JPS6211512B2 - - Google Patents

Info

Publication number
JPS6211512B2
JPS6211512B2 JP53137525A JP13752578A JPS6211512B2 JP S6211512 B2 JPS6211512 B2 JP S6211512B2 JP 53137525 A JP53137525 A JP 53137525A JP 13752578 A JP13752578 A JP 13752578A JP S6211512 B2 JPS6211512 B2 JP S6211512B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
load
fet
electric field
load resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53137525A
Other languages
Japanese (ja)
Other versions
JPS5563859A (en
Inventor
Katsuhiko Suyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13752578A priority Critical patent/JPS5563859A/en
Publication of JPS5563859A publication Critical patent/JPS5563859A/en
Publication of JPS6211512B2 publication Critical patent/JPS6211512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、FET(電界効果トランジスタ)集
積回路特にノーマリオフ型のFETを用いた集積
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FET (field effect transistor) integrated circuit, particularly an integrated circuit using a normally-off type FET.

FET集積回路はノーマリオフ型のFETを使用
したものが多いが、かかる集積回路ではインバー
タは第1図Aに示す如き抵抗負荷型となる。この
図で1は抵抗負荷、2はFET、INは入力端、
OUTは出力端、VDDは電源を示す。この回路の
動作を簡単に説明すれば、電源VDDにより抵抗1
を通じてFET2のソースドレイン間に電圧が印
加されており、入力端INよりFET2のゲートに
Hレベルの信号が入力されるとFET2はオンと
なり抵抗1を通つてソース、ドレインへと電流が
流れる。従つて出力端OUTの電位はLレベルと
なる。これとは逆に入力端INに加わる信号がL
レベルとなるとFET2はオフとなり、出力端
OUTの電位は電源VDDのHレベル電位に上昇す
る。即ちインバータ動作が行なわれる。第2図は
FET2等の電流―電圧特性(I―V特性)を示
すグラフである。図中5は負荷線を示し、6は
FET2のゲート、ソース間電圧VGSが0.6Vのと
きの、また7はVGSが0VのときのI―V特性を
それぞれ示しており、IDはドレイン電流、VDS
はドレイン、ソース間電圧を示している。入力信
号がHレベル例えばVGS=0.6Vであると動作点
はP1、入力信号がLレベル例えばVGS=0Vであ
ると動作点はP2となり、端子OUTからはV1なる
Lレベル電圧およびV2なるHレベル電圧が出力
される。第1図Bは同図Aを実現するデバイスの
平面パターンを示し、4はFET2のゲート電
極、3,3′は同ドレイン、ソース電極である。
Many FET integrated circuits use normally-off type FETs, but in such integrated circuits, the inverter is of a resistive load type as shown in FIG. 1A. In this diagram, 1 is the resistive load, 2 is the FET, IN is the input terminal,
OUT is the output end, and VDD is the power supply. To briefly explain the operation of this circuit, the resistance 1 is
A voltage is applied between the source and drain of FET2 through the resistor 1, and when an H level signal is input from the input terminal IN to the gate of FET2, FET2 turns on and current flows through the resistor 1 to the source and drain. Therefore, the potential at the output terminal OUT becomes L level. Conversely, the signal applied to the input terminal IN is L.
When the level is reached, FET2 turns off and the output terminal
The potential of OUT rises to the H level potential of power supply VDD . That is, an inverter operation is performed. Figure 2 is
It is a graph showing the current-voltage characteristics (IV characteristics) of FET2 etc. In the figure, 5 indicates the load line, and 6 indicates the load line.
7 shows the IV characteristics when the gate-to-source voltage V GS of FET2 is 0.6V, and 7 shows the IV characteristics when V GS is 0V, and ID is the drain current, V DS
indicates the drain-source voltage. When the input signal is at H level, e.g. V GS = 0.6V, the operating point is P 1. When the input signal is at L level, e.g. V GS = 0 V, the operating point is P 2 , and the L level voltage from terminal OUT is V 1 . and V2 , an H level voltage is output. FIG. 1B shows a planar pattern of a device that realizes the device shown in FIG.

