JPS62115740A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPS62115740A
JPS62115740A JP25466785A JP25466785A JPS62115740A JP S62115740 A JPS62115740 A JP S62115740A JP 25466785 A JP25466785 A JP 25466785A JP 25466785 A JP25466785 A JP 25466785A JP S62115740 A JPS62115740 A JP S62115740A
Authority
JP
Japan
Prior art keywords
layer
wiring
layers
circuit
wiring layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25466785A
Other languages
Japanese (ja)
Inventor
Soichi Ito
伊藤 荘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25466785A priority Critical patent/JPS62115740A/en
Publication of JPS62115740A publication Critical patent/JPS62115740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent confusion on a design by a change into multilayers, and to conduct a hierarchization design using multilayer interconnections easily by each making specific wiring layers correspond to a plurality of design hierarchies in an integrated circuit having multilayer interconnection structure. CONSTITUTION:A large scale integrated circuit has wiring layers consisting of N layers, and the wiring layers are used as a first layer, a second layer ... an N-th layer toward an upper layer from a lower layer. On the other hand, a circuit in a chip is constituted of M-th order hierarchies composed of a chip level LSI circuit, etc. consisting of the interconnections of (1) fixed-shape connections among a small number of elements or in elements, (2) a simple circuit employing said (1) as a unit, (3) a circuit using said (2) as a unit and having a scale larger than 2, ... M a large scale circuit block employing said M-1 as a unit. In such a case, wiring layers for the whole layers or one part of a first layer - an n1-th layer are made to correspond to a first-order hierarchy, wiring layers for the whole layers or one part of an n1'-th layer - an n2-th layer are made to correspond to a second-order hierarchy, and wiring layers for the whole layers or one part of an nm-1'-th layer - an nm-th layer are made similarly to correspond to the connections of a chip level in an M-th order hierarchy, an uppermost layer, and circuits are connected at each hierarchy level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路装置に関し、特に多層配線構造を有す
る集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated circuit device, and particularly to an integrated circuit device having a multilayer wiring structure.

〔従来の技術〕[Conventional technology]

集積回路の大規模高集積化を図るためには回路や素子の
パターンを微細化するとともに配線層を多層構造に構成
することが必要である。そして、集積回路の規模が大き
くなるのに従って、各配線層の布設方法に一定のルール
を付与する必要がある。
In order to achieve large scale and high integration of integrated circuits, it is necessary to miniaturize the patterns of circuits and elements and to construct wiring layers into a multilayer structure. As the scale of integrated circuits increases, it is necessary to impose certain rules on the method of laying each wiring layer.

即ち、多層配線として2層配線が採用された初期の頃は
、第2層配線は第1層配線における配線交差を解決する
ための補助的なものとして用いられていたが、最近では
第2層配線も第1層配線と同等の鋲度で用いられ、配線
布設面積の低域化の効果をも生じさせている。このため
、第2層配線においても第1層配線と同様に所定のルー
ル、例えば第1層配線をX方向に延設し第2層配線をY
方向に延設する等のルールを付与し、各配線の設計の容
易化を図る必要が生じる。
In other words, in the early days when two-layer wiring was adopted as multilayer wiring, second-layer wiring was used as an auxiliary tool to solve wiring intersections in first-layer wiring, but recently, second-layer wiring The wiring is also used with the same tackiness as the first layer wiring, which also produces the effect of reducing the wiring area. For this reason, in the second layer wiring, similar to the first layer wiring, predetermined rules are followed, for example, the first layer wiring is extended in the X direction and the second layer wiring is extended in the Y direction.
It becomes necessary to provide rules such as extending the wires in the directions to facilitate the design of each wire.

