JP3534552B2 - Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste - Google Patents

Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste

Info

Publication number
JP3534552B2
JP3534552B2 JP26681096A JP26681096A JP3534552B2 JP 3534552 B2 JP3534552 B2 JP 3534552B2 JP 26681096 A JP26681096 A JP 26681096A JP 26681096 A JP26681096 A JP 26681096A JP 3534552 B2 JP3534552 B2 JP 3534552B2
Authority
JP
Japan
Prior art keywords
fluidized
waste
furnace
fluidized bed
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26681096A
Other languages
Japanese (ja)
Other versions
JPH1089640A (en
Inventor
浩俊 堀添
佐藤  淳
義仁 清水
静生 保田
佳正 川見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26681096A priority Critical patent/JP3534552B2/en
Publication of JPH1089640A publication Critical patent/JPH1089640A/en
Application granted granted Critical
Publication of JP3534552B2 publication Critical patent/JP3534552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物等を焼却し、その燃焼排ガスの熱により蒸気を製造
して、例えば該蒸気を発電プラント等に用いる過熱蒸気
製造に関する発明で、より具体的には廃棄物の焼却装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an invention relating to the production of superheated steam by incinerating municipal waste, industrial waste, etc. and producing steam by the heat of the combustion exhaust gas, for example, using the steam in a power plant or the like. More specifically, it relates to a waste incinerator.

【0002】[0002]

【従来の技術】従来より都市ごみ等の廃棄物を焼却する
焼却装置には流動床焼却装置が多く用いられ、かかる装
置は流動床焼却炉内の分散板(例えば多孔板)上に収容
された砂等の流動媒体に分散板下方より空気または焼却
排ガス等を吹き込むことにより流動媒体を流動化すると
ともに加熱し、そのようにして形成された流動床内に都
市ごみ等の廃棄物を投入して燃焼させる。この燃焼によ
り発生した燃焼ガスは、燃焼ガス出口ラインを経てボイ
ラに至り、該ボイラ内で温水との熱接触により蒸気を発
生させ、該蒸気を発電プラント等のタービン駆動源とし
て用いるものである。
2. Description of the Related Art Conventionally, a fluidized bed incinerator is often used as an incinerator for incinerating wastes such as municipal solid waste, and such an apparatus is housed on a dispersion plate (for example, a perforated plate) in a fluidized bed incinerator. By blowing air or incineration exhaust gas into the fluid medium such as sand from below the dispersion plate, the fluidized medium is fluidized and heated, and waste such as municipal solid waste is put into the fluidized bed thus formed. To burn. Combustion gas generated by this combustion reaches a boiler through a combustion gas outlet line, generates steam by thermal contact with hot water in the boiler, and uses the steam as a turbine drive source of a power plant or the like.

【0003】さてかかる都市ごみ等の廃棄物中には塩ビ
プラスチック等の含塩素有機化合物が混入しており、可
燃分中にC1として約0.2〜0.5%含有されてい
る。そして都市ごみ等の廃棄物中に混入した塩ビプラス
チック等に含まれる塩素は、燃焼によってHC1となり
(通常、都市ごみ燃焼排ガス中のHC1は約500〜1
000ppm)、焼却炉の後流に設置された蒸気発生用ボ
イラのチューブに作用してこれを腐食させる。特にチュ
ーブ表面温度が約350℃以上では温度の増加とともに
高温腐食が顕著となる。このため、従来、チューブ表面
温度は350℃以下にする必要があり、製造される蒸気
の温度は約300℃が限界であった。その結果、従来の
ごみ焼却による発電効率は約15%以下であって、塩素
を殆ど含有しない重油やLNG等を燃料とし、ボイラチ
ューブ温度を500〜600℃にできるプラントの発電
効率約30〜40%に比べて著しく低く、その改善が強
く望まれていた。
A chlorine-containing organic compound such as vinyl chloride plastic is mixed in the waste such as municipal waste, and the combustible content thereof is about 0.2 to 0.5% as C1. And chlorine contained in PVC plastics mixed in waste such as municipal waste becomes HC1 by combustion (normally, HC1 in municipal waste combustion exhaust gas is about 500 to 1).
000ppm), and acts on the tube of the steam generating boiler installed downstream of the incinerator to corrode it. Particularly when the tube surface temperature is about 350 ° C. or higher, high temperature corrosion becomes remarkable as the temperature increases. Therefore, in the past, the tube surface temperature had to be 350 ° C. or lower, and the temperature of the vapor produced was limited to about 300 ° C. As a result, the power generation efficiency of the conventional waste incineration is about 15% or less, and the power generation efficiency of the plant that can make the boiler tube temperature 500 to 600 ° C. is about 30 to 40 with heavy oil or LNG containing almost no chlorine as fuel. It is remarkably low as compared with%, and its improvement has been strongly desired.

【0004】かかる課題を解決するため、先の特願平8
−69067において、ボイラ水の加熱を少なくとも2
段階以上の複数段階とし、少なくとも一の段階加熱を所
定温度以上の流動媒体を含む空間内に廃棄物を供給して
熱分解反応を行なわせる熱分解工程で得た熱分解ガスの
燃焼熱エネルギを利用して直接若しくは間接的に行な
い、一方他の段階加熱を、前記熱分解手段より取り出さ
れた未分解残渣および流動媒体から成るチャー混合物を
空気または燃焼排ガスによって流動させながら前記未分
解残渣を燃焼させるチャー燃焼工程により得られた熱エ
ネルギを利用して行なう過熱蒸気製造方法を提案してい
る。
In order to solve such a problem, the above-mentioned Japanese Patent Application No. 8
-69067, heating boiler water by at least 2
The combustion heat energy of the pyrolysis gas obtained in the pyrolysis step in which at least one step heating is performed in at least one step heating and the waste is supplied into the space containing the fluidized medium to cause the pyrolysis reaction. Directly or indirectly by utilizing it, while other stage heating is performed by burning the undecomposed residue while flowing a char mixture consisting of the undecomposed residue taken out from the thermal decomposition means and the fluidized medium by air or combustion exhaust gas. It proposes a method for producing superheated steam using the heat energy obtained by the char burning process.

【0005】すなわち、前記複数段階加熱の作用は、例
えば図2に示すように、都市ごみ等の廃棄物を熱分解
(本先願発明では、温度300℃以上の空間内に廃棄物
を供給して熱分解反応を行なわせ、その反応により発生
した熱分解ガスと未分解残渣および流動媒体から成るチ
ャー混合物と不燃物とを互いに分離する熱分解手段によ
り構成している。)してその熱分解ガス中にHCl等が
含有する含塩素熱分解ガスであっても、該含塩素熱分解
ガスの熱エネルギによるボイラ水の加熱は、略200℃
〜320℃前後の略沸点温度としている為に、含塩素熱
分解ガスが蒸気発生用ボイラのチューブに作用してもチ
ューブ表面温度が約350℃以上とならない為に、これ
を腐食させる事にならない。この場合前記ボイラ水は加
圧により沸点を略200℃〜320℃前後に設定してあ
る為に前記含塩素熱分解ガスのボイラ水への熱エネルギ
の付与にバラツキが生じていてもそれは該ボイラ水の潛
熱の吸収(言い換えれば水から蒸気への相変換にのみ使
用され温度上昇分として作用しない)に使用されるため
に、ボイラ水の熱交換チューブの表面温度が塩素腐触温
度以上に上昇する事なく、安定した加熱温度のボイラ水
若しくは蒸気を得る事が出来る。
That is, as shown in FIG. 2, for example, the effect of the multi-step heating is that the waste such as municipal waste is thermally decomposed (in the invention of the prior application, the waste is supplied into a space having a temperature of 300 ° C. or higher). And pyrolysis gas generated by the reaction to separate a char mixture composed of an undecomposed residue and a fluid medium and an incombustible substance from each other.) And the pyrolysis. Even if the chlorine-containing pyrolysis gas contains HCl or the like in the gas, heating the boiler water by the thermal energy of the chlorine-containing pyrolysis gas is approximately 200 ° C.
Since the boiling point temperature is around ~ 320 ° C, even if the chlorine-containing pyrolysis gas acts on the tube of the steam generating boiler, the tube surface temperature does not exceed about 350 ° C, so it does not corrode. . In this case, since the boiling point of the boiler water is set to about 200 ° C. to 320 ° C. by pressurization, even if the thermal energy of the chlorine-containing pyrolysis gas is applied to the boiler water inconsistently, the boiler water is not the same. The surface temperature of the boiler water heat exchange tube rises above the chlorine corrosion temperature because it is used to absorb the heat of the water (in other words, it is used only for the phase conversion of water to steam and does not act as a temperature rise). Without doing so, it is possible to obtain boiler water or steam with a stable heating temperature.

【0006】そして前記略300℃〜500℃の熱分解
により分解されなかった未分解残渣は既に脱塩素されて
いるために、これを燃焼させて得られる、例えば500
〜950℃前後の熱エネルギ(本先願発明では前記熱分
解手段より取り出された未分解残渣および流動媒体から
成るチャー混合物を、空気によって流動させながら前記
未分解残渣を燃焼させるチャー燃焼手段により500〜
950℃前後の熱エネルギを得ている。)を主として利
用して前記略200℃〜320℃前後に一次加熱したボ
イラ水若しくは蒸気を二次〜三次加熱して400〜50
0℃の加熱蒸気(ボイラチューブ温度を約450〜55
0℃)を得ても低級材でもチューブ腐触が生じる恐れが
ない。これによりごみ焼却による発電を行なった場合に
おいても、塩素を殆ど含有しない重油やLNG等を燃料
としたプラントと同様な30〜40%の発電効率を低コ
ストで得る事が出来る。
Since the undecomposed residue that has not been decomposed by the thermal decomposition at about 300 ° C. to 500 ° C. has already been dechlorinated, it can be obtained by burning it, for example, 500
Heat energy of about 950 ° C. (in the present invention, a char combustion means for combusting the undecomposed residue while flowing a char mixture composed of the undecomposed residue and the fluidized medium taken out from the thermal decomposition means by the char combustion means). ~
The heat energy around 950 ° C is obtained. ) Is mainly used to secondarily to thirdly heat the boiler water or steam that is primarily heated to about 200 ° C. to 320 ° C. to 400 to 50
0 ° C heated steam (boiler tube temperature approx.
Even if a low grade material is obtained, there is no risk of tube corrosion. As a result, even when power is generated by incineration of waste, it is possible to obtain a power generation efficiency of 30 to 40% at a low cost, which is similar to a plant using fuel oil such as heavy oil or LNG containing almost no chlorine.