ところで抵抗負荷を用いたFETインバータは
動作速度(スイツチング速度)が遅い欠点があ
り、これを速くするには負荷抵抗1の代りに第3
図に示すようにアクテイブロード8を用いるのが
よい。しかしFETのゲート、ソース間を短絡し
てアクテイブロードつまり定電流源8とするに
は、FET8はノーマリオン型でなければなら
ず、ノーマリオフ型ではオフになつてしまうから
回路は動作しない。しかしノーマリオフ型の
FETを用いた集積回路で負荷の部分だけノーマ
リオン型FETにするということは例えばその部
分のエピタキシヤル層の厚みを厚くする必要があ
り、徒らに製造工程を複雑にするという難点があ
る。なお第3図Bは同図Aを実現するデバイスの
平面パターンを示し、9,10,11はFET8
のドレイン、ゲート、ソース各電極である。また
第4図は第3図の動作特性を示し、14は負荷
線、15はFET1のゲート電圧VGSが+0.6Vの
ときの、また16は同VGSが0VのときのID−V
DS特性を示す。P1,P2が動作点である。
By the way, FET inverters that use a resistive load have the disadvantage of slow operating speed (switching speed), and to speed up this, a third load resistor is used instead of the first load resistor.
It is preferable to use an active load 8 as shown in the figure. However, in order to short-circuit the gate and source of the FET to create an active load, that is, a constant current source 8, the FET 8 must be a normally-on type, and if it is a normally-off type, it will be turned off and the circuit will not operate. However, normally off type
In an integrated circuit using FETs, if only the load portion is made of a normally-on type FET, it is necessary to increase the thickness of the epitaxial layer in that portion, for example, which unnecessarily complicates the manufacturing process. Note that FIG. 3B shows a plane pattern of a device that realizes A in the same figure, and 9, 10, and 11 are FET8.
drain, gate, and source electrodes. Figure 4 shows the operating characteristics of Figure 3, where 14 is the load line, 15 is the gate voltage of FET1 when the gate voltage VGS is +0.6V, and 16 is the same when the VGS is 0V.
Shows DS characteristics. P 1 and P 2 are the operating points.

そこで本発明はゲート、ソース間を短絡したノ
ーマリオン型FETと同じ定電流特性を抵抗素子
により実現し、高速度のインバータを、製造工程
を複雑化することなく得ようとするものである。
既知のようにヒ化ガリウム(GaAs)に高電界を
印加すると、キヤリアドリフト速度は飽和現象を
示す。そこで抵抗素子を実現するGaAs層の電極
間距離を短かく、キヤリアドリフト速度が飽和す
る程度の高電界がかかるようにすると該抵抗素子
の電圧―電流特性は第4図の曲線14と同じ様な
定電流特性を示すことになる。本発明はかかる抵
抗素子をインバータの負荷抵抗として用いようと
するものであり、その特徴とするところは、電界
効果トランジスタとそれに直列に接続された負荷
抵抗とからなる回路を備える集積回路において、
該負荷抵抗を、半導体層とそれに取付けた一対の
オーミツク電極で構成し、該電極間距離をキヤリ
アドリフト速度が飽和する電界以上の高電界が該
電極間半導体層に加わる長さとして該負荷抵抗に
定電流特性を持たせたことにある。次に実施例に
基づいて本発明を詳細に説明する。
Therefore, the present invention aims to achieve the same constant current characteristics as a normally-on FET with a short circuit between the gate and source using a resistive element, and to obtain a high-speed inverter without complicating the manufacturing process.
As is known, when a high electric field is applied to gallium arsenide (GaAs), the carrier drift velocity exhibits a saturation phenomenon. Therefore, by shortening the distance between the electrodes of the GaAs layer that realizes the resistance element and applying a high electric field that saturates the carrier drift velocity, the voltage-current characteristic of the resistance element becomes similar to curve 14 in Figure 4. It will exhibit constant current characteristics. The present invention attempts to use such a resistive element as a load resistor of an inverter, and is characterized by: an integrated circuit including a circuit consisting of a field effect transistor and a load resistor connected in series with the field effect transistor;
The load resistor is composed of a semiconductor layer and a pair of ohmic electrodes attached to it, and the distance between the electrodes is defined as the length of the interelectrode semiconductor layer over which a high electric field greater than the electric field at which the carrier drift velocity is saturated is applied to the load resistor. The reason is that it has constant current characteristics. Next, the present invention will be explained in detail based on examples.