しかしながら、近年の集積回路では2層配線構造では追
従することの出来ない大規模化が図られており、このた
め3層或いは4層以上の多層配線構造が要求されること
になる。
However, in recent years, integrated circuits have become larger in scale that cannot be followed by a two-layer wiring structure, and therefore a multilayer wiring structure of three or four layers or more is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の集積回路装置では、3層或いは4層以上
の多層配線構造を構成する場合、各配線層に付与する配
線ルールをこれまでのように各配線層毎に与えられる配
線ルールをそのまま適用させたのでは、異なる層の配線
が同じ方向に延設されてこれらが平面位置において重な
り、多層配線相互間での接続箇所において干渉が生じる
等、複数の配線層間の相互干渉が発生し易くなる。この
ため、特に4層以上の多層配線構造では各配線層の設計
が極めて難しくなり、設計効率が著しく低下するという
問題が生じている。
In the conventional integrated circuit device described above, when configuring a multilayer wiring structure with three or four layers or more, the wiring rules given to each wiring layer are applied as they are in the past. In this case, wiring in different layers extends in the same direction and overlaps in the plane position, which tends to cause mutual interference between multiple wiring layers, such as interference at the connection points between multilayer wiring. . For this reason, especially in a multilayer wiring structure having four or more layers, it becomes extremely difficult to design each wiring layer, resulting in a problem that design efficiency is significantly reduced.

C問題点を解決するための手段〕 本発明の集積回路装置は、多層配線構造における各配線
層の設計の容易化を図り、かつ多層配線構造全体の設計
効率の向上を図るものである。
Means for Solving Problem C] The integrated circuit device of the present invention aims to facilitate the design of each wiring layer in a multilayer wiring structure and to improve the design efficiency of the entire multilayer wiring structure.

本発明の集積回路装置は、複数の設計階層を積層して多
層配線構造を構成した集積回路において、夫々の階層に
1層以上の特定の配線層を対応させて各階層の回路設計
を構成している。
The integrated circuit device of the present invention is an integrated circuit in which a plurality of design layers are stacked to form a multilayer wiring structure, and the circuit design of each layer is configured by associating one or more specific wiring layers with each layer. ing.

この場合、特定の配線層は一の配線層及びこれよりも下
位の配線層を含む配線層である。
In this case, the specific wiring layer is a wiring layer including one wiring layer and lower wiring layers.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の基本概念を説明する図である。FIG. 1 is a diagram explaining the basic concept of the present invention.

今、大規模集積回路はN層の配線層を有しており、これ
を下層から上層へ向かって第1層、第2層。
Nowadays, large-scale integrated circuits have N wiring layers, which are divided into the first layer and the second layer from the bottom layer to the top layer.

・・・、第N層とする。一方、チップにおける回路構成
は、例えば(1):少数素子間又は素子内の定形的な接
続、(2): (1)を単位にした筒車な回路、(3)
=(2)を単位にした(2)よりも規模の大きい回路、
・・・・・・M:(M−1)を単位にした大規模回路ブ
ロックの相互接続からなるチンプレベルL31回路、等
で構成した第M位の階層により回路構成されているもの
とする。
. . . is the Nth layer. On the other hand, the circuit configuration in a chip is, for example, (1): fixed connection between a small number of elements or within an element, (2): an hour wheel-like circuit using (1) as a unit, (3)
= A circuit larger in scale than (2) using (2) as a unit,
. . . M: It is assumed that the circuit is constituted by an M-th hierarchy composed of chimp level L31 circuits consisting of interconnected large-scale circuit blocks in units of (M-1).

このような場合、第1位の階層には第1層〜第n1層の
全層又はその一部の配線層を対応させ、第2位の階層に
は第 、1層〜第n2層の全層又はその一部の配線層を
対応させ、第3位の階層には第n2′層〜第n1層の全
層又はその一部の配線層を対応させ、このようにして第
M位の階層、つまり最上層でのチップレベルの接続には
第nff1−l”層〜第n0層の全層又はその一部の配
′fIA層を対応させて各階層レベルの回路接続を行う
。但し、前記n、、n2.−+ 、n、、nl’+  
nZZ  −’ 、n、11−1’は必ずしも相互の大
小関係を規定するものではない。
In such a case, the first layer corresponds to all or part of the wiring layers from the 1st layer to the n1th layer, and the second layer corresponds to all the wiring layers from the 1st layer to the n2th layer. The wiring layers of the layer or a part thereof are made to correspond to each other, and the third layer is made to correspond to all or a part of the wiring layers from the n2'th layer to the n1th layer, and in this way, the wiring layer of the Mth layer is In other words, the circuit connection at each layer level is performed by making all or a part of the layers from the nff1-l''th layer to the n0th layer correspond to the chip level connection at the top layer.However, as mentioned above, n,, n2.-+ , n,, nl'+
nZZ −', n, and 11-1' do not necessarily define a mutual magnitude relationship.