【0007】[0007]

【発明が解決しようとする課題】かかる先願技術によれ
ば熱分解炉とチャー燃焼炉及びボイラやスーパヒータを
効率よく組合せる事により、塩素の低減ともに且つ高温
度の過熱蒸気を得ることの出来るが、熱分解炉内に投入
する生ごみを含む生活廃棄物には、水分を多く含んだも
のが存在し、前記熱分解炉で得られた熱分解ガスが、前
記含水ごみよりの蒸発水分によって希釈され、カロリー
低下が生じてしまい、灰溶融炉の温度を1300℃以上
にするために、熱分解ガス燃焼用空気源として、30〜
50%の酸素富化空気を用いる必要が生じ、酸素富加設
備とその運転動力コストが大幅に増大する。本発明は、
かかる先願技術の欠点を、解消することを目的とする。
According to such prior art, by efficiently combining the pyrolysis furnace, the char combustion furnace, the boiler and the super heater, it is possible to reduce chlorine and obtain superheated steam at high temperature. However, there is a large amount of water in the domestic waste containing the garbage that is put into the pyrolysis furnace, and the pyrolysis gas obtained in the pyrolysis furnace is caused by the evaporated water from the water-containing waste. As a result of dilution, calorie reduction will occur, and in order to raise the temperature of the ash melting furnace to 1300 ° C. or higher, as a pyrolysis gas combustion air source,
The need to use 50% oxygen enriched air results in a significant increase in oxygen enrichment equipment and its operating power costs. The present invention is
It is an object of the present invention to eliminate the drawbacks of the prior application technique.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
前記加熱蒸気を製造するための熱エネルギーを得るため
の装置に関する発明で、100〜300℃の温度で且つ
酸素不足下で流動媒体とともに廃棄物を乾燥する乾燥
段と、温度300℃以上の空間内に、流動媒体とともに
前記乾燥させた廃棄物を供給して熱分解反応を行なわ
せ、その反応により発生した熱分解ガスと、未分解残渣
および流動媒体から成るチャー混合物と、不燃物とを互
いに分離する熱分解手段と、前記熱分解手段より導かれ
た未分解残渣および流動媒体から成るチャー混合物を、
空気によって流動させながら前記未分解残渣を燃焼させ
るチャー燃焼手段とを夫々独立させた炉で構成するとと
もに、チャー燃焼手段で得られた高温砂を前記乾燥手段
と熱分解手段に循環し、前記熱分解手段を、分散板を入
口部から出口側に向け片流れ方向に下向きに傾斜させ
て、その間の流動層域を流動床上部と底部が夫々開口さ
れている仕切壁により区分けされた複数の流動域を具え
た流動床で形成するとともに、前記複数の流動域のうち
下降流動域のガス空塔速度を、上昇流動域のガス空塔速
度より小に設定することにより該流動床に供給された廃
棄物が前記流動域を循環しながら熱分解を行う流動槽で
形成したことを特徴とするものである。かかる発明によ
れば複数の流動域を順次廃棄物が循環する事により、処
理物が出口にショートパスすることなく、十分なる熱分
解と連続投入処理が可能となるとともに、流動化ガスの
低減が可能となり熱分解ガスのカロリー低下を抑制する
ことが出来る。
The invention according to claim 1 is
Wherein in the invention relates to apparatus for obtaining thermal energy for the production of superheated steam, dry hand to dry the waste together with the fluidized medium under and <br/> insufficient oxygen at a temperature of 100 to 300 ° C. <br / > With a fluidized medium in a space with a temperature of 300 ° C or more
Pyrolysis means for separating the pyrolysis gas generated by the reaction and the pyrolysis gas generated by the reaction, the char mixture composed of the undecomposed residue and the fluidized medium, and the incombustible material from each other to supply the dried waste to perform the pyrolysis reaction. A char mixture consisting of an undecomposed residue and a fluidized medium introduced by the thermal decomposition means,
When the char combustion means for combusting the undecomposed residue while flowing by air is constituted by independent furnaces,
In addition, the high temperature sand obtained by the char burning means is used as the drying means.
And the thermal decomposition means , the dispersion plate is inclined downward in the one-flow direction from the inlet part to the outlet side, and the fluidized bed region between them is opened at the upper part and the bottom part of the fluidized bed, respectively. Formed with a fluidized bed having a plurality of fluidized areas divided by partition walls , and among the plurality of fluidized areas
The gas superficial velocity in the descending flow region is calculated as the gas superficial velocity in the ascending flow region.
It is characterized in that the waste supplied to the fluidized bed is formed in a fluidized tank which is pyrolyzed while circulating in the fluidized zone by setting it to a degree smaller than the above. According to such an invention, by sequentially circulating the wastes in a plurality of fluidized regions, it is possible to perform sufficient thermal decomposition and continuous charging without the treatment product short-passing to the outlet, and to reduce fluidized gas. It becomes possible to suppress the reduction of calorie of the pyrolysis gas.

【0009】さて前記図2の作用を達成するためには熱
分解ガスとチャー混合物の熱カロリー比が「約7(熱分
解ガス):約3(チャー混合物)」になるように熱分解
を行うことが好ましい。これは、加温すべきボイラ水を
100Kgf/cm2前後に加圧してその沸点を309
℃前後に設定している為に、熱分解ガスでは後記図1に
示す水冷壁ボイラ36及び第1のボイラ27(両者を第
1の蒸気製造工程(手段)という)でボイラ水を常温よ
り「沸点309℃+蒸発潜熱」言換えれば309℃で殆
ど蒸気化するまで立上げるカロリーと、該立上げた蒸気
を沸点309℃より500℃まで立上げるカロリーの比
は、約7:3である事による。従って前記発明によれば
熱分解を十分に行う事が出来、これにより熱分解ガスの
熱エネルギーは十分に大きくする事が出来る。
In order to achieve the action shown in FIG. 2, the thermal decomposition is carried out so that the thermal calorie ratio of the thermal decomposition gas and the char mixture is "about 7 (pyrolysis gas): about 3 (char mixture)". It is preferable. This is because the boiler water to be heated is pressurized to around 100 Kgf / cm 2 and its boiling point is 309
Since the temperature is set to around ℃, in the case of pyrolyzed gas, the boiler water from the room temperature in the water-cooled wall boiler 36 and the first boiler 27 (both are referred to as the first steam manufacturing process (means)) shown in FIG. In other words, the ratio of the calorie that rises to almost vaporize at 309 ° C. and the calorie that rises the vapor from the boiling point of 309 ° C. to 500 ° C. is about 7: 3. by. Therefore, according to the above-mentioned invention, the thermal decomposition can be sufficiently carried out, whereby the thermal energy of the thermal decomposition gas can be sufficiently increased.

【0010】尚、前記した通り生ごみを含んだ都市ごみ
等の廃棄物を直接熱分解炉に投入すると熱分解ガスが水
分で希釈されて、カロリー低下を招く。そこで請求項2
記載の発明においては、前記乾燥手段を、分散板を入口
部から出口側に向け片流れ方向に下向きに傾斜させて、
その間の流動層域を流動床上部と底部が夫々開口されて
いる仕切壁により区分けされた複数の流動域を具えた流
動床で形成するとともに、前記複数の流動域のうち下降
流動域のガス空塔速度を、上昇流動域のガス空塔速度よ
り小に設定することにより該流動床に供給された廃棄物
が前記流動域を循環しながら乾燥を行う流動槽で形成し
たことを特徴とするものである。
As described above, when waste such as municipal waste containing food waste is directly charged into the pyrolysis furnace, the pyrolysis gas is diluted with water, resulting in a reduction in calories. Therefore, claim 2
In the invention described above, the drying means, the dispersion plate is inclined downward in the one-flow direction from the inlet portion toward the outlet side,
The fluidized bed area in between is formed by a fluidized bed having a plurality of fluidized areas divided by partition walls having an opening at the top and the bottom of the fluidized bed, and the fluidized bed is lowered among the plurality of fluidized areas.
The gas superficial velocity in the fluidized region is compared with the gas superficial velocity in the ascending fluidized region.
It is characterized in that the waste fed to the fluidized bed is formed in a fluidized tank which is dried while being circulated in the fluidized zone by setting it to a smaller value .

【0011】尚前記都市ごみの乾燥温度は、300℃以
上で行うと炭化水素ガスが発生し好ましくなく、又10
0℃以下では十分な蒸発が出来ない。又乾燥雰囲気は酸
素不足下で低温燃焼が生じず、好ましい。従って、前記
乾燥手段も熱分解手段と同様な構成で温度管理のみ行う
ような方策がよい。すなわち、例えば乾燥手段も熱分解
手段と同様なチャー燃焼手段より得られた高温砂を利用
して廃棄物の乾燥を行う流動床、キルン、横型攪拌槽の
いずれかであるのがよく、これにより、熱エネルギーの
有効利用が図れる。そして、前記熱分解工程に投入され
る廃棄物をチャー燃焼工程より得られた高温砂を利用し
て十分に乾燥させるのがよい。これにより前記課題の解
決とともに、チャー燃焼工程より得られる高温砂は温度
的にも又熱容量的にも十分なる大きさを有する為に、容
易に乾燥が可能である。又本発明は前記乾燥手段を、仕
切壁により区分けされた複数の流動域を廃棄物が循環し
ながら乾燥を行っている為に、請求項1記載の発明と同
様な効果を有する。
When the drying temperature of the above-mentioned municipal solid is 300 ° C. or higher, hydrocarbon gas is generated, which is not preferable.
At 0 ° C or lower, sufficient evaporation cannot be achieved. A dry atmosphere is preferable because low temperature combustion does not occur in the absence of oxygen. Therefore, it is preferable that the drying means has the same structure as the thermal decomposition means and that only the temperature is controlled. That is, for example, the drying means may be any one of a fluidized bed, a kiln, and a horizontal stirring tank for drying waste by using high-temperature sand obtained by a char combustion means similar to the pyrolysis means. The effective use of heat energy can be achieved. Then, it is preferable to sufficiently dry the waste to be put into the thermal decomposition step using the high temperature sand obtained in the char combustion step. As a result, in addition to solving the above-mentioned problems, the high temperature sand obtained from the char burning step has a sufficient size both in terms of temperature and heat capacity, so that it can be easily dried. Further, the present invention has the same effect as that of the first aspect of the present invention because the drying means performs the drying while the waste circulates in a plurality of flow zones divided by the partition wall.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施例を例示的に詳しく説明する。但しこの実施例
に記載されている構成部品の寸法、材質、形状、その相
対的配置等は特に特定的な記載がないかぎりは、この発
明の範囲をそれに限定する趣旨ではなく、単なる説明例
にすぎない。図3は図1の本発明の実施例に係る廃棄物
の焼却熱を利用した過熱蒸気製造装置び使用する夫々流
動床からなる熱分解炉と乾燥炉を示し、いずれも多孔板
等の分散板3−1上に流動砂等の流動媒体を堆積させて
流動床を形成し、該流動床内を下降流と上昇流により回
流可能に中央仕切板3ー3により左右2つの流動域、
に分割され、そして前記仕切り板3ー3は流動床上部
と底部が夫々開口されている。又、分散板3ー1は不燃
物出口9側に向け下向きに傾斜されており、前記仕切り
板3ー3により夫々仕切られる分散板3ー1下方空間の
底部には夫々燃焼排ガス供給ライン25/6−1/6−
2に接続された分岐ライン6A/6Bが接続されてお
り、そして該分岐ライン6A/6Bには夫々不図示の流
量調整弁が設けられ、仕切り板3−3により2分割され
る夫々の流動域、に供給される空気流を制御可能に
構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Only. FIG. 3 shows a thermal decomposition furnace and a drying furnace each comprising a fluidized bed, which are used in the superheated steam manufacturing apparatus using the heat of incineration of waste according to the embodiment of the present invention in FIG. 1, both of which are dispersion plates such as perforated plates. A fluidized medium such as fluidized sand is deposited on 3-1 to form a fluidized bed, and the fluidized bed can be circulated by a descending flow and an ascending flow.
The partition plate 3-3 is opened at the top and bottom of the fluidized bed. Further, the dispersion plate 3-1 is inclined downward toward the incombustibles outlet 9 side, and the combustion exhaust gas supply line 25 / is provided at the bottom of the space below the dispersion plate 3-1 partitioned by the partition plate 3-3. 6-1 / 6-
2 are connected to branch lines 6A / 6B, and the branch lines 6A / 6B are each provided with a flow rate adjusting valve (not shown), and each flow region is divided into two by a partition plate 3-3. , So that the air flow supplied to the can be controlled.

【0013】すなわち分岐ライン6Aの空気流量を分岐
ライン6Bより少なくすることにより、又左側流動域部
が下降流動域となり、右側に位置する流動域は上昇流
動域とすることが出来る。具体的には下降流動域の
ガス空塔速度は、0.0〜0.3m/sec、好ましく
は0.0〜0.2m/sec、又上昇流動域のガス空
塔速度は、0.3〜1.0m/sec、好ましくは0.
4〜0.6m/secに設定するのがよい。又分散板3
−1の傾斜角度は5〜45°好ましくは10〜45°前
後に設定するのがよい。係るガス空塔速度や分散板3−
1の傾斜角度等の構成は図2の熱分解炉も同様である。
That is, by making the air flow rate of the branch line 6A smaller than that of the branch line 6B, the left flow region can be a downward flow region and the right flow region can be an upward flow region. Specifically, the gas superficial velocity in the descending flow region is 0.0 to 0.3 m / sec, preferably 0.0 to 0.2 m / sec, and the gas superficial velocity in the ascending flow region is 0.3. ~ 1.0 m / sec, preferably 0.
It is preferable to set it to 4 to 0.6 m / sec. Dispersion plate 3
The inclination angle of -1 is 5 to 45 °, preferably about 10 to 45 °. Related gas superficial velocity and dispersion plate 3-
The structure such as the inclination angle of 1 is the same in the pyrolysis furnace of FIG.

【0014】そしてかかる乾燥炉1B側の流動槽におい
ては下降流動域側の流動床上部に廃棄物供給ライン4
を設け、該ライン4より都市ごみ等の廃棄物が、又その
下側に、チャー燃焼炉10の流動砂がサイクロン18を
介して戻入される分岐ライン52の出口端を接続し、該
ライン52の出口端より650℃前後の高温の流動砂が
夫々投入可能に構成される。
In the fluidizing tank on the drying furnace 1B side, the waste feed line 4 is provided on the upper part of the fluidized bed on the lower fluidizing zone side.
A waste line, such as municipal waste, is connected to the line 4 and the outlet end of a branch line 52 through which the fluidized sand of the char combustion furnace 10 flows back through the cyclone 18 is connected to the line 52. It is configured such that high temperature fluidized sand of about 650 ° C. can be charged from the outlet end of each.

【0015】そして前記上昇流動域側の流動床上面に
は熱分解炉1Aの下降流動域側の流動床内に乾燥廃棄
物が重力により投入可能に、熱分解炉1A側に向けてに
下向きに傾斜された傾斜出口ライン9−2を設ける。こ
の際傾斜出口ライン9−2の熱分解炉1A側の出口端は
逆流防止とガスシールを兼ねるために、流動床の中に出
口開口9−2aを設けるのがよい。尚、流動媒体もその
多くは傾斜出口ライン9より熱分解炉1Aに投入される
が、該流動媒体中の金属等の不燃物の移送を行うため
に、前記上昇流動域側の流動床底面の分散板3−1上
に、プッシャ若しくはスクリューコンベア9−3を介し
た移送ライン9−1を設けるのがよい。
On the upper surface of the fluidized bed on the side of the ascending fluidized area, dry waste can be charged by gravity into the fluidized bed on the side of the descending fluidized area of the thermal decomposition furnace 1A, and downward toward the side of the thermal decomposition furnace 1A. An inclined exit line 9-2 is provided. At this time, the outlet end of the inclined outlet line 9-2 on the pyrolysis furnace 1A side is preferably provided with an outlet opening 9-2a in the fluidized bed in order to prevent backflow and serve as a gas seal. Most of the fluidized medium is also introduced into the pyrolysis furnace 1A through the inclined outlet line 9, but in order to transfer incombustibles such as metal in the fluidized medium, the fluidized bed bottom surface on the rising fluidized zone side is transferred. It is preferable to provide a transfer line 9-1 on the dispersion plate 3-1 via a pusher or a screw conveyor 9-3.

【0016】かかる乾燥炉1Bによれば燃焼排ガス入口
ライン6−2より分岐ライン6A/6Bを介して夫々供
給された燃焼排ガス等(本乾燥炉は基本的には酸素不足
下の乾燥の為に、供給されるガスは酸素を消費した燃焼
排ガスが大部分である。)により、ライン4よりの都市
ごみ等の廃棄物と、ライン52よりの650℃前後の高
温の流動砂とが流動床内で下降流動域と上昇流動域
による循環流動を繰り返しながら温度100〜300
℃、好ましくは100〜250℃の循環流動床空間を生
成し、廃棄物の乾燥を行なわせ、図1に示すようにその
蒸発により発生した湿気ガスは出口ライン72より流量
調整弁57を介してボイラ36が収納された熱分解ガス
燃焼炉30Bに導入され、一方乾燥した廃棄物は流動砂
とともに下向きに傾斜された傾斜出口ライン9−2より
重力により熱分解炉1Aに投入される。又流動媒体の一
部は、不燃物排出ライン8よりフィルタ80により大型
不燃物を除去した後、その残余の流動媒体をバケットコ
ンベア等からなる戻入ライン5を介して乾燥炉1B又は
チャー燃焼炉10に戻入され流動媒体の循環制御を行
う。
According to the drying furnace 1B, the combustion exhaust gas and the like supplied from the combustion exhaust gas inlet line 6-2 through the branch lines 6A / 6B, respectively (this drying furnace is basically used for drying under lack of oxygen). , Most of the supplied gas is combustion exhaust gas that has consumed oxygen.) Wastes such as municipal waste from line 4 and high temperature fluidized sand at around 650 ° C from line 52 are in the fluidized bed. The temperature is 100-300 while repeating the circulation flow by the descending flow area and the ascending flow area.
A circulating fluidized bed space of ℃, preferably 100 ~ 250 ℃ is generated to dry the waste, and the moisture gas generated by the evaporation is discharged from the outlet line 72 via the flow rate adjusting valve 57 as shown in FIG. The boiler 36 is introduced into the pyrolysis gas combustion furnace 30B in which it is housed, while the dried waste is introduced into the pyrolysis furnace 1A by gravity from the inclined outlet line 9-2 inclined downward together with the fluidized sand. In addition, a part of the fluidized medium is obtained by removing large incombustibles from the incombustibles discharge line 8 with a filter 80, and then the remaining fluidized medium is passed through a return line 5 composed of a bucket conveyor or the like to the drying furnace 1B or the char combustion furnace 10. Is controlled to control the circulation of the fluidized medium.

【0017】一方前記乾燥廃棄物および流動砂が導入さ
れる熱分解炉1Aは、前記乾燥炉1Bと同様に、下降流
動域側の流動床内に、サイクロン18を介してチャー
燃焼炉10の砂戻入用分岐ライン51を開口し、該ライ
ン51より650℃前後の高温の流動砂が投入可能に構
成する。そして前記上昇流動域側の流動床上面にはチ
ャー燃焼炉10の流動床内にチャー混合物が重力により
投入可能に、チャー燃焼炉10側に向けて下向きに傾斜
された傾斜出口ライン9を設ける。
On the other hand, in the pyrolysis furnace 1A into which the dry waste and the fluidized sand are introduced, as in the case of the drying furnace 1B, the sand of the char combustion furnace 10 is inserted into the fluidized bed on the side of the descending fluidized area via the cyclone 18. The return branch line 51 is opened so that high-temperature fluidized sand at about 650 ° C. can be introduced from the line 51. On the upper surface of the fluidized bed on the side of the ascending fluidized area, an inclined outlet line 9 is provided which is inclined downward toward the char combustion furnace 10 side so that the char mixture can be injected into the fluidized bed of the char combustion furnace 10 by gravity.

【0018】この際熱分解炉1Aの分散板3−1上に溜
まった不燃物は、前記上昇流動域側の流動床底面の分
散板3−1上に不燃物排出ライン8を設け、該ライン8
経路途中に配したフィルタ80に大型不燃物を除去した
後、その残余のチャー混合物はバケットコンベア等から
なる戻入ライン5を介して乾燥炉1B又はチャー燃焼炉
10に戻入されるよう構成する。尚、大型不燃物を除去
した後のチャー混合物は既にフィルタ80等の熱接触に
より150℃以下冷却されているために、必ずしも後記
する気流搬送手段で構成する必要はなく通常のバケット
コンベアでよい。
At this time, the incombustibles accumulated on the dispersion plate 3-1 of the pyrolysis furnace 1A are provided with an incombustibles discharge line 8 on the dispersion plate 3-1 at the bottom of the fluidized bed on the side of the ascending fluidized region. 8
After the large incombustibles are removed by the filter 80 arranged in the middle of the path, the remaining char mixture is returned to the drying furnace 1B or the char combustion furnace 10 through the return line 5 including a bucket conveyor. Since the char mixture after removing the large incombustibles has already been cooled to 150 ° C. or less by thermal contact with the filter 80 or the like, it does not necessarily have to be constituted by the air flow conveying means described later and may be a normal bucket conveyor.

【0019】図4は、4室構造の熱分解炉(乾燥炉も同
一構成の為、乾燥炉側の構造の説明は省略する。)の構
成を示し、流動槽を仕切板にて十文字状に仕切り、
「田」の字状に4つの流動域空間〜を形成するとと
もに、左端の熱分解炉1Aの下降流動域の入口側壁に
は廃棄物供給ライン4とチャー燃焼炉10の高温流動砂
が戻入される分岐ライン52の出口端が接続され、右端
の上昇流動域出口壁にはチャー燃焼炉10側に向けて
下向きに傾斜された傾斜出口ライン9と、前記上昇流動
床底面の分散板3−1上に不燃物排出ライン8(8A,
8B)を夫々設けている。そして分散板3−1は、前記
ライン8、9を設けたの流動域側からの流動域側に
向けて下向きに第一の分散板3−1Aを、又の流動域
側からの流動域側に向けて下向きに第二の分散板3−
1Bを夫々配し、更にの流動域側からの流動域側
に、又の流動域側からの流動域側に夫々オーバフロ
ー可能に、仕切り板3−3A、3−3B高さを設定す
る。
FIG. 4 shows the structure of a four-chamber pyrolysis furnace (the drying furnace has the same structure, so the description of the structure on the drying furnace side will be omitted). partition,
Four fluid zone spaces are formed in the shape of "rice field", and the high temperature fluidized sand of the waste supply line 4 and the char combustion furnace 10 is returned to the inlet side wall of the descending fluidized zone of the leftmost pyrolysis furnace 1A. The outlet end of the branch line 52 is connected to the outlet wall of the ascending flow region at the right end, and the inclined outlet line 9 is inclined downward toward the char combustion furnace 10 side, and the dispersion plate 3-1 at the bottom of the ascending fluidized bed. Incombustible discharge line 8 (8A,
8B) are provided respectively. The dispersion plate 3-1 includes the first dispersion plate 3-1A downward from the flow region side where the lines 8 and 9 are provided, and the flow region side from the flow region side. The second dispersion plate 3 downwards toward
The heights of the partition plates 3-3A and 3-3B are set such that 1B is respectively arranged, and overflow can be made to the flow area side from the further flow area side and to the flow area side from the other flow area side.

【0020】更に前記した如く及びの分岐ライン6
Aの空気流量を、及びの分岐ライン6Bより少なく
することにより、又及びの流動域部が下降流動域と
なり、及びの流動域は上昇流動域とすることが出来
る。又第一及び第二の分散板3−1A、3−1Bの下向
き側終端位置にある及びの上昇流動域側の分散板3
−1上の側壁に夫々不燃物排出ライン8B、8Aを設け
る。尚乾燥炉の場合は前記不燃物排出ライン8B、8A
の代りに、プッシャ若しくはスクリューコンベア9−3
を介した移送ライン9−1を設ける。又の上昇流動域
側の流動床上面にはチャー燃焼炉10の流動床内にチャ
ー混合物が重力により投入可能に、チャー燃焼炉10側
に向けて下向きに傾斜された傾斜出口ライン9を設け
る。
Further, as described above, the branch line 6 of
By setting the air flow rate of A to be smaller than that of the branch line 6B of and, the flow region portions of and can be set as the descending flow region, and the flow regions of and can be set as the ascending flow region. In addition, the first and second dispersion plates 3-1A and 3-1B are at the downward end positions of and the dispersion plate 3 on the upward flow region side of and.
The incombustibles discharge lines 8B and 8A are provided on the side walls above -1. In the case of a drying furnace, the incombustible discharge lines 8B and 8A
Instead of pusher or screw conveyor 9-3
A transfer line 9-1 is provided. On the upper surface of the fluidized bed on the side of the ascending fluidized area, an inclined outlet line 9 is provided which is inclined downward toward the char combustion furnace 10 side so that the char mixture can be injected into the fluidized bed of the char combustion furnace 10 by gravity.

【0021】かかる熱分解炉1Aによれば、分岐ライン
6A/6Bを介して夫々供給された燃焼排ガス等によ
り、及びの流動域部が下降流動域となり、及び
の流動域は上昇流動域となり、の下降流動域内にライ
ン9よりチャー物混合物が、又チャー燃焼炉10の砂が
循環戻入するライン51より650℃の高温の流動砂が
夫々投入されと、→→→→の順で350〜5
00℃の下降流と上昇流を繰り返し循環する流動域空間
が形成され、該流動域空間内で乾燥廃棄物の熱分解反応
を行なわせ、その反応により発生した熱分解ガスは熱分
解ガス出口ライン71より灰溶融炉31に、又未分解残
渣および流動砂から成るチャー混合物はチャー混合物取
り出しライン9よりチャー燃焼炉10に、又不燃物は不
燃物取り出しライン8より、夫々互いに分離して取り出
すことが出来る。
According to such a pyrolysis furnace 1A, due to the combustion exhaust gas or the like supplied through the branch lines 6A / 6B, the fluid regions of and become the descending fluid regions, and the fluid regions of the and become the ascending fluid regions, In the descending flow region of No. 3, when the char mixture is introduced from the line 9 and the high-temperature fluidized sand of 650 ° C. is introduced from the line 51 in which the sand of the char combustion furnace 10 is circulated back and forth, 350 → 5 in the order of → → → →
A fluid zone space is formed in which a downward flow and an upward stream of 00 ° C. are repeatedly circulated, and a thermal decomposition reaction of the dry waste is carried out in the fluid zone space, and the thermal decomposition gas generated by the reaction is a thermal decomposition gas outlet line. 71 to the ash melting furnace 31, the char mixture composed of undecomposed residue and fluidized sand to the char combustion furnace 10 from the char mixture take-out line 9, and the incombustibles to take out from the incombustible take-out line 8 separately from each other. Can be done.

【0022】図5は図3に示す熱分解炉と乾燥炉を一体
構造とした変形例で、図上左方より右方に向け順次、乾
燥炉の下降流動域、上昇流動域、熱分解炉の下降流動域
上昇流動域が配設され、左端の乾燥炉の下降流動域
の入口側壁には廃棄物供給ライン4とチャー燃焼炉1
0の高温流動砂が戻入される分岐ライン52の出口端が
接続され、右端の熱分解炉の上昇流動域、出口壁に
はチャー燃焼炉10側に向けて下向きに傾斜された傾斜
出口ライン9と、前記上昇流動床底面の分散板3−1上
に不燃物排出ライン8を夫々設けている。そして分散板
3−1は、乾燥炉1Bの上昇流動域側から熱分解炉1
Aの下降流動域側に向けて下側に向け傾斜させて一連
で配設され、更に乾燥炉1Bの上昇流動域側と熱分解
炉1Aの下降流動域間に配設した仕切板33は分散板
3−1上方を開口33aさせるとともに、該仕切板33
上端を熱分解炉1Aの下降流動域側に開口し、その開
口部33aに矩形状(逆L字状)の出口ライン92を設
け、その底部を熱分解炉1Aの下降流動域内に開口す
る事により、乾燥後の廃棄物は流動砂とともにきに出口
ライン92より重力により熱分解炉1Aの下降流動域
内に投入される。尚前記出口ライン92より流動砂は乾
燥炉1B内の熱交換により、既に温度低下してるため
に、チャー燃焼炉10の砂戻入用分岐ライン51を熱分
解炉1Aの下降流動域上に開口し、該ライン51より
650℃前後の高温の流動砂が投入可能に構成するのが
よい。
FIG. 5 is a modification example in which the thermal decomposition furnace and the drying furnace shown in FIG. 3 are integrated with each other. The downward flow area, the upward flow area, and the thermal decomposition furnace of the drying furnace are sequentially arranged from the left side to the right side in the figure. The descending flow area of the drying furnace is disposed, and the waste supply line 4 and the char combustion furnace 1 are provided on the inlet side wall of the descending flow area of the drying furnace at the left end.
The outlet end of the branch line 52 through which the high temperature fluidized sand of 0 is returned is connected, and the right end of the ascending flow region of the pyrolysis furnace, the outlet wall is an inclined outlet line 9 inclined downward toward the char combustion furnace 10 side. In addition, the incombustible discharge line 8 is provided on the dispersion plate 3-1 on the bottom of the rising fluidized bed. The dispersion plate 3-1 is arranged in the pyrolysis furnace 1 from the rising flow zone side of the drying furnace 1B.
The partition plate 33 is arranged in a series inclining downward toward the descending flow region of A and further between the ascending flow region of the drying furnace 1B and the descending flow region of the thermal decomposition furnace 1A. The opening 33a is formed above the plate 3-1 and the partition plate 33 is formed.
The upper end should be opened toward the downward flow zone of the pyrolysis furnace 1A, a rectangular (reverse L-shaped) outlet line 92 should be provided at the opening 33a, and the bottom should be opened into the downward flow zone of the thermal decomposition furnace 1A. Thus, the dried waste is put into the descending fluidized region of the thermal decomposition furnace 1A by gravity from the outlet line 92 together with the fluidized sand. Since the temperature of the fluidized sand has already dropped from the outlet line 92 due to heat exchange in the drying furnace 1B, the branch line 51 for returning sand of the char combustion furnace 10 is opened above the descending fluidized zone of the pyrolysis furnace 1A. It is preferable that high temperature fluidized sand of about 650 ° C. can be introduced from the line 51.

【0023】図1及び図6、7は本発明の実施例に係る
廃棄物の焼却熱を利用した過熱蒸気製造装置を示し、図
1はその全体図、図6、7は乾燥炉と熱分解炉、及びチ
ャー燃焼炉を示す要部構成を示す正面図と平面図であ
る。尚本図の乾燥炉と熱分解炉は図3と同様であるので
その説明は省略する。流動床炉からなるチャー燃焼炉1
0は、図6、7に示すように、底部に不燃物出口部側に
向け下向きに傾斜させて配した分散板11頂部側の流動
床内にチャー混合物導入ライン9と流動媒体取り出しラ
イン160を夫々接続するとともに、前記導入ライン9
より導入されたチャー混合物からなる主流動床10Aの
分散板11の傾斜下方側部に仕切壁10Cを介して副流
動床10Bを形成する。そして前記分散板11下方の空
気供給ライン12より主流動床10Aと副流動床10B
に夫々空気が供給されて、先ず主流動床10A内で60
0〜750℃に加熱して未分解残渣の燃焼を行い、更に
主流動床10Aと仕切壁10Cを介して隣接している副
流動床10Bとの間で未分解残渣の燃焼と流動砂が循環
するように構成し、そして前記副流動床(副チャー燃焼
部)10Bの流動媒体内に第3スーパヒータ29−2を
配設し、チャー燃焼炉10の上方域に配設された第2ス
ーパヒータ29−1とライン40を介して接続してい
る。尚、主流動床10Aも前記図2と同様に下降流動域
と上昇流動域で循環するように構成してもよい。
FIGS. 1 and 6 and 7 show an apparatus for producing superheated steam utilizing the heat of incineration of waste according to an embodiment of the present invention, FIG. 1 is an overall view thereof, and FIGS. 6 and 7 are a drying furnace and thermal decomposition. FIG. 3 is a front view and a plan view showing the main configuration of a furnace and a char combustion furnace. Since the drying furnace and the thermal decomposition furnace in this figure are the same as those in FIG. 3, their explanations are omitted. Char combustion furnace 1 consisting of fluidized bed furnace
As shown in FIGS. 6 and 7, 0 is a char mixture introduction line 9 and a fluid medium take-out line 160 in the fluidized bed on the top side of the dispersion plate 11, which is arranged at the bottom with a downward inclination toward the outlet side of the incombustibles. Connect to each of them and introduce the above-mentioned introduction line 9
A sub-fluidized bed 10B is formed on the inclined lower side of the dispersion plate 11 of the main fluidized bed 10A made of the introduced char mixture through the partition wall 10C. The main fluidized bed 10A and the sub-fluidized bed 10B are supplied from the air supply line 12 below the dispersion plate 11.
First, air is supplied to the main fluidized bed 10A.
The undecomposed residue is burned by heating to 0 to 750 ° C., and the undecomposed residue is circulated and the fluidized sand is circulated between the main fluidized bed 10A and the sub-fluidized bed 10B adjacent to each other via the partition wall 10C. And the third super heater 29-2 is disposed in the fluidized medium of the sub fluidized bed (sub char combustion part) 10B, and the second super heater 29 is disposed in the upper region of the char combustion furnace 10. -1 and the line 40 are connected. The main fluidized bed 10A may also be configured to circulate in the descending fluidizing region and the ascending fluidizing region, as in FIG.

【0024】尚、チャー燃焼炉10上方に配設された第
2スーパヒータ29−1は、第1スーパヒータ28より
ライン28−1を介して導入された過熱蒸気の過熱とと
もに、950〜1300℃前後と無用に高くなった燃焼
ガスを約850℃に落とす役目を、又チャー燃焼炉10
上方ダクト域にはボイラ36ー2が配設され、無用に高
くなった燃焼ガスを落とす役目をする。尚前記のように
燃焼ガス温度を約850℃に落としても第1スーパヒー
タ28における蒸気温度を400〜520℃に維持する
上で何の支障もない。
The second super heater 29-1 arranged above the char combustion furnace 10 is heated to about 950 to 1300 ° C. together with the superheat of the superheated steam introduced from the first super heater 28 through the line 28-1. Char combustion furnace 10 has the function of dropping unnecessarily high combustion gas to about 850 ° C.
A boiler 36-2 is arranged in the upper duct area and serves to drop the combustion gas that has become unnecessarily high. Even if the combustion gas temperature is lowered to about 850 ° C as described above, there is no problem in maintaining the steam temperature in the first superheater 28 at 400 to 520 ° C.

【0025】そして前記チャー燃焼炉10で燃焼されな
い小型の不燃物は不燃物取り出しライン14より取り出
され、そして前記不燃物取り出しライン14には網目が
2mm前後の第2フィルタ140が介装され、前記ライ
ン14より排出された排出物について小型不燃物と流動
砂・灰分とを分離し、前記バケットコンベア等のライン
5/5−1/5−2より流動砂を乾燥炉1Bの流動床下
降流動域又はチャー燃焼炉10に給送するように構成
している。さて前記チャー燃焼炉10内の流動媒体は出
口通路より気流搬送機構16に導かれ、該搬送機構16
で空気流による搬送力が付与された後、ライン17を介
して気・固分離装置例えばサイクロン18に導入され、
ここで流動媒体と高温空気流に分離され、高温空気流は
灰溶融炉31に、高温流動媒体は分岐弁50、分岐ライ
ン51,52を介して夫々乾燥炉1Bと熱分解炉1Aに
戻入される。
Small incombustibles that are not burned in the char combustion furnace 10 are taken out from the incombustibles taking-out line 14, and a second filter 140 having a mesh of about 2 mm is inserted in the incombustibles taking-out line 14. Small incombustibles and fluidized sand / ash are separated from the discharged matter discharged from the line 14, and the fluidized sand is dried from the line 5 / 5-5-1 / 5-2 such as the bucket conveyor in the fluidized bed descending fluidized area of the drying furnace 1B. Alternatively, it is configured to be fed to the char combustion furnace 10. Now, the fluidized medium in the char combustion furnace 10 is guided from the outlet passage to the air flow transfer mechanism 16, and the transfer mechanism 16
After being imparted with a conveying force by an air flow at, it is introduced into a gas / solid separation device such as a cyclone 18 through a line 17,
Here, it is separated into a fluid medium and a high temperature air flow, the high temperature air flow is returned to the ash melting furnace 31, and the high temperature fluid medium is returned to the drying furnace 1B and the pyrolysis furnace 1A via the branch valve 50 and the branch lines 51 and 52, respectively. It

【0026】前記チャー燃焼炉10内の流動媒体出口ラ
イン160側に設けた気流搬送機構で、前記サイクロン
18に通じる垂直通路部161の底側側壁に前記出口ラ
イン160の終端と連設する水平通路部162を設け、
前記垂直通路部161の底面より20〜200℃前後の
常圧空気流を連続的に、又水平通路部162側端より2
0〜200℃前後の3〜6Kgf/cm2の圧縮空気流
を間欠的に夫々送給する。そして前記流動媒体と空気流
の固気重量比を、(砂/空気):1/1〜5/1に設定
する事により前記流動媒体をサイクロンまで円滑に搬送
できる気流搬送力を得る事が出来る。
An air flow transfer mechanism provided on the side of the fluidized medium outlet line 160 in the char combustion furnace 10, and a horizontal passage connected to the end of the outlet line 160 on the bottom side wall of the vertical passage portion 161 leading to the cyclone 18. A part 162 is provided,
A normal pressure air flow of about 20 to 200 ° C. continuously from the bottom surface of the vertical passage portion 161 and 2 from the end of the horizontal passage portion 162 side.
A compressed air flow of 3 to 6 Kgf / cm 2 at around 0 to 200 ° C. is intermittently supplied. Then, by setting the solid-gas weight ratio of the fluid medium and the air flow to (sand / air): 1/1 to 5/1, it is possible to obtain an air flow transport force capable of smoothly transporting the fluid medium to the cyclone. .

【0027】灰溶融炉31は、該灰溶融炉31内に前記
サイクロン18を介してチャー燃焼炉よりの高温空気及
びラインを介して熱分解炉よりの熱分解ガスが導入さ
れ、更に徐塵バグフィルタ37より取り出したダスト2
9及び/又はチャー燃焼炉10よりの不燃分をライン3
0より気流を介して導入して、例えば旋回流により灰を
旋回分離させながら、前記高温空気と熱分解ガスとの燃
焼熱により1300℃以上として前記ダスト29や不燃
分を溶融して、該溶融した灰分を溶融灰出口ラインを介
して不図示の水貯溜部に落下させ、数mm程度の水冷ス
ラッグを生成し、又は空冷により除冷し、該スラッグを
建築用骨材として利用するように構成する。又、前記灰
溶融炉31の上方域には熱分解ガス燃焼炉30Bが配設
され、該熱分解ガス燃焼炉30B内に配設した水冷壁ボ
イラ36の加熱を行い沸点200〜309℃近くまで立
上げる蒸気/ボイラ水を製造する。
In the ash melting furnace 31, high temperature air from the char combustion furnace is introduced into the ash melting furnace 31 via the cyclone 18, and pyrolysis gas from the pyrolysis furnace is introduced via a line, and further dust-removing bag. Dust 2 taken out from the filter 37
9 and / or char combustion furnace 10 incombustibles in line 3
From above 0 through an air stream, for example, while swirling and separating ash by swirling flow, the heat of combustion of the high temperature air and pyrolysis gas is set to 1300 ° C. or higher to melt the dust 29 and incombustibles, and the melting The ash thus formed is dropped through a molten ash outlet line into a water reservoir (not shown) to generate a water-cooled slug of about several mm or air-cooled to remove the slag, and the slag is used as an aggregate for construction. To do. Further, a pyrolysis gas combustion furnace 30B is arranged in the upper region of the ash melting furnace 31, and the water-cooled wall boiler 36 arranged in the pyrolysis gas combustion furnace 30B is heated to a boiling point close to 200 to 309 ° C. Produces start-up steam / boiler water.

【0028】図1に戻り、20は第1スーパヒータ28
及びボイラ27が配設された熱交換塔で、該熱交換塔2
0頂部に灰溶融炉31よりの燃焼ガス及び第2スーパヒ
ータ29ー1を介してチャー燃焼炉10よりの燃焼ガス
が夫々導入され、先ず第1スーパヒータ28での加熱に
よりガス温度を落とした後、第1ボイラ27の加熱を行
う。この結果、第1ボイラ27でボイラ水入口26より
取込んだボイラ水を300℃前後に加熱し、第1ボイラ
出口ライン25より第1スーパヒータ28に蒸気若しく
は加熱水を供給する。ボイラ水は分岐ライン26’、2
6’’を介してチャー燃焼炉10のボイラ36−2及び
灰溶融炉31のボイラ36にも導入され分岐ライン2
5’、25’’を介して第1スーパヒータ28に蒸気若
しくは加熱水を供給する。
Returning to FIG. 1, 20 is a first super heater 28.
And a heat exchange tower provided with a boiler 27,
The combustion gas from the ash melting furnace 31 and the combustion gas from the char combustion furnace 10 are respectively introduced to the 0 top through the second super heater 29-1, and the gas temperature is first dropped by heating with the first super heater 28, The first boiler 27 is heated. As a result, the boiler water taken in from the boiler water inlet 26 is heated to around 300 ° C. in the first boiler 27, and steam or heated water is supplied to the first super heater 28 from the first boiler outlet line 25. Boiler water is branched line 26 ', 2
6 '' through the boiler 36-2 of the char combustion furnace 10 and the boiler 36 of the ash melting furnace 31 to branch line 2
Steam or heated water is supplied to the first super heater 28 via 5 ′ and 25 ″.

【0029】尚、100Kgf/cm2 前後に加圧して
その沸点を309℃前後に設定している前記ボイラ水は
ボイラ27、36、36ー2に導入されて第1段階の加
熱を行うわけであるが、その加熱温度が前記沸点近くの
309℃前後になるようにその通水量を制御している。
この結果、前記各ボイラ36、36−2、27のチュー
ブ表面壁温度は、前記加温水に追従して309℃前後に
維持でき、例え熱交換される熱分解ガスに塩素若しくは
HClを含んでいても低級材で腐食が生じる事はない。
The boiler water whose pressure is set to around 100 Kgf / cm 2 and whose boiling point is set to around 309 ° C. is introduced into the boilers 27, 36 and 36-2 to perform the first stage heating. However, the water flow rate is controlled so that the heating temperature is around 309 ° C., which is close to the boiling point.
As a result, the tube surface wall temperature of each of the boilers 36, 36-2, and 27 can be maintained at around 309 ° C. following the heated water, and the heat exchanged pyrolysis gas contains chlorine or HCl. Also, low grade materials do not cause corrosion.

【0030】第1スーパヒータ28では前記各ボイラ3
6、36−2、27の出口ライン25、25’、2
5’’より取り出した蒸気/加熱水を導入して、前記8
50℃前後の燃焼ガスにより過熱蒸気を製造し、以下蒸
気出口ライン28ー1より第2スーパヒータ29−1
に、更にライン28ー2より第3スーパヒータ29−2
に夫々直列若しくは並列に導入して400〜550℃に
過熱された過熱蒸気を取り出し、発電機に送給する。
In the first super heater 28, each of the boilers 3 is
6, 36-2, 27 exit lines 25, 25 ', 2
Introduce the steam / heated water taken out from 5 ",
Superheated steam is produced by the combustion gas at around 50 ° C., and then the second super heater 29-1 from the steam outlet line 28-1.
And from the line 28-2 to the third super heater 29-2
Are introduced in series or in parallel, respectively, and the superheated steam superheated to 400 to 550 ° C. is taken out and fed to the generator.

【0031】次に前記実施例の作用を簡単に説明する
に、乾燥炉1Bには前記したチャー燃焼炉10から出口
ライン160、気流搬送機構16、ライン17、サイク
ロン18及び分岐ライン51/52を通して気流搬送に
より600〜700℃、具体的には650℃の循環流動
砂が供給され、一方廃棄物供給ライン4から都市ごみ等
の含水廃棄物が供給され、更に下部の空気または燃焼排
ガス入口ライン6−2から燃焼排ガスに僅かな温度調整
用空気を供給して流動砂を流動させた流動床内で下降流
と上昇流とにより循環流動させながら、乾燥炉1B内温
度を100〜300℃に維持して乾燥を行った後、乾燥
後の廃棄物および流動砂から成る乾燥廃棄物混合物はラ
イン9−2より熱分解炉1Aに導入される。又前記乾燥
炉1B内での乾燥により発生した湿気ガスは出口ライン
72よりボイラ36が収納された灰溶融炉31上方の熱
分解ガス燃焼炉30Bに導入され、熱分解ガス燃焼炉3
0B内の燃焼ガス温度を850℃前後に制御する。
To briefly explain the operation of the above embodiment, the drying furnace 1B is provided with the char combustion furnace 10 through the outlet line 160, the air flow transfer mechanism 16, the line 17, the cyclone 18, and the branch line 51/52. Circulating fluidized sand at 600 to 700 ° C., specifically 650 ° C. is supplied by air flow, while water-containing waste such as municipal waste is supplied from the waste supply line 4, and further air or combustion exhaust gas inlet line 6 at the lower part. -2 from the combustion exhaust gas by supplying a slight temperature control air to the fluidized bed in which the fluidized sand is made to flow, and is circulated by a descending flow and an ascending flow while maintaining the temperature in the drying furnace 1B at 100 to 300 ° C. Then, the dried waste mixture consisting of the dried waste and the fluidized sand is introduced into the pyrolysis furnace 1A through a line 9-2. Moisture gas generated by drying in the drying furnace 1B is introduced from the outlet line 72 into the pyrolysis gas combustion furnace 30B above the ash melting furnace 31 in which the boiler 36 is housed, and the pyrolysis gas combustion furnace 3
The combustion gas temperature in 0B is controlled to around 850 ° C.

【0032】さて前記都市ごみ等の廃棄物中には塩ビプ
ラスチック等の含塩素有機化合物が混入しており、可燃
分中にC1として約0.2〜0.5%含有されている。
そしてライン9−2から乾燥廃棄物混合物、前記分岐ラ
イン51から600〜700℃の循環流動砂をそれぞれ
熱分解炉1Aに供給し、下部の空気または燃焼排ガス入
口ライン6−2から燃焼排ガスに僅かな温度調整用空気
を供給して流動砂を流動させた流動床内で下降流と上昇
流とにより循環流動させながら、温度350〜500℃
で処理することにより、下向きに傾斜させたチャー混合
物取り出しライン9からは実質的に塩素を含有しない未
分解残渣が得られる。
A chlorine-containing organic compound such as vinyl chloride plastic is mixed in the waste such as the municipal waste mentioned above, and the combustible content contains about 0.2 to 0.5% of C1.
Then, the dry waste mixture is supplied from the line 9-2 and the circulating fluidized sand of 600 to 700 ° C. is supplied from the branch line 51 to the pyrolysis furnace 1A, respectively, and a slight amount of combustion exhaust gas is supplied from the lower air or the combustion exhaust gas inlet line 6-2. A temperature of 350 to 500 ° C. while circulating and flowing by a downward flow and an upward flow in a fluidized bed in which fluidized sand is fluidized by supplying various temperature adjusting air.
By treatment with 1, the undecomposed residue containing substantially no chlorine is obtained from the char mixture withdrawing line 9 inclined downward.

【0033】すなわち、廃棄物中に含まれていた塩素
は、実質的に全て熱分解ガスに含まれて、熱分解ガス出
口ライン71に排出されることになる。なお、熱分解炉
1A内の熱分解反応で分離された大型の不燃物は、不燃
物取り出しライン8からフィルタ80を介して装置外に
排出される。また前記熱分解炉1Aにより得られた熱分
解ガスは灰溶融炉31にライン71を介して供給する。
That is, substantially all the chlorine contained in the waste is contained in the pyrolysis gas and discharged to the pyrolysis gas outlet line 71. The large incombustibles separated by the thermal decomposition reaction in the thermal decomposition furnace 1A are discharged from the incombustibles extraction line 8 to the outside of the apparatus through the filter 80. The pyrolysis gas obtained by the pyrolysis furnace 1A is supplied to the ash melting furnace 31 via a line 71.

【0034】これによりライン71の熱分解ガスは湿気
ガスで希釈されないので高カロリガスとなり、灰溶融炉
31ではサイクロン18を介してチャー燃焼炉の流動砂
から分離された500〜600℃の高温空気により燃焼
されて灰溶融炉31の温度を容易に1300〜1500
℃にすることが出来る。
As a result, the pyrolysis gas in the line 71 becomes high calorie gas because it is not diluted with the moisture gas, and in the ash melting furnace 31, high temperature air of 500 to 600 ° C. separated from the fluidized sand of the char combustion furnace through the cyclone 18 is used. The temperature of the ash melting furnace 31 is easily burned to 1300 to 1500
Can be ℃.

【0035】一方熱分解炉1Aでチャー混合物取り出し
ライン9から取り出された流動砂と未分解残渣から成
り、実質的に塩素を含有しないチャー混合物は、燃焼炉
10の下部に供給され、空気供給ライン12から分岐ラ
イン12−1、12−2、及び分散板11を介して供給
される空気によって燃焼させることにより600〜75
0℃に上昇させて流動砂を流動させながら未分解残渣を
燃焼させる、更に完全燃焼のために空気供給ライン63
から更に空気を供給することにより燃焼炉10の温度は
燃焼発熱反応によって上昇する。この温度値は、チャー
混合物取り出しライン9から供給される未分解残渣の発
熱量と空気供給ライン12、63の空気および砂循環ラ
イン19の流動砂の量と温度によって決まるが、100
0〜1300℃前後の高温になる場合がある。そこでチ
ャー燃焼炉10ではボイラ36ー2を配設し、該ボイラ
36ー2との熱交換により850℃前後に制御した後、
実質的に塩素を含有しない燃焼ガスをライン40を介し
て第2スーパヒータ29−1と熱交換した後、ライン1
5を介して熱交換塔20に導入される。
On the other hand, the char mixture consisting of the fluidized sand and undecomposed residue taken out from the char mixture taking-out line 9 in the pyrolysis furnace 1A and containing substantially no chlorine is supplied to the lower part of the combustion furnace 10 and the air supply line. 600 to 75 by burning with the air supplied from 12 through the branch lines 12-1 and 12-2 and the dispersion plate 11.
The undecomposed residue is burned while the fluidized sand is fluidized by raising the temperature to 0 ° C., and the air supply line 63 for complete combustion.
By further supplying air from the above, the temperature of the combustion furnace 10 rises due to the combustion exothermic reaction. This temperature value depends on the calorific value of the undecomposed residue supplied from the char mixture take-out line 9 and the amount and temperature of air in the air supply lines 12 and 63 and the fluidized sand in the sand circulation line 19, but 100
The temperature may be as high as 0 to 1300 ° C. Therefore, the char combustion furnace 10 is provided with a boiler 362, and after being controlled to about 850 ° C. by heat exchange with the boiler 36-2,
After exchanging heat between the combustion gas containing substantially no chlorine and the second super heater 29-1 through the line 40, the line 1
It is introduced into the heat exchange column 20 via 5.

【0036】一方本実施例は、図1、図6に示すように
前記チャー燃焼炉10に第3スーパヒータ29−2を設
けた副チャー燃焼部10Bを付設させており、チャー燃
焼炉10での流動媒体を第3スーパヒータ29−2によ
る奪熱により600〜750℃に落とし、該600〜7
50℃に落とした流動媒体をライン160、気流搬送機
構16、サイクロン18及び分岐ライン51/52を介
して500〜650℃の流動砂を熱分解炉1A及び乾燥
炉1Bに戻入する事が出来、この結果前記熱分解炉1A
内の熱分解温度を350℃から500℃、乾燥炉1B温
度を100〜250℃前後に安定して制御が可能であ
る。尚、前記副チャー燃焼部10Bには第3スーパヒー
タ29−2が内装されており、これによりチャー燃焼温
度の安定化に役立つ。
On the other hand, in this embodiment, as shown in FIGS. 1 and 6, the char combustion furnace 10 is provided with a sub-char combustion section 10B provided with a third super heater 29-2. The fluidized medium is cooled to 600 to 750 ° C. by heat removal by the third super heater 29-2,
The fluidized medium dropped to 50 ° C. can be returned to the thermal decomposition furnace 1A and the drying furnace 1B with the fluidized sand at 500 to 650 ° C. through the line 160, the air flow transfer mechanism 16, the cyclone 18, and the branch line 51/52. As a result, the pyrolysis furnace 1A
It is possible to stably control the thermal decomposition temperature in the inside to 350 ° C. to 500 ° C., and the temperature in the drying furnace 1B at around 100 to 250 ° C. A third super heater 29-2 is installed in the auxiliary char combustion unit 10B, which helps stabilize the char combustion temperature.

【0037】前記灰溶融炉31では、前記したように前
記熱分解ガス/高温空気とともに、徐塵バグフィルタ等
より分離された灰が導入され、前記熱分解ガスの燃焼エ
ネルギーにより灰分を溶融して、該溶融した灰分を不図
示の水貯溜部に落下させ、数mm程度の水冷スラッグを
生成し、又は空冷で除冷し、該スラッグを建築用骨材と
して利用する。又、前記灰溶融炉31上方域には熱分解
ガス燃焼炉30Bが配設され、ライン62より前記未燃
焼熱分解ガスに十分な空気を供給して該熱分解ガス及び
乾燥炉1Bよりの湿気ガスの更なる完全燃焼を行う。こ
の結果熱分解ガス燃焼炉30B内の温度を850℃前後
に維持できるために、ボイラ36に導入されたボイラ水
を沸点200〜309℃近くまで温度上昇させた蒸気/
ボイラ水を多量に製造できる。
In the ash melting furnace 31, as described above, the ash separated from the dust filter, etc. is introduced together with the pyrolysis gas / high temperature air, and the ash is melted by the combustion energy of the pyrolysis gas. The molten ash is dropped into a water reservoir (not shown) to generate a water-cooled slug of about several mm or air-cooled, and the slag is used as a building aggregate. Further, a pyrolysis gas combustion furnace 30B is disposed above the ash melting furnace 31, and a sufficient amount of air is supplied to the unburned pyrolysis gas from a line 62 to supply the pyrolysis gas and the moisture from the drying furnace 1B. Perform further complete combustion of the gas. As a result, since the temperature in the pyrolysis gas combustion furnace 30B can be maintained at around 850 ° C., the steam temperature of the boiler water introduced into the boiler 36 is raised to near the boiling point of 200 to 309 ° C.
A large amount of boiler water can be produced.

【0038】一方灰溶融炉31から取り出された850
℃前後の高温排ガスは、実質的に塩素を含有していない
チャー燃焼炉10よりの燃焼ガスにより希釈され、該希
釈された燃焼ガスは熱交換塔20に導入され、第1ボイ
ラ27及び水冷壁ボイラ36で製造された200〜32
0℃前後の蒸気/ボイラ水を第1スーパヒータ28で加
熱して過熱蒸気とするために用いられる。灰溶融炉31
を経て来た排ガスは燃焼により又チャー燃焼炉10より
の燃焼ガスとの混合により希釈されているので、第1ス
ーパヒータ28のボイラチューブ表面温度を350℃以
上としても高温腐食は軽減されるが、第1スーパヒータ
の負荷は極力小さくするのが好ましい。
On the other hand, 850 taken out from the ash melting furnace 31
The high temperature exhaust gas at around ℃ is diluted with the combustion gas from the char combustion furnace 10 that does not substantially contain chlorine, and the diluted combustion gas is introduced into the heat exchange tower 20, and the first boiler 27 and the water cooling wall 200-32 manufactured in the boiler 36
It is used to heat the steam / boiler water around 0 ° C. by the first super heater 28 into superheated steam. Ash melting furnace 31
Since the exhaust gas that has passed through is diluted by combustion and by mixing with the combustion gas from the char combustion furnace 10, even if the boiler tube surface temperature of the first superheater 28 is 350 ° C. or higher, high temperature corrosion is reduced, It is preferable that the load on the first super heater be as small as possible.

【0039】次に、熱交換塔20内では、各ボイラ3
6、36−2、27により沸点200〜309℃近くま
で温度上昇させた蒸気/ボイラ水が第1スーパヒータ2
8に導入され、一方熱交換塔20頂部に導入された85
0℃前後の燃焼ガスが第1スーパヒータ28を加熱し、
過熱蒸気を得ることができる。尚、前記熱分解ガス燃焼
炉30B内に導入されるガスにはHC1が約500〜1
000ppm含まれているので、ボイラ水の流量を調整し
てボイラ36のチューブ表面温度は従来並みの約350
℃以下として、高温腐食を抑制する。このためボイラ3
6では高温の過熱蒸気は得られないが、約200〜32
0℃までは加熱できるので、これを更に第1スーパヒー
タ28以降のスーパヒータ29−1、29−2で加熱す
れば、約400〜550℃の高温の過熱蒸気を得ること
ができる。
Next, in the heat exchange tower 20, each boiler 3
The steam / boiler water whose boiling point is increased to near 200 to 309 ° C. by 6, 36-2 and 27 is the first super heater 2
85 introduced into the top of the heat exchange tower 20 while being introduced into
The combustion gas around 0 ° C. heats the first super heater 28,
Superheated steam can be obtained. The gas introduced into the pyrolysis gas combustion furnace 30B contains HC1 of about 500 to 1
Since it contains 000 ppm, the tube surface temperature of the boiler 36 is about 350 which is the same as the conventional one by adjusting the flow rate of boiler water.
High temperature corrosion is suppressed by keeping the temperature below ℃. Therefore, boiler 3
No high-temperature superheated steam can be obtained in No. 6, but about 200-32
Since it can be heated up to 0 ° C., if it is further heated by the super heaters 29-1 and 29-2 after the first super heater 28, high temperature superheated steam of about 400 to 550 ° C. can be obtained.

【0040】そして熱交換塔20通過後の燃焼排ガス
は、徐塵用バグフィルタ37でダスト除去後、脱塩素バ
グフィルタ38で脱塩した後、その大部分は大気排出さ
れるが、一部はライン25を前記乾燥炉1Bと熱分解炉
1Aに供給される。又徐塵用バグフィルタ37で除去さ
れたダストは灰溶融炉に供給される。尚、前記ライン2
5を流れる排ガスは酸素が3〜4%でその温度は150
℃前後である。
The flue gas after passing through the heat exchange tower 20 is dust-removed by the dust filter 37 and desalinated by the dechlorination bag filter 38. The line 25 is supplied to the drying furnace 1B and the thermal decomposition furnace 1A. Further, the dust removed by the bag filter 37 for dust removal is supplied to the ash melting furnace. Incidentally, the line 2
The exhaust gas flowing through 5 contains 3 to 4% oxygen and its temperature is 150.
It is around ℃.

【0041】[0041]

【発明の効果】以上記載のごとく、請求項1記載の発明
によれば複数の流動域を順次廃棄物が循環する事によ
り、十分なる熱分解と連続投入処理が可能となる。
As described above, according to the first aspect of the present invention, the waste material is circulated in a plurality of flow zones in sequence, whereby sufficient thermal decomposition and continuous charging can be performed.

【0042】請求項2記載の発明によれば、前記熱分解
手段に投入される廃棄物を乾燥手段で十分に乾燥させて
いる為に、熱分解ガスのカロリのバラツキが生じる事な
く、高カロリの且つ安定した熱分解ガスが得られる。又
発明によれば、前記乾燥手段を仕切壁により区分けさ
れた複数の流動域を廃棄物が循環しながら乾燥を行って
いる為に、請求項2記載の発明の効果の一層の促進が図
れる。
According to the second aspect of the present invention, since the waste put into the thermal decomposition means is sufficiently dried by the drying means, the calorie of the thermal decomposition gas does not fluctuate and high calorie is obtained. A stable and stable pyrolysis gas is obtained. or
According to the present invention, since the drying is performed while the waste circulates in the plurality of flow zones divided by the partition wall, the effect of the invention according to claim 2 can be further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る廃棄物の焼却熱を利用し
た過熱蒸気製造装置を示す系統図である。
FIG. 1 is a system diagram showing an overheated steam production apparatus using heat from incineration of waste according to an embodiment of the present invention.

【図2】本発明の基本構成に係る廃棄物の焼却熱を利用
した過熱蒸気の製造手順を示すグラフ図である。
FIG. 2 is a graph showing a procedure for producing superheated steam using heat of incineration of waste according to the basic configuration of the present invention.

【図3】図1の乾燥炉と熱分解炉を示し、(A)は平面
図、(B)は正面図である。
3A and 3B show the drying furnace and the thermal decomposition furnace of FIG. 1, where FIG. 3A is a plan view and FIG. 3B is a front view.

【図4】流動域が「田」の字状に4分割した熱分解炉を
示し、(A)は平面図、(B)は夫々A−A線、B−B
線、C−C線断面図である。
FIG. 4 shows a pyrolysis furnace in which the fluidized area is divided into four in the shape of “T”, (A) is a plan view, (B) is an AA line and BB, respectively.
It is a line and CC sectional view taken on the line.

【図5】乾燥炉と熱分解炉を一体化した図3の変形例を
示す乾燥炉と熱分解炉を示し、(A)は平面図、(B)
は正面図である。
5 shows a drying furnace and a pyrolysis furnace showing a modification of FIG. 3 in which the drying furnace and the pyrolysis furnace are integrated, (A) is a plan view, and (B) is a plan view.
Is a front view.

【図6】図1の乾燥炉と熱分解炉、及びチャー燃焼炉を
示す要部構成を示す正面図である。
FIG. 6 is a front view showing a main configuration of a drying furnace, a pyrolysis furnace, and a char combustion furnace shown in FIG.

【図7】図1の乾燥炉と熱分解炉、及びチャー燃焼炉を
示す要部構成を示す平面図である。
FIG. 7 is a plan view showing the main configuration of the drying furnace, the pyrolysis furnace, and the char combustion furnace shown in FIG.

【符号の説明】[Explanation of symbols]

1A 熱分解炉 1B 乾燥炉 10 チャー燃焼炉 10A 主チャー燃焼部 10B 副チャー燃焼部 16 気流搬送機構 18 サイクロン 20 熱交換塔 27、36、36−2 ボイラ(第1の蒸気製造手
段) 28、29−1、29−2 スーパヒータ(第2の蒸気
製造手段) 31 灰溶融炉 37、38 バグフィルタ
1A Pyrolysis furnace 1B Drying furnace 10 Char combustion furnace 10A Main char combustion section 10B Sub char combustion section 16 Air flow transfer mechanism 18 Cyclone 20 Heat exchange tower 27, 36, 36-2 Boiler (first steam producing means) 28, 29 -1,29-2 Super Heater (Second Steam Manufacturing Means) 31 Ash Melting Furnace 37, 38 Bag Filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 義仁 横浜市金沢区幸浦一丁目8番地1 三菱 重工業株式会社横浜研究所内 (72)発明者 保田 静生 横浜市中区錦町12番地 三菱重工業株式 会社横浜製作所内 (72)発明者 川見 佳正 横浜市中区錦町12番地 三菱重工業株式 会社横浜製作所内 (56)参考文献 特開 昭50−43766(JP,A) 特開 昭56−30523(JP,A) 特開 昭52−46683(JP,A) 特開 平6−74433(JP,A) 特開 平7−174301(JP,A) 特開 平8−121735(JP,A) 特開 平7−332614(JP,A) 特開 昭53−30480(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/027 F23G 5/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshihito Shimizu, 1-8, Sachiura, Kanazawa-ku, Yokohama-shi 1 Mitsubishi Heavy Industries, Ltd. Yokohama Research Laboratory (72) Shizuo Hota, 12 Nishikicho, Naka-ku, Yokohama Mitsubishi Heavy Industries, Ltd. Yokohama Works (72) Inventor Yoshimasa Kawami 12 Nishiki-cho, Naka-ku, Yokohama City Yokohama Works, Ltd. (56) References JP 50-43766 (JP, A) JP 56-30523 (JP) , A) JP 52-46683 (JP, A) JP 6-74433 (JP, A) JP 7-174301 (JP, A) JP 8-121735 (JP, A) JP 7-332614 (JP, A) JP-A-53-30480 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F23G 5/027 F23G 5/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 100〜300℃の温度で且つ酸素不足
下で流動媒体とともに廃棄物を乾燥する乾燥手段と、 温度300℃以上の空間内に、流動媒体とともに前記乾
燥させた廃棄物を供給して熱分解反応を行なわせ、その
反応により発生した熱分解ガスと、未分解残渣および流
動媒体から成るチャー混合物と、不燃物とを互いに分離
する熱分解手段と、 前記熱分解手段より導かれた未分解残渣および流動媒体
から成るチャー混合物を、空気によって流動させながら
前記未分解残渣を燃焼させるチャー燃焼手段とを夫々独
立させた炉で構成するとともに、チャー燃焼手段で得ら
れた高温砂を前記乾燥手段と熱分解手段に循環し、 前記熱分解手段を、分散板を入口部から出口側に向け片
流れ方向に下向きに傾斜させて、その間の流動層域を流
動床上部と底部が夫々開口されている仕切壁により区分
けされた複数の流動域を具えた流動床で形成するととも
に、前記複数の流動域のうち下降流動域のガス空塔速度を、
上昇流動域のガス空塔速度より小に設定することにより
該流動床に供給された廃棄物が前記流動域を循環しなが
ら熱分解を行う流動槽で形成したことを特徴とする廃棄
物の焼却装置。
1. A a drying means for drying the waste together with the fluidized medium under oxygen-deficient and at a temperature of 100 to 300 ° C., a temperature 300 ° C. or higher in space, wherein with the fluidized medium drying
Pyrolysis gas for supplying pyrolysis reaction by supplying dried waste, pyrolysis gas generated by the reaction, char mixture consisting of undecomposed residue and fluid medium, and pyrolysis means for separating incombustibles from each other, the guided undegraded residue and consisting of the fluidized medium char mixture from the pyrolysis unit, and a char combustion means for combusting the undecomposed residue while fluidized by air respectively Germany
It consists of an upright furnace and is obtained by char combustion means.
The hot sand that has been circulated is circulated through the drying means and the thermal decomposition means, and the thermal decomposition means is inclined downward in the one-flow direction from the inlet part toward the outlet side, and the fluidized bed region between them is in the upper part of the fluidized bed. With a fluidized bed having a plurality of fluidized areas divided by a partition wall whose bottom is opened, respectively, and the superficial velocity of the gas in the descending fluidized area of the plurality of fluidized areas,
It is characterized in that the waste supplied to the fluidized bed is formed in a fluidized tank that is pyrolyzed while circulating in the fluidized zone by setting the gas superficial velocity in the ascending fluidized zone to be lower than the gas superficial velocity. Waste incinerator.
【請求項2】 前記乾燥手段を、分散板を入口部から出
口側に向け片流れ方向に下向きに傾斜させて、その間の
流動層域を流動床上部と底部が夫々開口されている仕切
壁により区分けされた複数の流動域を具えた流動床で形
成するとともに、前記複数の流動域のうち下降流動域の
ガス空塔速度を、上昇流動域のガス空塔速度より小に設
定することにより該流動床に供給された廃棄物が前記流
動域を循環しながら乾燥を行う流動槽で形成したことを
特徴とする請求項1記載の廃棄物の焼却装置。
2. The drying means, wherein the dispersion plate is tilted downward from the inlet to the outlet in the one-flow direction, and the fluidized bed region between them is divided by a partition wall having an open top and a bottom of the fluidized bed. It is formed by a fluidized bed having a plurality of fluidized areas that are
Set the gas superficial velocity to be smaller than the gas superficial velocity in the rising flow region.
Incinerator of claim 1 waste according to waste fed to the fluidized bed is characterized by being formed in a fluidized tank performing drying while circulating the flow field by a constant.
【請求項3】 前記乾燥手段の分散板出口側に設けた熱
分解手段と接続する出口ラインを、プッシャ若しくはス
クリューコンベアを介した移送ラインで形成したことを
特徴とする請求項1記載の廃棄物の焼却装置。
3. The waste according to claim 1 , wherein an outlet line connected to the thermal decomposition means provided on the outlet side of the dispersion plate of the drying means is formed by a transfer line via a pusher or a screw conveyor. Incinerator.
【請求項4】 前記乾燥手段の上昇流動域側の流動床上
面に熱分解炉下降流動域側の流動床内に乾燥廃棄物が重
力により投入可能に、熱分解炉側に向けて下向きに傾斜
された傾斜出口ラインを設けたことを特徴とする請求項
1記載の廃棄物の焼却装置。
4. A fluidized bed on the rising fluidized zone side of the drying means.
On the surface of the pyrolysis furnace descending fluidized bed
Can be input by force, tilts downward toward the pyrolysis furnace
Claims, characterized in that a has been tilted outlet line
Incinerator for waste according to 1 .
JP26681096A 1996-09-17 1996-09-17 Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste Expired - Fee Related JP3534552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26681096A JP3534552B2 (en) 1996-09-17 1996-09-17 Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26681096A JP3534552B2 (en) 1996-09-17 1996-09-17 Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004017731A Division JP3924285B2 (en) 2004-01-26 2004-01-26 Incinerator

Publications (2)

Publication Number Publication Date
JPH1089640A JPH1089640A (en) 1998-04-10
JP3534552B2 true JP3534552B2 (en) 2004-06-07

Family

ID=17435998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26681096A Expired - Fee Related JP3534552B2 (en) 1996-09-17 1996-09-17 Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste

Country Status (1)

Country Link
JP (1) JP3534552B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285144B2 (en) 1997-11-04 2007-10-23 Ebara Corporation Fluidized-bed gasification and combustion furnace
JP4243919B2 (en) 1997-12-18 2009-03-25 株式会社荏原製作所 Fuel gasification system
KR102093302B1 (en) 2018-07-19 2020-04-23 한국생산기술연구원 Sand falling type circulating fluidized bed boiler having a plurality of riser and its operation method

Also Published As

Publication number Publication date
JPH1089640A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US6133499A (en) Method and apparatus for producing superheated steam using heat from the incineration of waste material
JP3534552B2 (en) Waste incineration apparatus and superheated steam production apparatus using incineration heat of the waste
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3924285B2 (en) Incinerator
JP3268214B2 (en) Superheated steam production equipment using waste incineration heat
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3477327B2 (en) Superheated steam production method and apparatus using waste incineration heat
JP3408678B2 (en) Superheated steam production equipment using waste incineration heat
JP3276273B2 (en) Superheated steam production equipment using waste incineration heat
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JP3408686B2 (en) Superheated steam production equipment using waste incineration heat
JP2991638B2 (en) Waste incineration equipment
JP3276274B2 (en) Superheated steam production equipment using waste incineration heat
JP3272581B2 (en) Superheated steam production equipment using waste incineration heat
JP3276272B2 (en) Superheated steam production equipment using waste incineration heat
JP2991639B2 (en) Waste incineration equipment
JP3310853B2 (en) Superheated steam production equipment using waste incineration heat
JPH09236231A (en) Manufacture of superheated steam utilizing incineration heat of waste
JPH0979542A (en) Superheated steam making apparatus utilizing incineration heat of waste
JP3276286B2 (en) Superheated steam production equipment using waste incineration heat
JP3272582B2 (en) Superheated steam production equipment using waste incineration heat
JPH0660724B2 (en) Multiple bed fluidized bed combustor
JPH10300019A (en) Fluidized bed thermal decomposition furnace and apparatus for processing object to be burned

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees