手段を含むことを特徴とするものであ
る。
A device for embodying the invention is a temperature of 300 ° C. or higher, preferably a temperature of 350 to 500.
The waste is supplied into the space of ℃ to carry out the thermal decomposition reaction,
Pyrolysis gas generated by the reaction and a char mixture composed of undecomposed residue and fluid medium and incombustibles are separated from each other, for example, a pyrolysis means using a fluidized bed, a rotary kiln, a screw stirring tank, or air or combustion exhaust gas. By burning the undecomposed residue while flowing the char mixture by means of a char combustion means consisting of, for example, a fluidized bed such as a high-speed fluidized bed or a bubbling fluidized bed, and directly or re-combusting the pyrolysis gas About 400
First steam producing means for producing hot water or steam having a temperature of not higher than 200 ° C., specifically about 200 to 320 ° C. and heat of the combustion gas obtained by the char combustion means are produced by the first steam producing means. It is characterized by including a second steam producing means for converting the hot water or the steam thus generated into superheated steam.

【0008】本発明は、かかる基本技術を更に発展さ
せ、前記基本技術に比較して更に効率良く塩素の低減と
もに且つ高温度の過熱蒸気を得ることの出来る過熱蒸気
の製造装置を提供する事にある。本発明の他の目的は前
記基本技術に適用される好ましいチャー燃焼手段、特に
効率よくチャー混合物の燃焼を行うことの出来る過熱蒸
気の製造装置を提供する事にある。本発明の他の目的は
前記熱分解手段における熱分解を効率良く行いつつ、そ
の熱分解ガスのタール付着やコ−キング防止及び低ダイ
オキシン化低NOx化を図り、基本技術において比較し
て更に効率良く塩素の低減ともに且つ高温度高圧の過熱
蒸気を得ることの出来る過熱蒸気の製造にかかる発明を
提供する事にある。
The present invention further develops such basic technology, and provides a superheated steam production apparatus capable of more efficiently reducing chlorine and obtaining superheated steam at high temperature as compared with the above-mentioned basic technology. is there. Another object of the present invention is to provide a preferred char combustion means applied to the above-mentioned basic technique, and in particular, an apparatus for producing superheated steam capable of efficiently combusting a char mixture. Another object of the present invention is to efficiently perform thermal decomposition in the thermal decomposition means, to prevent tar adhesion and coking of the thermal decomposition gas and to reduce dioxin and NOx, which is more efficient than the basic technology. It is an object of the present invention to provide an invention relating to the production of superheated steam, which is capable of obtaining a superheated steam at a high temperature and a high pressure, while well reducing chlorine.

【0009】[0009]

【課題を解決するための手段】本発明は、温度300℃
以上の空間内に廃棄物を供給して熱分解反応を行なわ
せ、その反応により発生した熱分解ガスと未分解残渣お
よび流動媒体から成るチャー混合物と不燃物とを互いに
分離する熱分解手段、例えば流動床、機械式熱分解炉
(例えばロータリキルンやスクリュー攪拌槽)と、前記
熱分解手段より取り出された未分解残渣および流動媒体
から成るチャー混合物を、空気によって流動させながら
前記未分解残渣を燃焼させる一又は複数のチャー燃焼手
段とを含む廃棄物の焼却熱を利用した過熱蒸気製造装置
に適用されるものである。(従って前記基本発明に好適
に適用されるものではあるが、必ずしも前記第1の蒸気
製造手段及び第2の蒸気製造手段を含む装置までを規定
したものではない。)
The present invention has a temperature of 300 ° C.
Pyrolysis means that separates the pyrolysis gas generated by the reaction and the char mixture consisting of undecomposed residue and the fluid medium and the incombustible material from each other by supplying the waste to the above space to perform the pyrolysis reaction, for example, A fluidized bed, a mechanical pyrolysis furnace (for example, a rotary kiln or a screw stirring tank), and a char mixture composed of the undecomposed residue and the fluidized medium taken out from the thermal decomposition means are combusted with the air while flowing with a char mixture. The present invention is applied to a superheated steam manufacturing apparatus that utilizes the heat of incineration of waste including one or a plurality of char burning means. (Thus, although it is preferably applied to the basic invention, it does not necessarily specify an apparatus including the first steam producing means and the second steam producing means.)

【0010】そして請求項1記載の発明は、特に前記チ
ャー燃焼手段について具体化したものでその特徴とする
ところは、前記チャー燃焼手段が、分散板上部にチャー
混合物を堆積させて流動床を形成し、分散板下方より供
給される空気(以下空気流という)又は/及び該流動床
内に、前記チャー混合物を流動床内で循環流動させる循
環手段を形成した流動槽であり、そして前記循環する流
動域の下降流域又は上昇流の下部に熱分解手段から供給
されるチャー混合物の供給口を設けたことにある。前記
循環手段は流動床内を回流可能に複数に分割してもよ
く、又請求項2記載のように前記循環手段を、前記分散
板下方より供給する空気流を複数に分割した分割流で構
成し、該分割した複数の空気流により、前記流動床内の
チャー混合物が循環可能にその流量を制御するように構
成してもよく、更には両者を組合せてもよい。
The invention according to claim 1 is a concrete embodiment of the char combustion means, which is characterized in that the char combustion means deposits the char mixture on the upper portion of the dispersion plate to form a fluidized bed. The air is supplied from the lower side of the dispersion plate (hereinafter referred to as an air flow) and / or the fluidized bed is provided with a circulation means for circulating the char mixture in the fluidized bed. This is because the char mixture supply port supplied from the thermal decomposition means is provided at the lower part of the downward flow region or the upward flow of the flow region. The circulation means may be divided into a plurality of parts so as to be able to flow in the fluidized bed, and the circulation means is constituted by a divided flow obtained by dividing an air flow supplied from below the dispersion plate into a plurality of parts. However, the flow rate of the char mixture in the fluidized bed may be controlled by the plurality of divided air streams so that the char mixture can be circulated, or both may be combined.

【0011】かかる発明の作用は、次の通りである。前
記熱分解された後のチャーはほとんど炭化状態にある為
に、その密度(比重)は0.2〜0.5と軽く、この為
前記チャー燃焼手段を流動床で形成した場合、流動砂の
比重は約2.5である為に、前記チャーは流動床の上部
に浮きやすく空気との混合が不十分で燃焼性が悪くな
り、多量の空気を必要としていた。そこで本発明は循環
する流動域の下降流域に熱分解手段から供給されるチャ
ー混合物の供給口を設けたために、比重の軽いチャーは
必ず流動床底部に移動し、循環流動するために、空気と
の混合が十分に行われ、且つ少ない空気流(例えば空気
比λ=(所要空気量/理論空気量)=1.2〜1.3)
で十分なる燃焼が可能となる。特に前記流動床表面に浮
いたチャーも前記下降流により繰返し流動床底部に移動
する為に、前記した効果が一層増大する。
The operation of the invention is as follows. Since the char after pyrolysis is almost in a carbonized state, its density (specific gravity) is as light as 0.2 to 0.5. Therefore, when the char combustion means is formed in a fluidized bed, the Since the specific gravity is about 2.5, the char tends to float above the fluidized bed and is insufficiently mixed with air, resulting in poor combustibility and requiring a large amount of air. Therefore, in the present invention, since the char mixture supply port supplied from the thermal decomposition means is provided in the descending flow region of the circulating fluidized region, the char having a low specific gravity always moves to the bottom of the fluidized bed, and is circulated and fluidized with air. Is sufficiently mixed and a small air flow (for example, air ratio λ = (required air amount / theoretical air amount) = 1.2 to 1.3)
Will be sufficient for combustion. In particular, since the char floating on the surface of the fluidized bed is repeatedly moved to the bottom of the fluidized bed by the downward flow, the above effect is further enhanced.

【0012】請求項3及び4記載の発明は、前記熱分解
手段に関する発明であり、特に請求項5記載の発明は、
前記熱分解手段を構成する流動床炉中の上方空間中に1
若しくは複数段階的に空気を導入し、熱分解ガスの完全
燃焼を行うことを特徴とし、好ましくは前記上方空間と
その下方の流動床空間間を狭通過面積化し、空気との混
合促進と輻射熱の逆流防止機能を持たせたことを特徴と
するものである。
The inventions according to claims 3 and 4 are inventions relating to the thermal decomposition means, and particularly the invention according to claim 5 is
1 in the upper space of the fluidized bed furnace which constitutes the thermal decomposition means
Alternatively, the introduction of air in multiple stages, characterized by performing a complete combustion of the pyrolysis gas, preferably a narrow passage area between the upper space and the fluidized bed space below it, to promote mixing with air and radiant heat. It is characterized by having a backflow prevention function.