また、これらの数はいずれも1に等しいか又はそれより
大きく、或いはNに等しいか又はそれより小さい。特に
、Nに等しいものは1つ或いはそれより多くあっても良
く、逆に無くても良い。設計階層のどの位にも対応しな
い配線層、例えば電源供給配線の幹線や配線を用いて形
成されるキャパシタやインダクタ等の配線層は、回路の
階層化には必ずしも対応させる必要はない。勿論、この
ようにどの階層にも対応しない配線層はどのような集積
回路でも必要になる訳ではない。
Also, each of these numbers is equal to or greater than 1, or equal to or less than N. In particular, there may be one or more equal to N, or conversely there may be none. Wiring layers that do not correspond to any level in the design hierarchy, for example wiring layers such as capacitors and inductors formed using power supply wiring main lines and wiring, do not necessarily need to be made to correspond to circuit hierarchies. Of course, such a wiring layer that does not correspond to any hierarchy is not necessary for any integrated circuit.

第2図は本発明を実際に半導体集積回路装置に適用した
実施例を示す。図において、(A)、(B)。
FIG. 2 shows an embodiment in which the present invention is actually applied to a semiconductor integrated circuit device. In the figures, (A) and (B).

(C)は夫々設計階層を示し、(A)は素子レヘルでの
接続階層、(B)は(A>で構成された素子レベルの接
続構造を1つの単位とし、これらの種々集合体からなる
回路ブロンフレベルの接続階層、(C)は(B)によっ
て構成された回路ブロックの種々集合体からなるチップ
レベルの接続階層を示している。この例では、前記階層
数Mは3となる。
(C) shows the design hierarchy, (A) shows the connection hierarchy at the element level, and (B) shows the connection structure at the element level composed of (A>) as one unit, and consists of various aggregates of these. Circuit Bronf-level connection hierarchy (C) shows a chip-level connection hierarchy consisting of various aggregates of circuit blocks constructed by (B). In this example, the number of hierarchies M is three.

ここで、同図(A)において、■は第1層配線、5はバ
イポーラトランジスタ、b、e、cは夫々バイポーラト
ランジスタのベース、エミッタ、コレクタを示す。また
、6は同図CB)の階層で用いる接続用の端子位置を示
している。また、この実施例では、第1層配線lは半導
体基板に形成した浅い結合において生じ易いアロイスパ
イク(半導体基板コンタクト部での配線メタルとシリコ
ンの反応)を防止するためにタングステンを主体とする
配線材料が用いられているために配線抵抗はアルミニウ
ムに比較して1桁も高くなっている。
Here, in FIG. 2A, ▪ indicates the first layer wiring, 5 indicates a bipolar transistor, and b, e, and c indicate the base, emitter, and collector of the bipolar transistor, respectively. Further, 6 indicates the position of the connection terminal used in the layer CB) in the same figure. In addition, in this embodiment, the first layer wiring l is a wiring mainly made of tungsten in order to prevent alloy spikes (reaction between the wiring metal and silicon at the semiconductor substrate contact portion) that are likely to occur in shallow bonds formed on the semiconductor substrate. Because of the material used, the wiring resistance is an order of magnitude higher than that of aluminum.

このため、回路動作上直流的には電位シフトが大きく、
交流的には時定数が大きくなるため配線を長く引き延ば
すことができない。しかし、同図(A)のように第1層
配線1によってダブルベースが一端子化され、また2つ
のトランジスタのコレクタC,エミッタeの共通化に寄
与しており、第1層配線によってベース、エミッタ、コ
レクタの合計8個のトランジスタ電極は第2層配線への
接続点では符号6で示すように4個に減じており、一つ
の配線層としての効果を出している。
For this reason, the potential shift is large in DC terms due to circuit operation.
With alternating current, the time constant is large, so it is not possible to extend the wiring for a long time. However, as shown in the same figure (A), the double base is made into one terminal by the first layer wiring 1, and it also contributes to making the collector C and emitter e of the two transistors common. A total of eight transistor electrodes, including the emitter and collector, are reduced to four at the connection point to the second layer wiring, as shown by reference numeral 6, producing the effect of one wiring layer.