第5図Aは本発明の実施例の等価回路図、第5
図Bは該回路を実現するデバイスの平面パターン
を示す説明図である。図中17は負荷抵抗、2は
FETであつて、これらでインバータを構成す
る。抵抗17はGaAs半導体層にオーミツク電極
18,19を取付けて構成し、かつこれらの電極
間間隔L2は第1図のそれL1に比べて充分短か
く、GaAs半導体にはキヤリアドリフト速度が飽
和する電界(GaAsの場合約3KV/cm)以上の高
電界が掛かるようにする。数値例を挙げるとW2
=10μm、L2=1μmであり、VDD=1Vのとき
抵抗17に掛かる電界は10KV/cmとなる。なお
FET2の幅W1は20μmである。これは、FETも
高電界においてキヤリアドリフト速度が飽和しI
D―VDS特性は第4図の曲線5に示すように飽和
特性を示すが、負荷線はこれより下でなければな
らない(第4図点線のようであるとL、H時の出
力に差がなくなる)ので、FET2のゲート幅W1
より抵抗素子17の幅を小さくする。このような
条件にすると、抵抗17は定電流特性を示し、こ
れに対してL1が充分大きい第1図の抵抗素子1
は同じGaAs半導体抵抗ではあるがリニアな特性
を示す。
FIG. 5A is an equivalent circuit diagram of an embodiment of the present invention;
FIG. B is an explanatory diagram showing a planar pattern of a device realizing the circuit. In the figure, 17 is the load resistance, 2 is
These are FETs, and these constitute an inverter. The resistor 17 is constructed by attaching ohmic electrodes 18 and 19 to a GaAs semiconductor layer, and the distance L 2 between these electrodes is sufficiently shorter than L 1 in FIG. 1, so that the carrier drift velocity is saturated in the GaAs semiconductor. Apply a high electric field of at least 3KV/cm (approx. 3KV/cm for GaAs). To give a numerical example, W 2
= 10 μm, L 2 = 1 μm, and when V DD =1 V, the electric field applied to the resistor 17 is 10 KV/cm. In addition
The width W1 of FET2 is 20 μm. This is because the FET carrier drift speed is saturated in high electric fields and I
The D - V DS characteristic shows a saturation characteristic as shown in curve 5 in Figure 4, but the load line must be below this (if it is like the dotted line in Figure 4, there will be a difference in the output at L and H times. ), so the gate width of FET2 W 1
The width of the resistance element 17 is made smaller. Under these conditions, the resistor 17 exhibits constant current characteristics, whereas the resistor 17 in FIG. 1 has a sufficiently large L1 .
Although they are the same GaAs semiconductor resistors, they exhibit linear characteristics.

このインバータの接続の仕方、および動作は第
1図とほゞ同様であり、負荷抵抗17の一端は電
圧源VDDへ、他の一端はFET2のドレイン電極
3へ接続し、FET2のソース電極3′はアースへ
接続し、FET2のゲート電極4は入力端INと
し、負荷抵抗17とFET2のドレインとの接続
点を出力端OUTとし、入力電圧がH、Lレベル
電圧のとき、L、Hレベルの出力を生じる。但し
抵抗素子17は定電流特性を持つので、このイン
バータの動作速度は高い。
The connection method and operation of this inverter are almost the same as those shown in FIG. ' is connected to ground, the gate electrode 4 of FET2 is the input terminal IN, the connection point between the load resistor 17 and the drain of FET2 is the output terminal OUT, and when the input voltage is H or L level voltage, L or H level produces an output of However, since the resistance element 17 has constant current characteristics, the operating speed of this inverter is high.

第6図は別の実施例を示し、抵抗素子17をソ
ース側に接続してFET2をソースホロアとして
動作させている。この場合も素子17に直線抵抗
素子の代りに定電流特性のものを用いると、動作
速度が改善される。
FIG. 6 shows another embodiment, in which the resistance element 17 is connected to the source side and the FET 2 is operated as a source follower. In this case as well, if a constant current characteristic is used for the element 17 instead of a linear resistance element, the operating speed will be improved.

第7図は本発明の集積回路の製造工程を示す図
である。図中32は絶縁性GaAs基板、31,3
1′は該基板上にエピタキシヤル成長させたn型
GaAs半導体層、33〜36はオーミツク電極、
37はシヨツトキ型ゲート電極である。次に製造
工程を簡単に説明すると、先ず基板32上に
GaAs層31,31′を、エピタキシヤル成長させ
かつパターニングして作り、(第7図1)これら
の半導体層31,31′上にオーミツク電極33
〜36を取付ける。(第7図2)電極35,36
は半導体層31′と共に前記の抵抗17を構成
し、従つて電極35,36間々隔は充分に小にす
る。半導体層31,31′のn型不純物濃度は1
×1017cm-3であり、厚みは、0.1μm程度にする。
半導体層31にアルミニウム電極37を取付け、
これをゲート電極とする。(第7図3)このシヨ
ツトキ型のゲート電極37の近傍の半導体層には
電圧を加えなくても0.8V程度の電圧が加わつた
と同じ状態になり、空乏層が拡がつて0.1μm程
度の厚みの半導体層はピンチオフしてしまい、従
つてこのFETはノーマリオフ型となる。
FIG. 7 is a diagram showing the manufacturing process of the integrated circuit of the present invention. In the figure, 32 is an insulating GaAs substrate, 31, 3
1' is the n-type epitaxially grown on the substrate.
GaAs semiconductor layer, 33 to 36 are ohmic electrodes,
37 is a shotgun type gate electrode. Next, to briefly explain the manufacturing process, first, on the substrate 32,
GaAs layers 31, 31' are formed by epitaxial growth and patterning (FIG. 71), and ohmic electrodes 33 are formed on these semiconductor layers 31, 31'.
~ Install 36. (Fig. 7 2) Electrodes 35, 36
constitutes the resistor 17 together with the semiconductor layer 31', and therefore the distance between the electrodes 35 and 36 is made sufficiently small. The n-type impurity concentration of the semiconductor layers 31 and 31' is 1
×10 17 cm -3 and the thickness is approximately 0.1 μm.
Attaching an aluminum electrode 37 to the semiconductor layer 31,
This is used as a gate electrode. (FIG. 7 3) Even if no voltage is applied to the semiconductor layer near this shotgun type gate electrode 37, the same state as if a voltage of about 0.8V was applied, the depletion layer expands to a depth of about 0.1 μm. The thick semiconductor layer will pinch off, so the FET will be normally off.

キヤリアドリフト速度が飽和する現象は、
GaAsのような化合物半導体において顕著である
が、シリコンなどの半導体においても見られる。
第8図はヒ化ガリウム(GaAs)およびシリコン
(Si)の電界Eとキヤリア速度vとの関係を示
し、図の40はGaAsのv―E特性、41はSiの
それである。従つて本発明で用いる抵抗素子17
はシリコンを用いても製作できる。
The phenomenon in which the carrier drift speed becomes saturated is
It is noticeable in compound semiconductors such as GaAs, but can also be seen in semiconductors such as silicon.
FIG. 8 shows the relationship between electric field E and carrier velocity v of gallium arsenide (GaAs) and silicon (Si), where 40 in the figure is the vE characteristic of GaAs and 41 is that of Si. Therefore, the resistance element 17 used in the present invention
can also be manufactured using silicon.