【0013】前記したように前記熱分解手段は350〜
500℃の熱分解ガスを生成するものであるために、熱
分解手段出口側のガス出口温度が低下するとそのタール
分が出口ラインに凝縮付着する恐れがある。
As described above, the thermal decomposition means is 350-
Since the pyrolysis gas of 500 ° C. is generated, if the gas outlet temperature on the exit side of the pyrolysis means is lowered, the tar content thereof may be condensed and attached to the exit line.

【0014】そこで請求項3記載の発明では、前記熱分
解手段を構成する流動床炉中の上方空間中に1若しくは
複数段階的に空気(酸素富化空気を含む)を導入し、熱
分解ガスの燃焼を行うようにしている。これにより出口
ラインにおける温度低下を防止してかつ極度に温度が上
昇しないようにしてタール付着防止やコーキング防止
し、安定した運転が可能となる。
Therefore, in the invention according to claim 3, air (including oxygen-enriched air) is introduced into the upper space of the fluidized bed furnace constituting the thermal decomposition means in one or a plurality of stages, and the thermal decomposition gas is generated. I'm trying to burn. As a result, it is possible to prevent a temperature drop in the outlet line and prevent the temperature from rising excessively to prevent tar from adhering or to prevent coking, thereby enabling stable operation.

【0015】更に、本発明は、熱分解ガス1次燃焼後の
熱分解ガスに更に空気を導入して還元状態にある熱分解
ガスを燃やし、低NOx化を図るのが良い。更に、前記
上方空間における再燃焼時の熱がその下方の流動床空間
に輻射されるとチャー燃焼等が生じ、好ましい熱分解を
生じない。そこで本発明は前記2つの空間の間を狭通過
面積化し、空気との混合を促進させるとともに輻射熱の
逆流防止機能を持たせている。
Further, according to the present invention, it is preferable to further introduce air into the pyrolysis gas after the primary combustion of the pyrolysis gas to burn the pyrolysis gas in a reduced state to reduce NOx. Furthermore, when the heat at the time of re-combustion in the upper space is radiated to the fluidized bed space therebelow, char combustion or the like occurs, and preferable thermal decomposition does not occur. Therefore, the present invention narrows the passage area between the two spaces to promote mixing with air and to have a backflow prevention function for radiant heat.

【0016】請求項4記載の発明は、前記熱分解手段を
流動床で構成し、該流動床内部を、分散板の上に収容さ
れた流動砂等の流動媒体を具え、分散板下方より空気ま
たは燃焼排ガス等を吹き込むことにより流動媒体を流動
化する主流動床と、該主流動床の下方側壁側を拡幅化
し、その底部に廃棄物投入側からチャー混合物取り出し
側へ向かって固体分を搬送する搬送手段を設けたことを
特徴とするものである。
According to a fourth aspect of the present invention, the thermal decomposition means comprises a fluidized bed, the inside of the fluidized bed is provided with a fluidized medium such as fluidized sand contained on a dispersion plate, and air is introduced from below the dispersion plate. Alternatively, the main fluidized bed, which fluidizes the fluidized medium by blowing combustion exhaust gas, and the lower side wall side of the main fluidized bed are widened, and the solid content is conveyed to the bottom from the waste input side to the char mixture extraction side. It is characterized in that it is provided with a transporting means.

【0017】本発明によれば、前記搬送手段は副熱分解
部として機能し、その部分で未燃物を強制的にチャー残
査方向に搬送しながら熱分解を行うために、不燃物中に
未燃物が残ることがないようにでき、廃棄物中の塩素を
実質的に完全に分解し、ガス化して除去することができ
る。
According to the present invention, the carrying means functions as a sub-pyrolysis part, and in that part the unburned material is forcibly carried in the char residual direction to carry out the pyrolysis, so that the unburned material is contained in the non-combustible material. Unburned material can be prevented from remaining, and chlorine in the waste can be substantially completely decomposed and gasified and removed.

【0018】特に本発明は、流動床内に設けた仕切板に
より実質的な流動床の流れ長さ、具体的には廃棄物と流
動媒体とを混合させながらチャー混合物抜出し口に向か
って押し出す流れ長さを多く取ることが出来、而も廃棄
物はチャー混合物抜出し口へ吹き抜けることがない為
に、熱分解を一様に且つ所定の時間以上に保持される。
したがって請求項1記載の発明より更に熱分解を一様に
十分行なうことができ、廃棄物中の塩素を実質的に完全
に分解し、ガス化して除去することができる。
Particularly, according to the present invention, the partition plate provided in the fluidized bed allows the flow length of the fluidized bed to be substantially the same, specifically, the flow for pushing out toward the char mixture outlet while mixing the waste and the fluidized medium. The length can be made large, and since the waste does not blow through to the char mixture outlet, thermal decomposition is uniformly maintained for a predetermined time or longer.
Therefore, the thermal decomposition can be carried out uniformly and sufficiently as compared with the invention described in claim 1, and chlorine in the waste can be decomposed substantially completely and gasified to be removed.

【0019】[0019]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
構成部品の寸法、材質、形状、その相対的配置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
及び図2は本発明の実施例に係る廃棄物の焼却熱を利用
した過熱蒸気製造装置、特に第2のチャー燃焼手段を設
けた過熱蒸気製造装置に係るものである。図中、1は流
動床からなる熱分解炉で、多孔板等の分散板3上に流動
砂等の流動媒体2−1が収納されており、廃棄物供給ラ
イン4及び砂循環(戻入)ライン5より流動砂と都市ご
み等の廃棄物が投入され、燃焼排ガス入口ライン6より
供給された燃焼排ガス等(本熱分解炉は基本的には燃焼
ではなく熱分解の為に、供給されるガスは酸素を消費し
た燃焼排ガスが大部分であるが、温度制御を行なう為に
必要に応じ空気を僅かに入れる)により温度300℃以
上の流動床空間を生成し、廃棄物の熱分解反応を行なわ
せ、その反応により発生した熱分解ガスは熱分解ガス出
口ライン7より、又未分解残渣および流動砂から成るチ
ャー混合物はチャー混合物取り出しライン9より、不燃
物は不燃物取り出しライン8より、夫々互いに分離して
取り出す。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG.
2 and FIG. 2 relate to an overheated steam production apparatus utilizing incineration heat of waste according to an embodiment of the present invention, particularly an overheated steam production apparatus provided with a second char combustion means. In the figure, 1 is a pyrolysis furnace comprising a fluidized bed, in which a fluidized medium 2-1 such as fluidized sand is stored on a dispersion plate 3 such as a perforated plate, and a waste supply line 4 and a sand circulation (return) line. Fluid waste and waste such as municipal solid waste are put in from 5, and the combustion exhaust gas, etc. supplied from the combustion exhaust gas inlet line 6 (this pyrolysis furnace is basically a gas supplied for thermal decomposition, not for combustion). Most of the combustion exhaust gas consumes oxygen, but a small amount of air is added as necessary to control the temperature) to generate a fluidized bed space at a temperature of 300 ° C or higher, and perform a thermal decomposition reaction of the waste. The pyrolysis gas generated by the reaction is discharged from the pyrolysis gas outlet line 7, the char mixture consisting of undecomposed residue and fluidized sand is discharged from the char mixture extraction line 9, and the incombustibles are extracted from the incombustibles extraction line 8. Separate and take It is.

【0020】この際熱分解ガスとチャー混合物の熱カロ
リー比が「約7(熱分解ガス):約3(チャー混合
物)」になるように熱分解を行うことが好ましい。これ
は、加温すべき蒸気水を例えば100Kgf/cm2
後に加圧した場合その沸点が309℃前後になるので、
熱分解ガスでは水冷壁ボイラ36及び第1のボイラ24
で蒸気水を常温より「沸点309℃+蒸発潜熱」言換え
れば常温より309℃で殆ど蒸気化するまで立上げるカ
ロリーと、該立上げた蒸気を沸点309℃より500℃
まで立上げるカロリーの比は、約7:3である事によ
る。
At this time, it is preferable to perform the thermal decomposition so that the thermal calorie ratio of the thermal decomposition gas and the char mixture becomes "about 7 (pyrolysis gas): about 3 (char mixture)". This is because if the steam water to be heated is pressurized to around 100 Kgf / cm 2, its boiling point will be around 309 ° C.,
For the pyrolysis gas, the water-cooled wall boiler 36 and the first boiler 24
"Boiling point 309 ° C + latent heat of vaporization" of steam water from room temperature. In other words, calories that rise from room temperature to 309 ° C until almost vaporized, and steam that rises from boiling point 309 ° C to 500 ° C.
The ratio of calories to be launched is about 7: 3.