また、図示は省略するが配線交差を避けるために用いら
れている拡散層による「トンネル配線」を第1層配線に
設けることで負荷容量を低減することも可能である。こ
のように、本実施例では第1位の階層と第1層配線との
対応は製造上の安定性と回路動作上の安定性との配慮を
前提にしたことがわかる。即ち、本例では第1位の階層
に対応する配線層の1つに必ず第1層配線を含み・この
ために第1M配線固有の特質に何等逆らうことなく階層
化が可能である。
Further, although not shown, it is also possible to reduce the load capacitance by providing a "tunnel wiring" made of a diffusion layer in the first layer wiring, which is used to avoid wiring intersections. In this way, it can be seen that in this embodiment, the correspondence between the first layer and the first layer wiring is based on consideration of manufacturing stability and circuit operation stability. That is, in this example, one of the wiring layers corresponding to the first layer always includes the first layer wiring, and therefore it is possible to hierarchize without going against the characteristics specific to the 1M wiring.

一方、同図(B)において2は第2層配線、3は第3N
配線を夫々示す。また、6は前述と同様に第1位の階層
の端子点位置を、7は第3位の階層レベルで用いられる
第2位の111層の端子点位置を示し、更に、8は第2
層配線2と第3層配線3との接続用開孔の存在位置を示
す。この第2位の階層において用いられている配線層は
、第2層配線2と第3層配線3であり、特に第3層配線
3は上位の階層における用法を考慮して使用本数を少な
くシ(この例では3本)、更に同図縦方向にのみ布設し
ている。
On the other hand, in the same figure (B), 2 is the second layer wiring, and 3 is the third N layer wiring.
Each wiring is shown. Further, 6 indicates the terminal point position of the first layer as described above, 7 indicates the terminal point position of the second 111 layer used at the third layer level, and 8 indicates the terminal point position of the second layer 111 used at the third layer level.
The position of the opening for connection between the layer wiring 2 and the third layer wiring 3 is shown. The wiring layers used in this second layer are the second layer wiring 2 and the third layer wiring 3. In particular, the third layer wiring 3 is designed to reduce the number of layers used in consideration of the usage in the upper layer. (Three in this example), and furthermore, they are laid only in the vertical direction in the figure.

また、同図(C)において、9は第3層配線3と第4層
配線4との接続用開孔の存在位置を示し、また10〜1
2は同図(B)と同様の構造を有する種々回路ブロック
を示し、特に10は同図(B)のブロックそのものであ
る。13はチップを示す。
In addition, in the same figure (C), 9 indicates the position of the opening for connection between the third layer wiring 3 and the fourth layer wiring 4, and 10 to 1
Reference numeral 2 indicates various circuit blocks having the same structure as that shown in FIG. 3(B), and in particular, 10 is the same block as shown in FIG. 3(B). 13 indicates a chip.

なお、この図では回路ブロックの大部分やチップパッド
等は図示を省略している。
Note that most of the circuit blocks, chip pads, etc. are not shown in this figure.

この第3位め階層においては、第3層配線3が同図縦軸
方向、第4層配線4が横軸方向という具合に主になる配
線方向を直交させるように各々の布設方向を区別してい
る。回路ブロック10〜12及びその他の図示されない
回路ブロックもその中に有する第3N配線3は全てこの
ルールに準じて布設している。
In this third layer, the wiring directions are distinguished so that the main wiring directions are perpendicular to each other, such that the third layer wiring 3 is in the vertical axis direction in the figure, and the fourth layer wiring 4 is in the horizontal axis direction. There is. The third N wiring 3, which includes the circuit blocks 10 to 12 and other circuit blocks not shown, is all laid in accordance with this rule.