以上詳細に説明したように本発明によれば、動
作速度が速くなる上、製造工程も複雑とはならな
いFET集積回路を得ることができ、甚だ有益で
ある。
As described in detail above, according to the present invention, it is possible to obtain a FET integrated circuit which has a high operating speed and whose manufacturing process is not complicated, which is extremely beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来の抵抗負荷インバータの等価回
路図、同図Bはその平面パターンを示す説明図、
第2図は同回路のI―V特性を示すグラフ、第3
図AはFET負荷を用いたインバータの等価回路
図、同図Bはその平面パターンの説明図、第4図
は同回路のI―V特性を示すグラフ、第5図Aは
本発明の実施例の等価回路図、同図Bはその平面
パターンの説明図、第6図Aは本発明の別の実施
例の等価回路図、同図Bはその平面パターンの説
明図、第7図1〜3は本発明の集積回路の製造工
程を示す縦断面図、第8図は電界とキヤリア速度
との関係を示すグラフである。 図面で2は電界効果トランジスタ、17は負荷
抵抗、31,31′は半導体層、33,34,3
5,36はオーミツク電極、37はシヨツトキ―
ゲート電極である。
FIG. 1A is an equivalent circuit diagram of a conventional resistive load inverter, and FIG. 1B is an explanatory diagram showing its plane pattern.
Figure 2 is a graph showing the IV characteristics of the same circuit, and Figure 3 is a graph showing the IV characteristics of the same circuit.
Figure A is an equivalent circuit diagram of an inverter using a FET load, Figure B is an explanatory diagram of its plane pattern, Figure 4 is a graph showing the IV characteristics of the same circuit, and Figure 5 A is an embodiment of the present invention. FIG. 6A is an equivalent circuit diagram of another embodiment of the present invention, FIG. 6B is an explanatory diagram of the plane pattern, and FIGS. 7 1 to 3 8 is a longitudinal sectional view showing the manufacturing process of the integrated circuit of the present invention, and FIG. 8 is a graph showing the relationship between electric field and carrier velocity. In the drawing, 2 is a field effect transistor, 17 is a load resistor, 31, 31' are semiconductor layers, 33, 34, 3
5 and 36 are ohmic electrodes, 37 is a shot key
This is the gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 電界効果トランジスタとそれに直列に接続さ
れた負荷抵抗とからなる回路を備える集積回路に
おいて、該負荷抵抗を、半導体層とそれに取付け
た一対のオーミツク電極で構成し、該電極間距離
をキヤリアドリフト速度が飽和する電界以上の高
電界が該電極間半導体層に加わる長さとして該負
荷抵抗に定電流特性を持たせたことを特徴とする
電界効果トランジスタ集積回路。
1 In an integrated circuit comprising a circuit consisting of a field effect transistor and a load resistor connected in series thereto, the load resistor is composed of a semiconductor layer and a pair of ohmic electrodes attached to it, and the distance between the electrodes is determined by the carrier drift speed. 1. A field effect transistor integrated circuit characterized in that the load resistor has a constant current characteristic as long as a high electric field greater than the electric field at which the interelectrode semiconductor layer is applied to the interelectrode semiconductor layer.
JP13752578A 1978-11-08 1978-11-08 Field-effect transistor integrated circuit Granted JPS5563859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13752578A JPS5563859A (en) 1978-11-08 1978-11-08 Field-effect transistor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13752578A JPS5563859A (en) 1978-11-08 1978-11-08 Field-effect transistor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5563859A JPS5563859A (en) 1980-05-14
JPS6211512B2 true JPS6211512B2 (en) 1987-03-12

Family

ID=15200707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13752578A Granted JPS5563859A (en) 1978-11-08 1978-11-08 Field-effect transistor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5563859A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2449369A1 (en) * 1979-02-13 1980-09-12 Thomson Csf LOGIC CIRCUIT COMPRISING A SATURABLE RESISTANCE
JPS55134955A (en) * 1979-04-09 1980-10-21 Nec Corp Gaas integrated circuit
JPS58143562A (en) * 1982-02-22 1983-08-26 Toshiba Corp Gaas integrated circuit
JPS63311752A (en) * 1987-06-15 1988-12-20 Matsushita Electronics Corp Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS5563859A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
JP3827346B2 (en) Logic circuit having negative differential resistance element and manufacturing method thereof
US3339128A (en) Insulated offset gate field effect transistor
JP2773487B2 (en) Tunnel transistor
US4458261A (en) Insulated gate type transistors
JPH0541520A (en) Semiconductor device
US4394589A (en) Logic circuit including at least one resistor or one transistor having a saturable resistor field effect transistor structure
JPS58501205A (en) Monolithically integrated FET and bipolar junction transistors
JPH02237165A (en) Integrated semiconductor device
JPH0783108B2 (en) Semiconductor device
US3355637A (en) Insulated-gate field effect triode with an insulator having the same atomic spacing as the channel
US3999207A (en) Field effect transistor with a carrier injecting region
JP2746771B2 (en) Semiconductor device
JPS6211512B2 (en)
EP0200933A1 (en) Heterojunction transistor having bipolar characteristics
US3436620A (en) Tapered insulated gate field-effect transistor
JPS61147577A (en) Complementary semiconductor device
JPS58147158A (en) Compound semiconductor field effect transistor
US4593300A (en) Folded logic gate
EP0093557B1 (en) High-speed complementary semiconductor integrated circuit
JP2671790B2 (en) Differential negative resistance transistor
Sugano et al. Application of anodization in oxygen plasma to fabrication of GaAs IGFET's
JPH0336111Y2 (en)
JPS60259021A (en) Logic circuit device
JPH0651002Y2 (en) Light emitting diode
JPS61161015A (en) Composite semiconductor switching device