【0021】又熱分解炉1出口側の熱分解ガス出口ライ
ン7には空気入口ライン21が取付けられており、熱分
解炉1より取り出された熱分解ガスは、空気入口ライン
21より空気を導入して熱分解ガス中に含まれるタール
等を一部燃焼させ、出口ライン7におけるタール付着防
止やコーキング防止を図る。
An air inlet line 21 is attached to the thermal decomposition gas outlet line 7 on the outlet side of the thermal decomposition furnace 1, and the thermal decomposition gas taken out from the thermal decomposition furnace 1 introduces air from the air inlet line 21. Then, tar and the like contained in the pyrolysis gas are partially burned to prevent tar from adhering to the outlet line 7 and prevent coking.

【0022】又前記出口ライン7の下流端には、燃焼ダ
クトからなる熱分解ガス燃焼炉34が配設され、前記熱
分解ガスに十分なライン21’より空気を供給して該熱
分解ガスの完全燃焼を行う。
Further, at the downstream end of the outlet line 7, a pyrolysis gas combustion furnace 34 composed of a combustion duct is arranged, and air is supplied to the pyrolysis gas through a sufficient line 21 'to generate the pyrolysis gas. Completely burn.

【0023】10は気泡流動床炉からなるチャー燃焼炉
で、底部に配した分散板11上にチャー混合物取り出し
ライン9より供給されたチャー混合物、及び砂循環ライ
ン19ー2/19−1を介して副チャー燃焼炉10Bと
の間で循環された流動砂が収納される。
Numeral 10 is a char combustion furnace consisting of a bubbling fluidized bed furnace, and a char mixture supplied from a char mixture take-out line 9 on a dispersion plate 11 arranged at the bottom, and a sand circulation line 19-2 / 19-1. The fluidized sand circulated between the auxiliary char combustion furnace 10B and the auxiliary char combustion furnace 10B is stored.

【0024】そして前記分散板11下方の空気供給ライ
ン12より空気が供給されて流動床2−3内で700〜
800℃に加熱して未分解残渣の燃焼を行い、更にチャ
ー燃焼炉10中域の空気供給ライン13より空気が導入
されて更に加熱し約800〜1300℃前後の燃焼ガス
を生成すると共に、そのチャー燃焼炉10中の上方域に
第2スーパヒータ29−1又は/及び水冷壁ボイラ3
6’を配設し、第2の蒸気製造手段(第1スーパヒータ
20)よりライン28−1を介して導入された過熱蒸気
の過熱とともに、950〜1300℃前後と無用に高く
なった燃焼ガスを800〜950℃に落とす。尚前記の
ように燃焼ガス温度を800〜950℃に落としても第
1スーパヒータ20における蒸気温度を400〜520
℃に維持する上で何の支障もない。そして前記チャー燃
焼炉10で燃焼されない小型の不燃物は不燃物取り出し
ライン14より取り出される。
Air is supplied from the air supply line 12 below the dispersion plate 11 to 700-700 in the fluidized bed 2-3.
The undecomposed residue is burned by heating it to 800 ° C., and air is further introduced from the air supply line 13 in the middle region of the char combustion furnace 10 to heat it further to generate combustion gas at about 800 to 1300 ° C. The second super heater 29-1 and / or the water-cooled wall boiler 3 is provided in the upper region of the char combustion furnace 10.
6'is provided, and with the superheat of the superheated steam introduced from the second steam producing means (the first superheater 20) through the line 28-1, the combustion gas which becomes unnecessarily high around 950 to 1300 ° C. Drop to 800-950 ° C. Even if the combustion gas temperature is lowered to 800 to 950 ° C. as described above, the steam temperature in the first super heater 20 is 400 to 520.
There is no problem in maintaining at ℃. Then, the small incombustibles that are not burned in the char combustion furnace 10 are taken out from the incombustibles taking-out line 14.

【0025】一方、チャー燃焼炉10には副流動床とし
ての副チャー燃焼炉10Bが付設されており、砂循環ラ
イン19ー2/19−1を介して副チャー燃焼炉10B
との間で流動砂がライン12’より導入された空気によ
り流動するように構成し、そして前記副チャー燃焼炉1
0Bの流動媒体内に第3スーパヒータ29−2を配設
し、第2スーパヒータ29−1の出口側とライン28−
2を介して接続している。副チャー燃焼炉10Bで得ら
れた燃焼ガスはライン19−3を介してチャー燃焼炉1
0に供給される。尚、副チャー燃焼炉10Bは独立して
設けてもよいが、図1に示すように、前記チャー燃焼炉
10より加熱された流動媒体を熱分解炉1に戻入する流
動媒体経路19−1/5中に、第3スーパヒータ29−
2を設けた副チャー燃焼炉10Bを介在させるのがよ
い。3−1、3−2は分散板である。
On the other hand, the char combustion furnace 10 is additionally provided with a sub-char combustion furnace 10B as a sub-fluidized bed, and the sub-char combustion furnace 10B is provided via a sand circulation line 19-2 / 19-1.
And the fluidized sand is made to flow by the air introduced from the line 12 ', and the auxiliary char combustion furnace 1
The third super heater 29-2 is arranged in the fluid medium of 0B, and the line 28- is connected to the outlet side of the second super heater 29-1.
Connected via 2. The combustion gas obtained in the auxiliary char combustion furnace 10B is supplied to the char combustion furnace 1 through the line 19-3.
0 is supplied. The sub-char combustion furnace 10B may be provided independently, but as shown in FIG. 1, a fluid medium path 19-1 / for returning the fluid medium heated by the char combustion furnace 10 to the pyrolysis furnace 1 During 5, the third super heater 29-
It is advisable to interpose the auxiliary char combustion furnace 10B provided with No.2. 3-1 and 3-2 are dispersion plates.

【0026】さて前記第2スーパヒータ29−1で熱交
換された燃焼ガスは、砂/燃焼ガス出口ライン15より
気・固分離装置例えばサイクロン16に導入され、ここ
でダストや灰と燃焼ガスとを分離し、燃焼ガスはガス出
口ライン17より第1スーパヒータ20に導入される。
20は第1スーパヒータ及び24は第1ボイラで、第1
ボイラ24では熱分解ガス出口ライン7より取り出され
た熱分解ガスは、水冷壁ボイラ36が内装されている燃
焼ガス燃焼炉34内で燃焼されて第1スーパヒータ20
のボイラガス出口22より排出された燃焼排ガスと共
に、第1のボイラ24に導入され、ボイラ水入口26よ
り取込んだボイラ水を200〜320℃前後に加熱し、
第1ボイラ出口ライン27より第1スーパヒータ20に
蒸気若しくは加熱水を供給する。
The combustion gas heat-exchanged by the second super heater 29-1 is introduced from the sand / combustion gas outlet line 15 into a gas / solid separation device such as a cyclone 16, where dust and ash and combustion gas are separated. The separated combustion gas is introduced into the first super heater 20 through the gas outlet line 17.
20 is a first super heater and 24 is a first boiler.
In the boiler 24, the pyrolysis gas taken out from the pyrolysis gas outlet line 7 is burned in the combustion gas combustion furnace 34 in which the water-cooled wall boiler 36 is installed, and the first super heater 20.
Together with the combustion exhaust gas discharged from the boiler gas outlet 22 of No. 1, the boiler water introduced into the first boiler 24 and taken from the boiler water inlet 26 is heated to around 200 to 320 ° C.,
Steam or heated water is supplied to the first super heater 20 from the first boiler outlet line 27.

【0027】ボイラ水は分岐ライン26’を介して燃焼
ガス燃焼炉34内の水冷壁ボイラ36にも導入され分岐
ライン27’を介して第1スーパヒータ20に蒸気若し
くは加熱水を供給する。尚、100Kgf/cm2前後
に加圧してその沸点を309℃前後に設定している前記
蒸気水は水冷壁ボイラ36及び第1のボイラ24に導入
されて第1段階の加熱を行うわけであるが、その加熱温
度が前記沸点近くの309℃前後になるようにその通水
量を制御している。この結果、水冷壁ボイラ36及び第
1のボイラ24のチューブ表面壁温度は、前記加温水に
追従して350℃以下に維持でき、例え熱交換される熱
分解ガスに塩素若しくはHClを含んでいても腐食が生
じる事はない。
The boiler water is also introduced into the water-cooled wall boiler 36 in the combustion gas combustion furnace 34 through the branch line 26 'and supplies steam or heated water to the first super heater 20 through the branch line 27'. The steam water whose pressure is set to around 100 Kgf / cm 2 and whose boiling point is set to around 309 ° C. is introduced into the water-cooled wall boiler 36 and the first boiler 24 to perform the first stage heating. However, the water flow rate is controlled so that the heating temperature is around 309 ° C., which is close to the boiling point. As a result, the tube surface wall temperature of the water-cooled wall boiler 36 and the first boiler 24 can be kept at 350 ° C. or lower by following the heated water, and the pyrolysis gas to be heat-exchanged contains chlorine or HCl. No corrosion will occur.