したがって、このように構成した本実施例では、第1位
の階層に第1層配線1、第2位の階層に第2層配線2及
び第3層配線3、第3位の階層に第3層配線3及び第4
N配線4が用いられ、夫々の階層においては2つの層の
配線しか保有していないので、多層構造を設計するとは
いえ従来の2層配線構造のものと殆ど同程度の設計でよ
い。特に、第3層配線は、第2位と第3位の2つの階層
に使用されるが、この場合配線布設方向を規定すること
によって階層間で互いに混同を防止している。
Therefore, in this embodiment configured in this way, the first layer wiring 1 is placed in the first layer, the second layer wiring 2 and third layer wiring 3 are placed in the second layer, and the third layer wiring is placed in the third layer. Layer wiring 3 and 4
Since N wirings 4 are used and each layer has only two layers of wiring, even though a multilayer structure is designed, the design is almost the same as a conventional two-layer wiring structure. In particular, the third layer wiring is used for two layers, the second and third layers, and in this case, the wiring installation direction is defined to prevent confusion between the layers.

したがって、各ブロックの設計効率は、従来の2層構造
のものと同等に維持され、特に階層化を導入している分
だけチップレベルで見た同−規模当たりの設計効率は2
層構造のチップよりも向上させることができる。
Therefore, the design efficiency of each block is maintained at the same level as that of the conventional two-layer structure, and in particular, the design efficiency per the same scale at the chip level is 2.
This can be improved over chips with a layered structure.

ここで、本発明は以上の実施例の態様に限られるもので
はなく種々の変更が考えられる。例えば、第1層配線の
層抵抗が低い時には第1位の階層に第1層及び第2層配
線を対応させて小規模回路ブロックを、第2位の階層に
は第2層及び第3層配線を対応させて小規模ブロックの
集合体よりなるマクロ回路ブロックを、そして第3位の
階層に第3層及び第4層配線を対応させてチップレベル
のLSI論理を構成することもできる。また、例えば大
規模なバイポーラ回路のように電源配線の幹線に流れる
電流が非常に大きい場合には、配線メタルの厚膜化が容
易である最上層配線を上述したような回路構成に対応し
た階層から切離し、電源幹線専用層とすることも可能で
ある。
Here, the present invention is not limited to the embodiments described above, and various modifications can be made. For example, when the layer resistance of the first layer wiring is low, the first layer corresponds to the first and second layer wiring to form a small circuit block, and the second layer corresponds to the second and third layer wiring. It is also possible to construct a chip-level LSI logic by associating the wiring to form a macro circuit block consisting of a collection of small blocks, and by associating the third and fourth layer wiring to the third layer. In addition, if the current flowing through the main line of the power supply wiring is very large, such as in a large-scale bipolar circuit, the top layer wiring, where it is easy to thicken the wiring metal, should be placed in a layer corresponding to the circuit configuration described above. It is also possible to separate it from the main power supply line and make it a layer dedicated to the power supply main line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多層配線構造を有する集
積回路において、複数の設計階層に夫々特定の配線層を
対応させているので、多層化による設計上の混乱を防止
し、従来の2層程度の配線層を有する集積回路とブロッ
ク設計のレベルにおいて殆ど同程度の設計効率を維持す
ることができ多層配線を用いた階層化設計をスムーズに
行うことが可能となる。この結果、集積度が大規模にな
る程集積回路の設計効率を向上できる。
As explained above, in an integrated circuit having a multilayer wiring structure, the present invention associates a specific wiring layer with each of a plurality of design hierarchies, thereby preventing design confusion caused by multilayering and eliminating the need for conventional two-layer wiring. It is possible to maintain almost the same design efficiency at the block design level as that of an integrated circuit having several wiring layers, and it becomes possible to smoothly perform hierarchical design using multilayer wiring. As a result, the design efficiency of integrated circuits can be improved as the degree of integration increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概念図で設計階層と配線層の関係を示
す図、第2図は本発明の適用例を示し、同図(A)、 
 (B)、  (C)は第1〜第3の階層に対応する配
線層の平面図である。 l・・・第1層配線、2・・・第2層配線、3・・・第
3層配線、4・・・第4層配線、5・・・トランジスタ
、6・・・第1位と第2位の接続点、7・・・第2位と
第3位の接続点、8・・・第2層と第3層配線の接続点
、9・・・第3層と第4層配線の接続点、10〜12・
・・各種回路ブロック、13・・・チップ。
Fig. 1 is a conceptual diagram of the present invention, showing the relationship between the design hierarchy and the wiring layer, and Fig. 2 shows an example of application of the present invention.
(B) and (C) are plan views of wiring layers corresponding to the first to third hierarchies. l...First layer wiring, 2...Second layer wiring, 3...Third layer wiring, 4...Fourth layer wiring, 5...Transistor, 6...First place and 2nd connection point, 7... 2nd and 3rd connection point, 8... Connection point between 2nd layer and 3rd layer wiring, 9... 3rd layer and 4th layer wiring connection point, 10-12・
...Various circuit blocks, 13...chips.

Claims (1)

【特許請求の範囲】 1、複数の設計階層を積層して多層配線構造を構成した
集積回路において、夫々の階層に1層以上の特定の配線
層を対応させて各階層の回路設計を構成したことを特徴
とする集積回路装置。 2、前記特定の配線層は一の配線層及びこれよりも下位
の配線層を含んでなる特許請求の範囲第1項記載の集積
回路装置。 3、複数の階層に亘って用いられる配線層は、その主に
なる配線布設方向を一方向に規定してなる特許請求の範
囲第2項記載の集積回路装置。 4、隣接する配線層の配線相互間では主になる配線布設
方向を直交させてなる特許請求の範囲第3項記載の集積
回路装置。
[Claims] 1. In an integrated circuit in which a plurality of design layers are stacked to form a multilayer wiring structure, each layer is associated with one or more specific wiring layers to form a circuit design for each layer. An integrated circuit device characterized by: 2. The integrated circuit device according to claim 1, wherein the specific wiring layer includes one wiring layer and lower wiring layers. 3. The integrated circuit device according to claim 2, wherein the wiring layers used over a plurality of levels have a main wiring laying direction defined in one direction. 4. The integrated circuit device according to claim 3, wherein the main wiring directions between the wirings in adjacent wiring layers are orthogonal to each other.
JP25466785A 1985-11-15 1985-11-15 Integrated circuit device Pending JPS62115740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25466785A JPS62115740A (en) 1985-11-15 1985-11-15 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25466785A JPS62115740A (en) 1985-11-15 1985-11-15 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPS62115740A true JPS62115740A (en) 1987-05-27

Family

ID=17268189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25466785A Pending JPS62115740A (en) 1985-11-15 1985-11-15 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPS62115740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158753A (en) * 1987-12-15 1989-06-21 Fujitsu Ltd Semiconductor device and its testing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103643A (en) * 1983-11-10 1985-06-07 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103643A (en) * 1983-11-10 1985-06-07 Fujitsu Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158753A (en) * 1987-12-15 1989-06-21 Fujitsu Ltd Semiconductor device and its testing method
JP2582387B2 (en) * 1987-12-15 1997-02-19 富士通株式会社 Semiconductor device and test method thereof

Similar Documents

Publication Publication Date Title
JPH02177345A (en) Semiconductor integrated circuit device
KR100384745B1 (en) Semiconductor integrated circuit device
JP2003124377A (en) Interconnection method for semiconductor chip carrier and line
JP2001127161A (en) Integrated circuit
JPH0529456A (en) Semiconductor integrated circuit device
US5258891A (en) Multichip module with multilayer wiring substrate
JP3917683B2 (en) Semiconductor integrated circuit device
JPS59163837A (en) Semiconductor integrated circuit
JPH09293844A (en) High density gate array cell structure and manufacture thereof
JPS61292341A (en) Semiconductor integrated circuit
JP2000068383A (en) Design method for semiconductor integrated circuit device and the semiconductor integrated circuit device
JPS62115740A (en) Integrated circuit device
KR910007900B1 (en) Semiconductor integrated circuit device
JPH09134967A (en) Semiconductor integrated circuit device, and its manufacture
WO2000005764A1 (en) Master-slice system semiconductor integrated circuit and design method thereof
JPS61240652A (en) Semiconductor integrated circuit device
JPH03145743A (en) Semiconductor integrated circuit device
JPS62183140A (en) Semiconductor integrated circuit device
JPS59232442A (en) Semiconductor integrated circuit
JPH0669339A (en) Semiconductor device
JPH05243380A (en) Semiconductor integrated circuit device
JPS59215743A (en) Large scale integrated circuit device
JPS62118540A (en) Semiconductor integrated circuit
JPS6329550A (en) Semiconductor integrated circuit device
JPH05343520A (en) Semiconductor integrated circuit device