【0028】第1スーパヒータ20では前記第1ボイラ
24及び水冷壁ボイラ36の出口ライン27、27’よ
り取り出した蒸気/加熱水及び水冷壁ボイラ36により
加熱され分岐蒸気ライン27’を介してとりだされた蒸
気/加熱水を導入して、前記燃焼ガスライン17を介し
て供給された燃焼ガスで加熱し、400〜520℃前後
の過熱蒸気を製造し、以下蒸気出口ライン28ー1より
第2スーパヒータ29−1に、更にライン28ー2より
第3スーパヒータ29−2に夫々直列に導入して400
〜520℃に過熱された過熱蒸気を取り出し、発電機に
送給する。
In the first superheater 20, steam / heated water taken out from the outlet lines 27, 27 'of the first boiler 24 and the water-cooled wall boiler 36 and heated by the water-cooled wall boiler 36 are taken out via the branch steam line 27'. Introduced steam / heated water and heated by the combustion gas supplied through the combustion gas line 17 to produce superheated steam of about 400 to 520 ° C., and the second from the steam outlet line 28-1 Introduced in series to the superheater 29-1, and further to the third superheater 29-2 from the line 28-2, respectively.
The superheated steam superheated to ˜520 ° C. is taken out and sent to the generator.

【0029】既に前記実施例の作用は構成とともに説明
したが簡単に繰返し説明するに、熱分解炉1に供給され
る都市ごみ等の廃棄物中には塩ビプラスチック等の含塩
素有機化合物が混入しており、可燃分中にClとして約
0.2〜0.5%含有されている。そして、廃棄物供給
ライン4から都市ごみ、流動砂循環ライン5から高温の
循環流動砂を、それぞれ熱分解炉1に供給し、下部の空
気または燃焼排ガス入口ライン6から燃焼排ガスに僅か
な温度調整用空気を供給して流動砂2を流動させた流動
床内で、温度350〜500℃で処理することにより、
チャー混合物取り出しライン9からは実質的に塩素を含
有しない未分解残渣が得られる。すなわち、廃棄物中に
含まれていた塩素は、実質的に全て熱分解ガスに含まれ
て、熱分解ガス出口ライン7に排出されることになる。
なお、熱分解炉1内の熱分解反応で分離された大型の不
燃物は、不燃物取り出しライン8から炉外に取り出され
る。この際前記熱分解ガスとチャー混合物の熱カロリ比
が約7:3になるように熱分解時間と熱分解温度を設定
する。
Although the operation of the above-described embodiment has already been described together with the constitution, it will be simply and repeatedly explained that the chlorine-containing organic compound such as vinyl chloride plastic is mixed in the waste such as municipal waste supplied to the thermal decomposition furnace 1. And about 0.2 to 0.5% of Cl is contained in the combustible content. Then, municipal waste is supplied from the waste supply line 4 and high-temperature circulating fluidized sand is supplied from the fluidized sand circulation line 5 to the pyrolysis furnace 1, respectively, and a slight temperature adjustment is made to the combustion exhaust gas from the lower air or the combustion exhaust gas inlet line 6. By treating at a temperature of 350 to 500 ° C. in a fluidized bed in which the working sand is supplied to fluidize the fluidized sand 2,
From the char mixture take-out line 9, an undecomposed residue containing substantially no chlorine is obtained. That is, the chlorine contained in the waste is substantially contained in the pyrolysis gas and is discharged to the pyrolysis gas outlet line 7.
The large incombustibles separated by the thermal decomposition reaction in the thermal decomposition furnace 1 are taken out of the furnace through the incombustibles extraction line 8. At this time, the thermal decomposition time and the thermal decomposition temperature are set so that the thermal calorie ratio of the thermal decomposition gas and the char mixture is about 7: 3.

【0030】熱分解炉1の熱分解出口ライン7から取り
出された上記熱分解ガスには、低カロリーガス、油分、
タールおよびHClが含まれているが、これらの熱分解
炉1の空気入口ライン21から供給される空気で予備燃
焼させ前記タール分の燃焼若しくは蒸発を行い、出口ラ
イン7におけるタール付着防止やコーキング防止と共
に、ライン21’より多量の空気を熱分解燃焼炉34に
導入して、熱分解ガスを該熱分解燃焼炉34内で完全燃
焼を行う。この結果熱分解燃焼炉34内の熱分解ガス温
度を高く設定できるために、水冷壁ボイラ36及び第一
ボイラ24に導入され沸点200〜320℃近くまで立
上げる蒸気/蒸気水を多量に製造できる。
The pyrolysis gas taken out from the pyrolysis outlet line 7 of the pyrolysis furnace 1 contains low-calorie gas, oil,
Although tar and HCl are contained, the air supplied from the air inlet line 21 of the pyrolysis furnace 1 is pre-combusted to burn or evaporate the tar portion, thereby preventing tar adhesion and coking in the outlet line 7. At the same time, a large amount of air is introduced into the pyrolysis combustion furnace 34 through the line 21 ′, and the pyrolysis gas is completely combusted in the pyrolysis combustion furnace 34. As a result, since the temperature of the pyrolysis gas in the pyrolysis combustion furnace 34 can be set high, a large amount of steam / steam water that is introduced into the water-cooled wall boiler 36 and the first boiler 24 and rises up to a boiling point of 200 to 320 ° C. can be produced. .

【0031】又熱分解燃焼炉34内で水冷壁ボイラ36
と熱交換した熱分解ガスは、第1スーパヒータボイラガ
ス出口ライン22よりの燃焼排ガスとともに第1ボイラ
ガス入口23から第1ボイラ24に供給する。前記熱分
解燃焼炉34内及び第1ボイラ24内に導入されるガス
にはHClが約500〜1000ppm含まれているの
で、ボイラ水の流量を調整して水冷壁ボイラ36及び第
1ボイラ24のチューブ表面温度は従来並みの約350
℃以下として、高温腐食を抑制する。このため、水冷壁
ボイラ36及び第1ボイラ24では高温の過熱蒸気は得
られないが、約200〜320℃までは加熱できるの
で、これを更に第1スーパヒータ20以降のスーパヒー
タ29−1、29−2で加熱すれば、約400〜520
℃の高温の過熱蒸気を得ることができる。
In the pyrolysis combustion furnace 34, a water-cooled wall boiler 36 is also provided.
The pyrolysis gas that has exchanged heat with is supplied from the first boiler gas inlet 23 to the first boiler 24 together with the combustion exhaust gas from the first super heater boiler gas outlet line 22. Since about 500 to 1000 ppm of HCl is contained in the gas introduced into the pyrolysis combustion furnace 34 and the first boiler 24, the flow rate of the boiler water is adjusted to adjust the water cooling wall boiler 36 and the first boiler 24. The tube surface temperature is about 350, which is the same as the conventional one.
C. or lower to suppress high-temperature corrosion. Therefore, high-temperature superheated steam cannot be obtained in the water-cooled wall boiler 36 and the first boiler 24, but since it can be heated up to about 200 to 320 ° C., it can be further heated to the super heaters 29-1 and 29- after the first super heater 20. If heated at 2, about 400-520
It is possible to obtain superheated steam at a high temperature of ° C.

【0032】熱分解炉1でチャー混合物取り出しライン
9から取り出されたチャー混合物は流動砂と未分解残渣
から成り、実質的に塩素を含有しないチャー混合物を、
燃焼炉10では燃焼炉10の下部に供給し、空気供給ラ
イン12から分散板11を介して供給される空気によっ
て燃焼させる。この場合、空気供給ライン12から供給
する空気量を調整して、流動砂を流動させながら未分解
残渣を燃焼させる。完全燃焼のために空気供給ライン1
3又は/及びライン19ー3から更に空気を供給するこ
ともある。燃焼炉10の温度は燃焼発熱反応によって上
昇する。この温度値は、チャー混合物取り出しライン9
から供給される未分解残渣の発熱量と空気供給ライン1
2、13の空気および砂循環ライン19の流動砂の量と
温度によって決まるが、1000〜1200℃前後の高
温になる場合がある。
The char mixture taken out from the char mixture take-out line 9 in the pyrolysis furnace 1 is composed of fluidized sand and undecomposed residue, and a char mixture containing substantially no chlorine,
In the combustion furnace 10, the air is supplied to the lower part of the combustion furnace 10 and burned by the air supplied from the air supply line 12 through the dispersion plate 11. In this case, the amount of air supplied from the air supply line 12 is adjusted so that the undecomposed residue is burned while flowing the fluidized sand. Air supply line 1 for complete combustion
3 or / and further air may be supplied from line 19-3. The temperature of the combustion furnace 10 rises due to the combustion exothermic reaction. This temperature value is the char mixture take-out line 9
Calorific value of undecomposed residue and air supply line 1
Depending on the amount and temperature of the air of 2 and 13 and the fluidized sand in the sand circulation line 19, the temperature may become as high as around 1000 to 1200 ° C.

【0033】そこで第2スーパヒータ29ー1によりラ
イン28ー1を介して第1スーパヒータ20よりの過熱
蒸気と熱交換すること又はボイラにより燃焼ガスを80
0〜950℃にすることは容易である。ガラスや缶類等
の溶融により小型化された不燃物は不燃物取り出しライ
ン14から抜き出す。
Therefore, heat is exchanged with the superheated steam from the first superheater 20 through the line 28-1 by the second superheater 29-1, or the combustion gas is converted to 80 by the boiler.
It is easy to set the temperature to 0 to 950 ° C. The incombustibles reduced in size by melting glass, cans, and the like are extracted from the incombustibles take-out line 14.

【0034】一方前記チャー燃焼炉10より加熱された
流動媒体を熱分解炉1に戻入する流動媒体経路19−1
/5中に、第3スーパヒータ29−2を設けた副チャー
燃焼炉10Bを圧力差形成手段50を介して介在させる
ことにより、第1のチャー燃焼炉10で700〜800
℃に加熱した流動媒体を、前記副チャー燃焼炉10Bで
第3スーパヒータ29−2による奪熱により500〜7
00℃に落とし、更に副チャー燃焼炉10Bの第3スー
パヒータ29−2により奪熱されて該副チャー燃焼炉1
0Bで500〜700℃に落とし、該500〜700℃
に落とした流動媒体を圧力差形成手段50により逆流を
阻止しつつ熱分解炉1に戻入する事が出来るためになだ
らかな熱傾斜が可能であり、この結果前記熱分解炉1内
の熱分解温度を350℃から500℃前後に安定して制
御が可能である。
On the other hand, a fluidized medium path 19-1 for returning the fluidized medium heated from the char combustion furnace 10 to the pyrolysis furnace 1
700-800 in the first char combustion furnace 10 by interposing the auxiliary char combustion furnace 10B provided with the third super heater 29-2 through the pressure difference forming means 50 in / 5.
The fluidized medium heated to 0 ° C. is absorbed by the third super heater 29-2 in the auxiliary char combustion furnace 10B to remove heat from 500 to 7
The temperature of the auxiliary char combustion furnace 1 is lowered to 00 ° C., and the heat of the auxiliary char combustion furnace 10B is removed by the third super heater 29-2 of the auxiliary char combustion furnace 10B.
0 to 500-700 ℃, 500-700 ℃
Since the fluidized medium dropped to the thermal decomposition furnace 1 can be returned to the thermal decomposition furnace 1 while preventing backflow by the pressure difference forming means 50, a gentle thermal gradient can be obtained, and as a result, the thermal decomposition temperature in the thermal decomposition furnace 1 can be increased. The temperature can be stably controlled from 350 ° C to around 500 ° C.

【0035】そして前記副チャー燃焼炉10Bの流動床
2−2で第3スーパヒータ29−2により奪熱された後
の流動媒体は戻入ライン5を介して熱分解炉1に戻入さ
れる。第3スーパヒータ29−2より過熱された蒸気は
ライン28−3より発電機に送給される。
The fluidized medium, which has been deprived of heat by the third super heater 29-2 in the fluidized bed 2-2 of the auxiliary char combustion furnace 10B, is returned to the pyrolysis furnace 1 through the return line 5. The steam superheated by the third super heater 29-2 is sent to the generator through the line 28-3.

【0036】一方チャー燃焼炉10で生成し800〜9
50℃の高温でかつ塩素を実質的に含有しない燃焼ガス
は燃焼ガス出口ライン15を経て必要ならばサイクロン
16に導入され、ダスト及び灰は出口ライン18から、
排ガスはガス出口ライン17から夫々分離して取り出さ
れる。
On the other hand, 800 to 9 produced in the char combustion furnace 10.
Combustion gas at a high temperature of 50 ° C. and substantially free of chlorine is introduced into the cyclone 16 via the combustion gas outlet line 15, if necessary, and dust and ash from the outlet line 18,
The exhaust gas is separated and taken out from the gas outlet line 17.

【0037】一方、上記サイクロン16のガス出口ライ
ン17から取り出された800〜950℃の高温排ガス
は、第1スーパヒータ20に導入され、第1ボイラ24
及び水冷壁ボイラ36で製造された350℃前後の蒸気
/蒸気水を加熱して過熱蒸気とするために用いられる。
ガス出口ライン17を経て来た排ガスは実質的に塩素を
含有していないので、第1スーパヒータ20のボイラチ
ューブ表面温度を350℃以上としても高温腐食は大幅
に軽減される。したがってチューブ内流体の温度を約5
00〜600℃とすることができ、第1スーパヒータボ
イラ蒸気出口28からは安定して高温の過熱蒸気が得ら
れる。
On the other hand, the high temperature exhaust gas at 800 to 950 ° C. taken out from the gas outlet line 17 of the cyclone 16 is introduced into the first super heater 20 and the first boiler 24.
Also, it is used to heat the steam / steam water of about 350 ° C. produced by the water-cooled wall boiler 36 into superheated steam.
Since the exhaust gas that has passed through the gas outlet line 17 contains substantially no chlorine, even if the boiler tube surface temperature of the first superheater 20 is set to 350 ° C. or higher, high temperature corrosion is significantly reduced. Therefore, the temperature of the fluid in the tube should be about 5
The temperature can be set to 00 to 600 ° C., and high-temperature superheated steam can be stably obtained from the first superheater boiler steam outlet 28.

【0038】前記熱分解炉1で熱分解炉1の温度を所定
温度300℃以上に維持するには、燃焼排ガス入口ライ
ン6から供給される流動気体の酸素量を調節、言換えれ
ば第1ボイラ24よりの燃焼排ガスとともに空気を僅か
に供給するとともに、副チャー燃焼手段10Bよりの高
温約500〜700℃の流動砂の一部を戻入ライン(砂
循環ライン)5を介して熱分解炉1に戻入して熱源とし
ている。
In order to maintain the temperature of the pyrolysis furnace 1 above the predetermined temperature of 300 ° C. in the pyrolysis furnace 1, the oxygen amount of the flowing gas supplied from the combustion exhaust gas inlet line 6 is adjusted, in other words, the first boiler. A small amount of air is supplied together with the combustion exhaust gas from 24 and a part of the fluidized sand having a high temperature of about 500 to 700 ° C. from the auxiliary char combustion means 10B is fed into the pyrolysis furnace 1 through the return line (sand circulation line) 5. It is returned and used as a heat source.

【0039】例えば燃焼排ガス入口ライン6より熱分解
炉1に供給される空気または燃焼排ガスは、350〜5
00℃の範囲で熱分解を効率的に行うために、酸素の少
ない(3〜5%程度)且つ温度が150〜200℃の温
度を維持している燃焼排ガス、具体的には第1のボイラ
24の出口ライン25より取り出された燃焼排ガスを用
いるのが良い。
For example, the air or combustion exhaust gas supplied to the pyrolysis furnace 1 through the combustion exhaust gas inlet line 6 is 350 to 5
Combustion exhaust gas that is low in oxygen (about 3 to 5%) and maintains a temperature of 150 to 200 ° C in order to efficiently perform thermal decomposition in the range of 00 ° C, specifically, the first boiler. It is preferable to use the combustion exhaust gas extracted from the outlet line 25 of 24.

【0040】図3は前記チャー燃焼炉を改良した流動床
の構成を示し、分散板11上部にチャー混合物を堆積さ
せて流動床2−3を形成し、該流動床2−3内を回流可
能に左右及び中央の三つの流動域2−3A/2−3B/
2−3Cに分割される上部仕切り板61A/62Aが配
設され、そして前記上部仕切り板61A/62Aは流動
床2−3上部と底部が夫々開口されている。そして上部
仕切り板61A/62Aにより仕切られる流動域の内中
央の流動域2−3Bに熱分解炉1側及び副チャー燃焼炉
10側より夫々チャー燃焼炉10にチャー混合物及び流
動媒体を供給するライン9及びライン19−2が接続さ
れている。
FIG. 3 shows a structure of a fluidized bed obtained by improving the char combustion furnace. A char mixture is deposited on the upper part of the dispersion plate 11 to form a fluidized bed 2-3, and the fluidized bed 2-3 can be circulated. To the left and right and the center of the three flow areas 2-3A / 2-3B /
An upper partition plate 61A / 62A divided into 2-3C is disposed, and the upper partition plate 61A / 62A is opened at the upper part and the bottom part of the fluidized bed 2-3, respectively. A line for supplying the char mixture and the fluid medium to the char combustion furnace 10 from the pyrolysis furnace 1 side and the sub-char combustion furnace 10 side, respectively, in the flow area 2-3B in the center of the flow area partitioned by the upper partition plates 61A / 62A. 9 and line 19-2 are connected.

【0041】又、分散板11は不燃物取り出しライン1
4側に向け下向きに傾斜されている。分散板11下方空
間は、上部仕切り板61A/62Aと同間隔で下部仕切
り板61B/62Bが配設されており、そして該下部仕
切り板61Bと62Bに挟まれる分散板中央部11−2
は山型状に形成されるとより効果的である。又下部仕切
り板61Bと62Bにより夫々仕切られる分散板11−
1/11−2/11−3下方空間の底部には夫々空気供
給ライン12に接続された分岐ライン12−1/12−
2/12−3が接続されており、そして該分岐ライン1
2−1/12−2/12−3には夫々流量調整弁64が
設けられ、上部仕切り板61A/62Aにより三分割さ
れる夫々の流動域に供給される空気流を制御可能に構成
される。又副チャー燃焼炉10Bに流動媒体を供給する
ライン19−1は流動床2−3界面上に、又副チャー燃
焼炉10Bより燃焼ガスを供給するライン19−3はそ
の上部に設けられている。
Further, the dispersion plate 11 is a non-combustible material take-out line 1
It is inclined downward toward the 4 side. In the space below the dispersion plate 11, lower partition plates 61B / 62B are arranged at the same intervals as the upper partition plates 61A / 62A, and the central part 11-2 of the dispersion plate sandwiched between the lower partition plates 61B and 62B.
Is more effective when formed in a mountain shape. Also, the dispersion plate 11-, which is partitioned by the lower partition plates 61B and 62B, respectively.
1 / 11-2 / 11-3 Branch lines 12-1 / 12- connected to the air supply line 12 at the bottom of the lower space, respectively.
2 / 12-3 are connected and the branch line 1
2-1 / 12-2 / 12-3 are each provided with a flow rate adjusting valve 64, which is configured to be able to control the air flow supplied to each flow region divided into three by the upper partition plates 61A / 62A. . A line 19-1 for supplying a fluid medium to the auxiliary char combustion furnace 10B is provided on the interface of the fluidized bed 2-3, and a line 19-3 for supplying a combustion gas from the auxiliary char combustion furnace 10B is provided above the interface. .

【0042】かかる装置によれば、熱分解炉1から供給
されるチャー混合物を供給するライン9の供給口を、前
記三分割された流動域中央部2−3B(下降流域)若し
くは左右両側の流動域2−3A/2−3C(上昇流域)
の下部に設け、一方その下方に位置する分散板11−2
は前記中央部2−3Bより左右両側の流動域2−3A/
2−3Cに空気流が流れるように山型状に形成される
為、又12ー2の空気流量は、12ー1/12ー3より
少なくすることにより、又左右両側に位置する流動域2
−3A/2−3Cには夫々分散板11−3/11−1下
方の分岐ライン12−1/12−3より上方に向け空気
流が供給されているために、中央流動域部2−3Bが下
降流域となり、左右両側に位置する流動域2−3A/2
−3Cは上昇流域とすることができる。
According to such an apparatus, the supply port of the line 9 for supplying the char mixture supplied from the pyrolysis furnace 1 is divided into three parts in the central part of the flow region 2-3B (downward flow region) or the left and right flow regions. Area 2-3A / 2-3C (upstream basin)
Dispersion plate 11-2 provided on the lower part of the
Is a flow region 2-3A / on both left and right sides of the central portion 2-3B.
Since it is formed in a mountain shape so that the air flow can flow in 2-3C, the air flow rate of 12-2 is set to be smaller than 12-1 / 12-3, and the flow region 2 located on both the left and right sides is formed.
-3A / 2-3C is supplied with an air flow upward from the branch line 12-1 / 12-3 below the dispersion plate 11-3 / 11-1, so that the central flow region 2-3B is provided. Is a descending basin, and the flow area is located on the left and right sides 2-3A / 2
-3C can be an upflow basin.

【0043】この結果ライン9より例えば流動域中央部
2−3B(下降流域)若しくは流動域2−3A/2−3
C(上昇流域)の下部に供給されたチャー混合物は山型
状の分散板11−2により、前記中央部2−3Bより左
右両側の流動域2−3A/2−3Cに空気流が流れ、流
動域中央部2−3B流動媒体の下降流が形成でき、一方
左右両側に位置する流動域2−3A/2−3Cは上昇流
となっている為に、前記流動床内でチャー混合物及び流
動媒体は(A)に示す矢印のように循環する。この結果
比重の軽いチャーは必ず流動域中央部2−3Bの下降流
域により流動床底部に移動し、左右両側に位置する流動
域2−3A/2−3Cを介して循環流動するために、空
気との混合が十分に行われ、且つ少ない空気流(例えば
空気比λ:1.2〜1.3)で十分なる燃焼が可能とな
る。又例え前記流動床表面に浮いたチャーも前記下降流
により繰返し流動床底部に移動する為に、前記した効果
が一層増大する。
From the result line 9, for example, the central part of the flow region 2-3B (downflow region) or the flow region 2-3A / 2-3.
The char mixture supplied to the lower part of C (upward flow region) has an air flow flowing from the central portion 2-3B to the flow regions 2-3A / 2-3C on both left and right sides by the mountain-shaped dispersion plate 11-2. In the central part of the fluidized zone 2-3B, a downward flow of the fluidized medium can be formed, while on the other hand, the fluidized areas 2-3A / 2-3C located on both the left and right sides are an upward flow. The medium circulates as shown by the arrow in (A). As a result, char with a low specific gravity always moves to the bottom of the fluidized bed due to the descending flow region of the central region 2-3B of the fluidized region, and circulates through the fluidized regions 2-3A / 2-3C located on both the left and right sides. Is sufficiently mixed, and sufficient combustion is possible with a small air flow (for example, air ratio λ: 1.2 to 1.3). Also, for example, the char floating on the surface of the fluidized bed is repeatedly moved to the bottom of the fluidized bed by the downward flow, so that the above-mentioned effect is further enhanced.

【0044】一方前記流動床で燃焼されない不燃物は
(B)及び(C)に示すように分散板11の下向き傾斜
に沿って移動し、ガイド板14−1/14−2を介して
不燃物取りだしライン14より外部に排出される。
On the other hand, the incombustibles which are not burned in the fluidized bed move along the downward inclination of the dispersion plate 11 as shown in (B) and (C) and pass through the guide plates 14-1 / 14-2. It is discharged from the take-out line 14 to the outside.

【0045】図4は図1の実施例の改良に係る熱分解炉
1の内部構造を示す三面図で、(A)は正面断面図、
(B)は平面断面図、(C)は右側面図である。該流動
床1内部、具体的には分散板の上に収容された流動砂等
の流動媒体を廃棄物投入側(廃棄物供給ライン4側)か
らチャー混合物取り出し側(チャー混合物取り出しライ
ン9側)へ向かって、仕切り板80により複数段状に区
分するとともに、該仕切り板80を左右側壁との間で交
互に一側を離間させて開口部81を形成し、該開口部8
1が交互に異なる位置に設けてなる主流動床部1Aを形
成する。又前記主流動床1Aの下方側壁側を拡幅化し、
その底部に廃棄物投入側からチャー混合物取り出し側へ
向かって固体分を搬送する搬送手段、具体的にはスクリ
ュー式排出機1Cを設け、必要に応じて該搬送手段1C
の直下位置に空気または燃焼排ガス等を吹き込む空気ま
たは燃焼排ガス入口ライン82を設けて流動砂等を流動
化する副流動床部1Bを具えたものである。又、前記熱
分解炉1によれば、副燃焼部1Bで搬送手段1Cにより
不燃物に付着同伴した未燃物を強制的にチャー残査方向
に搬送しながら燃焼を行うことができるので、未燃物が
不燃物中に残ることなく排出することができる。
FIG. 4 is a trihedral view showing the internal structure of the pyrolysis furnace 1 according to the improvement of the embodiment of FIG. 1, (A) being a front sectional view,
(B) is a plan sectional view and (C) is a right side view. Inside the fluidized bed 1, specifically, a fluid medium such as fluidized sand contained on a dispersion plate is discharged from the waste input side (waste supply line 4 side) to the char mixture extraction side (char mixture extraction line 9 side). The partition plate 80 is divided into a plurality of steps toward each other, and the partition plate 80 is separated from the left and right side walls alternately on one side to form an opening 81.
The main fluidized bed portions 1A are formed by alternately providing 1s at different positions. Further, the lower side wall side of the main fluidized bed 1A is widened,
A conveying means for conveying the solid content from the waste input side to the char mixture take-out side, specifically, a screw type discharger 1C is provided at the bottom thereof, and the conveying means 1C is provided as necessary.
An air or combustion exhaust gas inlet line 82 for injecting air or combustion exhaust gas or the like is provided immediately below the auxiliary fluidized bed portion 1B for fluidizing fluidized sand or the like. Further, according to the thermal decomposition furnace 1, since the unburnt substances adhering to the incombustible substances by the transporting means 1C in the sub-combustion section 1B can be combusted while being forcibly transported in the char residual direction, The fuel can be discharged without remaining in the incombustible.

【0046】又主流動床部1A内に設けた仕切板80に
より実質的な流動床の流れ長さ、具体的には廃棄物と流
動媒体とを混合させながらチャー混合物取り出しライン
9に向かって押し出す流れ長さを多く取ることが出来、
而も廃棄物はチャー混合物取り出しライン9へ吹き抜け
ることがない為に、熱分解を一様に且つ所定の時間以上
行うことができる。これにより更に熱分解を一様に十分
行なうことができ、廃棄物中の塩素を実質的に完全に分
解し、ガス化して除去することができる。
The partition plate 80 provided in the main fluidized bed portion 1A pushes out toward the char mixture take-out line 9 while mixing the substantial fluidized bed flow length, specifically, the waste and the fluid medium. Can take a long flow length,
Moreover, since the waste does not blow through to the char mixture take-out line 9, thermal decomposition can be carried out uniformly and for a predetermined time or longer. As a result, the thermal decomposition can be carried out uniformly and sufficiently, and chlorine in the waste can be decomposed substantially completely and gasified to be removed.

【0047】図5は図1に示す燃焼ダクトからなる熱分
解ガス燃焼炉34を一体化した熱分解炉の他の改良に係
るもので、(A)は図1の熱分解炉と燃焼ダクトを側面
から見た図、(B)は絞り部の変形例、(C)は正面図
である。本実施例は熱分解炉1を構成する流動床炉中の
上方には絞り部411を介してその上方に燃焼ダクト4
0を形成し、前記絞り部411に散気管ノズル42を、
更に前記燃焼ダクト40の上方域に空気を導入する空気
導入口43を設ける。
FIG. 5 relates to another improvement of the pyrolysis furnace in which the pyrolysis gas combustion furnace 34 consisting of the combustion duct shown in FIG. 1 is integrated. FIG. 5A shows the pyrolysis furnace and the combustion duct of FIG. FIG. 6B is a side view, FIG. 7B is a modified example of the diaphragm portion, and FIG. In this embodiment, in the fluidized bed furnace constituting the pyrolysis furnace 1, a combustion duct 4 is provided above the fluidized bed furnace via a throttle portion 411.
0 is formed, and the air diffuser nozzle 42 is attached to the throttle portion 411.
Further, an air introduction port 43 for introducing air is provided above the combustion duct 40.

【0048】前記絞り部411は図5(A)(C)に示
すように、絞り部411中心域を水平に延在する散気管
ノズル42延設方向に沿って上方空間よりテーパ状に形
成し、その出口部を狭幅化して形成してもよく、又
(B)に示すように、前記絞り部411を円形に縮径
し、その縮径部に旋回流の空気流が導入可能に、上下対
称位置に空気流動入口21、21を設けて構成してもよ
い。熱分解炉1で生成された熱分解ガスは、絞り部41
1を介して燃焼ダクト40内に導入され、空気導入ライ
ン21から導入され散気管ノズル42より噴射される空
気により、熱分解ガスを還元雰囲気で1次燃焼し(空気
過剰率0.6〜0.8)て低NOx化を図り、更にその
上方域で空気導入口43より空気を導入し、2次燃焼を
行い、完全燃焼による低COと低ダイオキシン化を図る
ことが好ましい。
As shown in FIGS. 5A and 5C, the throttle portion 411 is formed in a tapered shape from the upper space along the extending direction of the air diffuser nozzle 42 extending horizontally in the central area of the throttle portion 411. The outlet may be formed with a narrower width, or, as shown in (B), the throttle portion 411 is reduced in diameter so that a swirling airflow can be introduced into the reduced diameter portion. The air flow inlets 21, 21 may be provided at vertically symmetrical positions. The pyrolysis gas generated in the pyrolysis furnace 1 is drawn by the throttle unit 41.
1 is introduced into the combustion duct 40 through the air introduction line 21, is introduced from the air introduction line 21 and is ejected from the air diffuser nozzle 42, and the pyrolysis gas is primarily burned in a reducing atmosphere (air excess ratio 0.6 to 0). It is preferable to achieve low NOx and further to introduce air from the air introduction port 43 in the upper region to perform secondary combustion to achieve low CO and low dioxin by complete combustion.

【0049】更に、前記燃焼ダクト40と熱分解炉1間
に絞り部411を設けたために、空気との混合を促進す
るとともに燃焼ダクト40における再燃焼時の熱がその
下方の流動床空間に輻射される事なく、この結果チャー
燃焼等が生じる事なく、熱分解炉1で好ましい熱分解を
達成し得る。
Further, since the throttle portion 411 is provided between the combustion duct 40 and the thermal decomposition furnace 1, the mixing with air is promoted and the heat at the time of recombustion in the combustion duct 40 is radiated to the fluidized bed space therebelow. As a result, preferable thermal decomposition can be achieved in the thermal decomposition furnace 1 without causing char combustion or the like.

【0050】[0050]

【発明の効果】以上記載した如く本発明によれば、廃棄
物の熱分解手段とチャー燃焼手段における不燃物の除去
と流動媒体の分離を更に効率良く行い、安定した熱分解
とチャー燃焼を行うことが出来る。又本発明は前記基本
技術に適用される好ましいチャー燃焼手段、特に効率よ
くチャー混合物の燃焼を行うことの出来るチャー燃焼手
段を提供出来る。又本発明は前記基本技術に適用される
好ましい熱分解手段、特に効率よく廃棄物の熱分解を行
うことの出来る熱分解手段を提供出来る。更に本発明に
よれば前記熱分解手段における熱分解を効率良く行いつ
つ、その熱分解ガスのタール付着やコ−キング防止及び
低ダイオキシン化、低CO、低NOx化を図り、基本技
術において比較して更に効率良く塩素の低減ともに且つ
高温度の過熱蒸気を得ることができる。等の種々の著効
を有す。
As described above, according to the present invention, removal of incombustibles in the thermal decomposition means of waste and char combustion means and separation of the fluid medium are performed more efficiently, and stable thermal decomposition and char combustion are performed. You can Further, the present invention can provide a preferable char combustion means applied to the above-mentioned basic technique, particularly a char combustion means capable of efficiently combusting the char mixture. Further, the present invention can provide a preferable thermal decomposition means applied to the above-mentioned basic technique, particularly a thermal decomposition means capable of efficiently performing thermal decomposition of waste. Further, according to the present invention, while efficiently performing the thermal decomposition in the thermal decomposition means, it is aimed at preventing tar adhesion and coking of the thermal decomposition gas and reducing dioxin, CO and NOx, and comparing the basic techniques. As a result, it is possible to more efficiently reduce chlorine and obtain superheated steam at a high temperature. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る廃棄物の焼却熱を利
用した過熱蒸気製造装置を示す系統図である。
FIG. 1 is a system diagram showing an apparatus for producing superheated steam using heat of waste incineration according to a first embodiment of the present invention.

【図2】基本発明に係る廃棄物の焼却熱を利用した過熱
蒸気の製造手順を示すグラフ図である。
FIG. 2 is a graph showing a manufacturing procedure of superheated steam using incineration heat of waste according to the basic invention.

【図3】図1に適用されるチャー燃焼手段を示し、
(A)は正面図、(B)は側面図、(C)は平面図であ
る。
FIG. 3 shows a char combustion means applied to FIG.
(A) is a front view, (B) is a side view, and (C) is a plan view.

【図4】図1の実施例の改良に係る熱分解炉1の内部構
造を示す三面図で、(A)は正面断面図、(B)は平面
断面図、(C)は右側面図である。
FIG. 4 is a trihedral view showing the internal structure of the pyrolysis furnace 1 according to the improvement of the embodiment of FIG. 1, (A) is a front sectional view, (B) is a plan sectional view, and (C) is a right side view. is there.

【図5】図1に示す燃焼ダクトからなる熱分解ガス燃焼
炉34を一体化した熱分解炉の他の改良に係るもので、
(A)は図1の熱分解炉と燃焼ダクトを側面から見た
図、(B)は絞り部の変形例、(C)は正面図である。
5 is related to another improvement of the thermal decomposition furnace in which the thermal decomposition gas combustion furnace 34 including the combustion duct shown in FIG. 1 is integrated,
(A) is the figure which looked at the thermal decomposition furnace and combustion duct of Drawing 1 from the side, (B) is a modification of a throttle part, (C) is a front view.

【符号の説明】[Explanation of symbols]

1 熱分解炉(熱分解手段) 10 燃焼炉(チャー燃焼手段) 10B 第2の燃焼炉(副チャー燃焼手段) 11 分散板 20 第1スーパヒータ(第2の蒸気製造手段) 20−2 第3スーパヒータ(第2の蒸気製造手段) 24 第1ボイラ(第1の蒸気製造手段) 29−1 第2スーパヒータ(第2の蒸気製造手段) 34 熱分解ガス燃焼炉 36 水冷壁ボイラ(第1の蒸気製造手段) 50 圧力差形成手段 1 Pyrolysis Furnace (Pyrolysis Means) 10 Combustion Furnace (Char Combustion Means) 10B Second Combustion Furnace (Sub Char Combustion Means) 11 Dispersion Plate 20 First Superheater (Second Steam Production Means) 20-2 Third Superheater (Second steam producing means) 24 First boiler (first steam producing means) 29-1 Second super heater (second steam producing means) 34 Pyrolysis gas combustion furnace 36 Water-cooled wall boiler (first steam producing means) Means) 50 pressure difference forming means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段と、 前記熱分解手段より取り出された未分解残渣および流動
媒体から成るチャー混合物を、空気によって流動させな
がら前記未分解残渣を燃焼させる一又は複数のチャー燃
焼手段とを含み、 前記チャー燃焼手段は、分散板上部にチャー混合物を堆
積させて流動床を形成し、分散板下方より供給される空
気または燃焼排ガス流(以下空気流という)又は/及び
該流動床内に、前記チャー混合物を流動床内で循環流動
させる循環手段を形成した流動槽であり、そして前記循
環する流動域の下降流域若しくは上流域の下部に熱分解
手段から供給されるチャー混合物の供給口を設けたこと
を特徴とする廃棄物の焼却熱を利用した過熱蒸気製造装
置。
1. A waste material is supplied into a space having a temperature of 300 ° C. or higher to cause a pyrolysis reaction, and a pyrolysis gas generated by the reaction, a char mixture composed of an undecomposed residue and a fluid medium and an incombustible material are separated. A pyrolysis means for separating from each other, and one or more char combustion means for burning the undecomposed residue while flowing a char mixture consisting of the undecomposed residue and the fluidized medium taken out from the pyrolysis means by air. The char combustion means deposits a char mixture on the upper part of the dispersion plate to form a fluidized bed, and air or combustion exhaust gas flow (hereinafter referred to as air flow) supplied from the lower part of the dispersion plate or / and inside the fluidized bed, It is a fluidized vessel in which a circulation means for circulating and circulating the char mixture in a fluidized bed is formed, and a thermal decomposition means is provided at a lower part of a descending flow area or an upstream area of the circulating flow area. Superheated steam production apparatus utilizing the incineration heat of waste, characterized in that provided supply port al the supplied char mixture.
【請求項2】 前記循環手段が、前記分散板下方より供
給する空気流を複数に分割した分割流であり、該分割し
た複数の空気流により、前記流動床内のチャー混合物が
循環可能にその流量制御をした事を特徴とする請求項1
記載の廃棄物の焼却熱を利用した過熱蒸気製造装置。
2. The circulating means is a divided flow obtained by dividing an air flow supplied from below the dispersion plate into a plurality of divided flows, and the plurality of divided air flows enable the char mixture in the fluidized bed to circulate. The flow rate control is performed, The claim 1 characterized by the above-mentioned.
Superheated steam manufacturing equipment that uses the incineration heat of the listed waste.
【請求項3】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段を含み、 前記熱分解手段を構成する流動床炉中の上方空間中に1
若しくは複数段階的に空気を導入し、熱分解ガスの完全
燃焼を行うことを特徴とし、好ましくは前記上方空間と
その下方の流動床空間間を狭通過面積化し、空気との混
合促進及び輻射熱の逆流防止機能を持たせたことを特徴
とする廃棄物の焼却熱を利用した過熱蒸気製造装置。
3. A waste material is supplied into a space having a temperature of 300 ° C. or higher to cause a thermal decomposition reaction, and a pyrolysis gas generated by the reaction, a char mixture composed of an undecomposed residue and a fluid medium and an incombustible material are separated. 1) is included in an upper space of a fluidized bed furnace which includes thermal decomposition means for separating from each other and which constitutes the thermal decomposition means.
Or, introducing air in multiple stages, characterized by performing complete combustion of the pyrolysis gas, preferably narrowing the passing area between the upper space and the fluidized bed space below it, promoting the mixing with air and radiant heat. A superheated steam manufacturing device that uses the heat of incineration of waste, which has a backflow prevention function.
【請求項4】 温度300℃以上の空間内に廃棄物を供
給して熱分解反応を行なわせ、その反応により発生した
熱分解ガスと未分解残渣および流動媒体から成るチャー
混合物と不燃物とを互いに分離する熱分解手段を含み、 前記熱分解手段を流動床で構成し、該流動床内部を、分
散板の上に収容された流動砂等の流動媒体を具え、分散
板下方より空気または燃焼排ガス等を吹き込むことによ
り流動媒体を流動化する主流動床と、 該主流動床の下方側壁側を拡幅化し、その底部に廃棄物
投入側からチャー混合物取り出し側へ向かって固体分を
搬送する搬送手段を設けたことを特徴とする廃棄物の焼
却熱を利用した過熱蒸気製造装置。
4. A waste material is supplied into a space having a temperature of 300 ° C. or higher to cause a pyrolysis reaction, and a pyrolysis gas generated by the reaction, a char mixture composed of an undecomposed residue and a fluid medium and an incombustible material are separated. Including a thermal decomposition means for separating from each other, the thermal decomposition means is constituted by a fluidized bed, the inside of the fluidized bed is provided with a fluidized medium such as fluidized sand accommodated on a dispersion plate, and air or combustion is performed from below the dispersion plate. A main fluidized bed that fluidizes a fluidized medium by blowing in exhaust gas and the like, and a lower side wall side of the main fluidized bed is widened, and a solid component is conveyed to the bottom from the waste input side to the char mixture extraction side An apparatus for producing superheated steam using heat from incineration of waste, which is provided with means.
JP06938896A 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat Expired - Fee Related JP3310853B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP06938896A JP3310853B2 (en) 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat
EP97903617A EP0823590B1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes
DE69732394T DE69732394T2 (en) 1996-02-29 1997-02-27 METHOD AND DEVICE FOR PRODUCTION OF OVERHEATED STEAM BY THE HEAT OF WASTE INCINERATION
PCT/JP1997/000573 WO1997032161A1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes
SG9904761A SG96183A1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat from the incineration of waste material
US08/945,591 US6133499A (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat from the incineration of waste material
KR1019970707702A KR100264723B1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06938896A JP3310853B2 (en) 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat

Publications (2)

Publication Number Publication Date
JPH09236232A true JPH09236232A (en) 1997-09-09
JP3310853B2 JP3310853B2 (en) 2002-08-05

Family

ID=13401173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06938896A Expired - Fee Related JP3310853B2 (en) 1996-02-29 1996-02-29 Superheated steam production equipment using waste incineration heat

Country Status (1)

Country Link
JP (1) JP3310853B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503426A (en) * 2005-08-02 2009-01-29 エコエナジー ゲゼルシャフト フュア エネルギー− ウント ウムヴェルトテヒニーク ミット ベシュレンクテル ハフツング Method and apparatus for generating superheated steam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867160B1 (en) * 2016-06-22 2018-07-24 한국에너지기술연구원 Circulating fluidized bed combustion boiler for solid refused fuel with tube corrosion prevent and clinkers reduction fuction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503426A (en) * 2005-08-02 2009-01-29 エコエナジー ゲゼルシャフト フュア エネルギー− ウント ウムヴェルトテヒニーク ミット ベシュレンクテル ハフツング Method and apparatus for generating superheated steam

Also Published As

Publication number Publication date
JP3310853B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
KR100264723B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
JP2006300501A (en) Downward moving bed type furnace
US6709636B1 (en) Method and apparatus for gasifying fluidized bed
US4986199A (en) Method for recovering waste gases from coal partial combustor
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JPH09236232A (en) Manufacture of superheated steam utilizing incineration heat of waste
US20230025336A1 (en) Pyrolysis apparatus and pyrolysis method
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3924285B2 (en) Incinerator
JP3408686B2 (en) Superheated steam production equipment using waste incineration heat
JP3276274B2 (en) Superheated steam production equipment using waste incineration heat
JP3408678B2 (en) Superheated steam production equipment using waste incineration heat
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP3534552B2 (en) Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP3272581B2 (en) Superheated steam production equipment using waste incineration heat
JPH09236231A (en) Manufacture of superheated steam utilizing incineration heat of waste
JPH0979542A (en) Superheated steam making apparatus utilizing incineration heat of waste
JP3477327B2 (en) Superheated steam production method and apparatus using waste incineration heat
JPH09236221A (en) Manufacture of superheated steam utilizing incinerated heat of waste
JP3276273B2 (en) Superheated steam production equipment using waste incineration heat
JP3276272B2 (en) Superheated steam production equipment using waste incineration heat
JP3268214B2 (en) Superheated steam production equipment using waste incineration heat

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees