JPS62114755A - Production of metallic article - Google Patents

Production of metallic article

Info

Publication number
JPS62114755A
JPS62114755A JP25355585A JP25355585A JPS62114755A JP S62114755 A JPS62114755 A JP S62114755A JP 25355585 A JP25355585 A JP 25355585A JP 25355585 A JP25355585 A JP 25355585A JP S62114755 A JPS62114755 A JP S62114755A
Authority
JP
Japan
Prior art keywords
rotating disk
particles
molten metal
disk
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25355585A
Other languages
Japanese (ja)
Inventor
Teruyuki Murai
照幸 村井
Nozomi Kawabe
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25355585A priority Critical patent/JPS62114755A/en
Publication of JPS62114755A publication Critical patent/JPS62114755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To permit the formation of the finer grains and the control of a splashing direction and to decrease segregation and oxygen content by dropping a molten metal onto a rotary disk which has a collision surface of a smooth surface and a specified height upward on the outside periphery thereof in the position deviated from the center of the disk. CONSTITUTION:The inside of a chamber 1 is evacuated to a vacuum and is replaced with gaseous Ar. An alloy is heated in an electric furnace 2 and is poured into a tundish 3. The molten metal 5 is dropped from an aperture 4 provided in the bottom of the tundish 3 to the position S deviated from the center of rotation of the rotary disk 6. The molten metal 5 is made into the fine particles 8 by the rotary disk 6 and a side wall 7 thereof. THe fine particles 8 deposit and solidify on a moving base body 9 before said particles are not solidified yet. A shape material stock 10 is thus obtd. The wall on the outside periphery of the rotary disk is preferably inclined at 90-135 deg. with the disk plane.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は金属物品の製造方法に関するもので必る。[Detailed description of the invention] <Industrial application field> This invention relates to a method for manufacturing metal articles.

〈従来の技術〉 金属物品、特に素形材の製造に当っては組織が均一でか
つ微細でおることが望まれる。
<Prior Art> When manufacturing metal articles, especially molded materials, it is desired that the structure be uniform and fine.

偏析が存在する場合、引続いて行なう加工、例えば圧延
、鍛造等の特性を著しく低減し、また粗大組織は強度、
伸びなどの機械的特性を劣化させる。
If segregation exists, it will significantly reduce the properties of subsequent processing, such as rolling or forging, and the coarse structure will reduce the strength and
Deteriorates mechanical properties such as elongation.

従来、素形材の製造方法としては、ぞの簡便さから溶解
鋳造法が一般的であるが、この方法は粗大粒、偏析など
の問題を有している。これに対して電磁撹拌法によって
均一な組織を冑ようという努力はなされてきたか、該撹
拌法は単に偏析の形状を変えるにすぎず、根本的な解決
にはなっていない。
Conventionally, the melting and casting method has been commonly used as a method for producing shaped materials due to its simplicity, but this method has problems such as coarse grains and segregation. In response to this problem, efforts have been made to obtain a uniform structure by electromagnetic stirring, but the stirring method merely changes the shape of segregation and has not provided a fundamental solution.

一方、CIP、l−11Pなどの技術向−りに伴い、粉
末冶金法を応用した技術が開発されてきている。
On the other hand, with the development of technologies such as CIP and 1-11P, technologies applying powder metallurgy have been developed.

しかしながら、この方法も溶解鋳造法に比べて均一微細
な組織か17られるという利点が必るものの、原料]シ
)米表面に酸化膜が存在し、素形材の含有酸素■が溶解
鋳造法に対し非常に高く、疲労特性等が低下すると云う
問題がおり高品質化は望めない。
However, although this method also has the advantage of producing a uniform and fine structure compared to the melt casting method, there is an oxide film on the surface of the raw material, and the oxygen content of the formed material is lower than the melt casting method. On the other hand, it is very high, and there is a problem that fatigue properties etc. deteriorate, and high quality cannot be expected.

〈問題点を解決するための手段〉 しかしながら、この発明で採用した方法、即ら溶融金属
を微細粒子として堆積、凝固を行なう方法においては偏
析が小さく微細組織が得られるうえ、含有酸素量が少な
いという利点がある。
<Means for solving the problem> However, in the method adopted in this invention, that is, the method of depositing and solidifying molten metal as fine particles, a fine structure with small segregation can be obtained, and the amount of oxygen contained is small. There is an advantage.

この理由としては、未凝固状態の微細粒子が堆積し凝固
する際に何着した粒子が完全に凝固したのら、次の粒子
が堆積するというプロセスを経過するため、各々の粒子
内でのみしか偏析は起きない。ぞのため粒子が非常に微
細であると、マクロ偏析は殆んどないといえる。
The reason for this is that when fine particles in an unsolidified state are deposited and solidified, a process occurs in which the next particle is deposited only after the particles that have landed are completely solidified. No segregation occurs. Therefore, if the particles are very fine, it can be said that there is almost no macro segregation.

ざらに粒子が微細な場合、冷却速度が大きく、微細組織
が1qられ、ミクロ偏析も押さえられるという長所があ
る。
When the particles are fine, the cooling rate is high, the microstructure is reduced by 1q, and microsegregation is suppressed.

このため、溶融金属をいかに微細な粒子とするかが重要
な問題となる。より微細な未凝固状態の粒子を得るため
には、一般には回転ディスクを用いた遠心ノフ、衝撃力
を利用して微細化する方法と、溶融金属にガスを吹きつ
りるガス71〜マイズ法が考えられる。回転ディスク法
は、ガスアトマイズ法に比べて低コス1〜で微細な粒子
が得られるという長所があるが、このためにはディスク
表面に突起物を取付けで遠心力および衝撃力を効率的に
伝えるか、またはディスクの回転速度を非常に速いもの
にしなければならない。
Therefore, how to make the molten metal into fine particles becomes an important issue. In order to obtain finer particles in an unsolidified state, there are generally two methods: a centrifugal nof using a rotating disk, a micronization method using impact force, and a gas 71-mize method in which gas is blown onto the molten metal. Conceivable. The rotating disk method has the advantage of being able to obtain fine particles at a lower cost than the gas atomization method, but in order to achieve this, it is necessary to attach protrusions to the disk surface to efficiently transmit centrifugal force and impact force. , or the disk rotation speed must be very fast.

しかしながら、前者の方法は飛散粒子の方向制御が不可
能でおるため、突起物のない回転ディスクを用いること
が必要条件となるのて必る。
However, since the former method makes it impossible to control the direction of the scattered particles, it is necessary to use a rotating disk without protrusions.

そして後者の突起物のない平滑な表面のディスクを用い
た場合には100(10rl)111以上の高速回転f
イスクを用いなければ微細な粒子を得るのは困難であり
、装置の構造等が堅固で複雑さが必要となる。
When the latter disk with a smooth surface without protrusions is used, the high speed rotation f of 100 (10 rl) 111 or more is used.
It is difficult to obtain fine particles without using a disk, and the structure of the device must be rigid and complex.

〈発明の構成〉 以上詳述したように、一般に回転ディスクを用いて溶融
金属を微細化する場合、粒子の微細化と粒子の飛散方向
の制御は極めて困難となる。
<Structure of the Invention> As described in detail above, when molten metal is generally made fine by using a rotating disk, it is extremely difficult to make the particles fine and to control the scattering direction of the particles.

これに対して本発明者らは」二記2つの問題を同時に解
決できる方法、即ち1つの回転ディスクで2度の大きな
衝撃を与えることにより、粒子の微細化を図ると共に粒
子の飛散方向の制御可能な方法を見出したのでおる。
In response, the present inventors have developed a method that can solve the two problems at the same time, that is, by applying two large impacts with one rotating disk, the particles are made finer and the scattering direction of the particles is controlled. I found a possible method.

即ら、この発明は溶融金属が付着、凝固しない程度に平
滑な面をした衝突面とその外周上方に一定の高さの壁を
有する回転ディスク上に、該回転ディスクの中心をはず
した位首に溶融金属を流下し、微細化および粒子の飛散
方向の制御を行なうものでおる。
That is, the present invention provides a rotating disk having a collision surface that is smooth enough to prevent molten metal from adhering or solidifying, and a wall of a certain height above the outer periphery of the rotating disk. The molten metal is flowed down to achieve fineness and to control the scattering direction of the particles.

この発明の方法によれば、流下した溶融金属は最初回転
ディスクからの遠心力、衝撃力により微細化される。そ
してここで微細化された粒子は、ディスク外周部の壁に
衝突し、そこでざらに大ぎな衝撃ツノ、遠心力か加わり
、よりvIi細化されて回転ディスクの外へ方向性をも
って未凝固状態で飛散する。
According to the method of this invention, the flowing molten metal is first atomized by the centrifugal force and impact force from the rotating disk. The finely divided particles collide with the outer peripheral wall of the disk, where they are subjected to large impact horns and centrifugal force, becoming finer particles and oriented to the outside of the rotating disk in an unsolidified state. scatter.

この時、微細化される粒子径をd、ディスク半径をD、
ディスク回転数をωとすると、それらの間には 1/2 −n d=c[)−ω  (但しO≦rl≦1>−(1)の関
係が必る。
At this time, the grain size to be refined is d, the disk radius is D,
Letting the disk rotation speed be ω, there must be the relationship 1/2 −nd=c[)−ω (where O≦rl≦1>−(1).

溶融金属に回転ディスクからの遠心力が100%伝達し
た時n=1となり、伝達効率の低下がnの値の減少に値
する。
When 100% of the centrifugal force from the rotating disk is transmitted to the molten metal, n=1, and the decrease in transmission efficiency is worth the decrease in the value of n.

回転ディスク表面が平滑な時、nの値か小ざくなること
は当然推測され、粒子径dは小さくなりにくい。そこで
回転ディスク外周に壁を設け、遠心力を効率的に伝達す
ることの可能な形状とすることにより、nの値を大きく
し、しかも粒子に方向性を持たじることを可能としたも
のでおる。
When the surface of the rotating disk is smooth, it is naturally assumed that the value of n will be small, and the particle diameter d will not easily become small. Therefore, by creating a wall around the outer periphery of the rotating disk and creating a shape that allows for efficient transmission of centrifugal force, we were able to increase the value of n and give the particles directionality. is.

ここで回転ディスク外周部の壁はディスク面に対し′C
傾き角度90〜135度が好ましい。これは、該角度が
90度未満の時は壁に衝突した粒子か再び回転ディスク
上に戻ってしまい、ディスクの外へ飛び出Vない。また
135度より大きくて(よ遠心力が効率よく伝わらない
からである。
Here, the wall of the outer periphery of the rotating disk is ′C relative to the disk surface.
The inclination angle is preferably 90 to 135 degrees. This is because when the angle is less than 90 degrees, particles that collide with the wall return onto the rotating disk and do not fly out of the disk. Also, if the angle is greater than 135 degrees, the centrifugal force will not be transmitted efficiently.

この発明によると、粒子の勅ぎは回転ディスク上で゛連
続的に方向を変えていたものか側壁で不運続な方向(接
線方向〉に進むことが特徴となってあり、その速度の不
連続点で大きな衝撃が働くことになる。側壁が135度
以上では大きな衝撃力も働かなくなり、微細化が起りに
くい。
According to this invention, the particles are characterized by either continuously changing direction on the rotating disk or moving in a discontinuous direction (tangential direction) on the side wall, and the velocity is discontinuous. A large impact will be applied at the point.If the side wall is at an angle of 135 degrees or more, no large impact will be applied, making it difficult for micronization to occur.

そしてこのようにして回転ディスクの外で飛行した未凝
固の粒子を冊数することにより金属物品を製造するので
ある。
Metal articles are manufactured by counting the number of unsolidified particles that fly outside the rotating disk in this manner.

〈実施例〉 以下、この発明の実施例を添附図面に基づいて説明する
<Example> Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図はこの発明の方法を実施する装置の外観図でおる
。図示省略した真空装置でチャンバー1内を真空にひき
、Arガスで置換した。次いで電気炉2でuffl比で
M−19,1%5i−0,6%Fe−4,5%Ctt−
0.8%I’In−0.4%Mg−0,8%Cr−0,
2%ZTIのA&金合金その融点より250〜300 
’C高い温度に加熱し、タンディツシュ3に注湯した。
FIG. 1 is an external view of an apparatus for carrying out the method of the present invention. The inside of the chamber 1 was evacuated using a vacuum device (not shown) and replaced with Ar gas. Next, in an electric furnace 2, M-19,1%5i-0,6%Fe-4,5%Ctt-
0.8%I'In-0.4%Mg-0,8%Cr-0,
2% ZTI A & gold alloy its melting point 250~300
It was heated to a high temperature and poured into Tanditshu 3.

そしてタンディツシュ3の底部に設けた直径約1#の開
口4から回転ディスク6の回転中心より70#偏心した
位@Sに溶融金属5を流下し、回転ディスク面6J3よ
びその側壁7によって微細粒子8とし、この微細粒子8
の未凝固状態のうちに移動基体9上に堆積、凝固させて
素形材10を得た。
Then, the molten metal 5 flows down from the opening 4 with a diameter of about 1# provided at the bottom of the tundish 3 to a position @S that is 70# eccentric from the center of rotation of the rotating disk 6, and the fine particles 8 and this fine particle 8
While in an unsolidified state, the mixture was deposited on the moving substrate 9 and solidified to obtain a formed material 10.

第2図に回転ディスクの回転数と粒径との関係の理論値
および実験値を示した。同図の曲線Aはフラッドディス
クを用いた時の実験値、曲線Bは同じ表面粗さを有する
フラノ1〜デイスクを用い、遠心力が100%伝達した
場合の理論値、曲線Cはこの発明の回転ディスクを用い
た場合の実験値である。
FIG. 2 shows the theoretical and experimental values of the relationship between the number of rotations of the rotating disk and the particle size. Curve A in the figure is an experimental value when a flood disk is used, curve B is a theoretical value when 100% centrifugal force is transmitted using flanno disks with the same surface roughness, and curve C is a theoretical value when 100% of the centrifugal force is transmitted. These are experimental values when using a rotating disk.

曲線Δかられかるように、回転ディスク表面が平滑であ
ると、遠心力の伝達効率が悪く、n÷0.3程度であっ
た。曲線Bは同じ回転ディスクを用いた場合の理論値で
おるが、6000ppmにおいて理論値はd+330μ
m1、実験値が720μmであることから、実験値がか
なり悪いことがわかる。
As can be seen from the curve Δ, when the rotating disk surface was smooth, the centrifugal force transmission efficiency was poor, and was approximately n÷0.3. Curve B is the theoretical value when using the same rotating disk, but at 6000 ppm, the theoretical value is d + 330 μ
Since the experimental value of m1 is 720 μm, it can be seen that the experimental value is quite poor.

曲線Cはこの発明の回転ディスクによるものでおり、平
滑なディスク表面によって側壁に衝突する前に曲線Aで
表した粒径に微細化されており、側壁で再び大きな遠心
力、衝撃力を受(ブ、微細化されるのでおる。
Curve C is due to the rotating disk of this invention, and due to the smooth disk surface, the particles are refined to the size shown by curve A before colliding with the side wall, and are again subjected to large centrifugal force and impact force on the side wall ( This is because the particles are miniaturized.

上述した(1)式によると、側壁ではn÷0.8であっ
た。また1つの回転ディスクで微細化する場合の遠心力
の伝達効率100%と仮定した理論値をも上回る画期的
なディスクでめった。
According to the above-mentioned equation (1), n÷0.8 was obtained for the side wall. In addition, we succeeded in creating an epoch-making disk that exceeds the theoretical value that assumes 100% centrifugal force transmission efficiency when miniaturizing a single rotating disk.

〈発明の効果〉 上記のように、この発明の方法によれば、遠心7Jを効
果的に溶融金属に伝達することができ、低速回転により
微細粒子を未凝固状態のまま方向性をもって飛散させる
ことが可能でおり、また極めて単純な装置で低コス1〜
での生産が可能でおるという工業的利用価値が非常に大
きいものでおる。
<Effects of the Invention> As described above, according to the method of the present invention, centrifugal force 7J can be effectively transmitted to the molten metal, and fine particles can be directionally scattered in an unsolidified state by low-speed rotation. It is possible to use extremely simple equipment at a low cost of 1~
It has great industrial utility value as it can be produced in

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法にて使用する装置の外観断面図
、第2図は回転ディスクの回転数と飛散粒子の粒径との
関係を示す線図である。 1・・・チャンバー      2・・・電気炉3・・
・タンディツシュ    4・・・開口5・・・溶融金
属       6・・・回転ディスク7・・・側壁 
        8・・・微細粒子9・・・移動基体 
      10・・・素形材出願人代理人  弁理士
  和 1)昭不−v、、粒子イ杢(mm) 〉 A軒
FIG. 1 is an external sectional view of an apparatus used in the method of the present invention, and FIG. 2 is a diagram showing the relationship between the rotational speed of a rotating disk and the particle size of scattered particles. 1...Chamber 2...Electric furnace 3...
・Tandish 4... Opening 5... Molten metal 6... Rotating disk 7... Side wall
8... Fine particles 9... Moving base
10...Representative of the material applicant Patent attorney Kazu 1) Showu-v, Particle size (mm) 〉 Aken

Claims (1)

【特許請求の範囲】[Claims] 溶融金属を回転ディスクの衝撃力および遠心力によって
微細粒子とし、未凝固状態で堆積、凝固させてなる微細
な組織を有する金属物品の製造において、前記回転ディ
スクの形状が回転ディスク衝突面とその外周上方に90
度以上、135度以下に傾いた一定の高さの壁を有する
ものであって、まず該形状の回転ディスクの回転中心を
はずれた衝突面上に溶融金属を流下し、その衝撃力と遠
心力で微細粒子としたのち、該微細粒子と衝突面上を方
向性をもって前記壁に飛行、衝突させ、これによってさ
らに粒子の微細化をはかりつつ、方向性をもって飛散さ
せ未凝固の状態で移動基体に堆積、凝固させることを特
徴とする金属物品の製造方法。
In the production of metal articles having a fine structure, in which molten metal is turned into fine particles by the impact force and centrifugal force of a rotating disk, and is deposited and solidified in an unsolidified state, the shape of the rotating disk is the same as that of the rotating disk collision surface and its outer periphery. 90 upwards
It has walls of a certain height that are inclined at an angle between 135 degrees and 135 degrees.The molten metal is first flowed down onto the collision surface that is off the center of rotation of a rotating disk of the shape, and the impact force and centrifugal force After the fine particles are made into fine particles, they are made to fly and collide with the wall in a direction on the collision surface, thereby further making the particles finer, and scattering them in a directionally manner to the moving substrate in an unsolidified state. A method for manufacturing a metal article, characterized by depositing and solidifying it.
JP25355585A 1985-11-12 1985-11-12 Production of metallic article Pending JPS62114755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25355585A JPS62114755A (en) 1985-11-12 1985-11-12 Production of metallic article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25355585A JPS62114755A (en) 1985-11-12 1985-11-12 Production of metallic article

Publications (1)

Publication Number Publication Date
JPS62114755A true JPS62114755A (en) 1987-05-26

Family

ID=17252992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25355585A Pending JPS62114755A (en) 1985-11-12 1985-11-12 Production of metallic article

Country Status (1)

Country Link
JP (1) JPS62114755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155667A1 (en) 2008-06-27 2009-12-30 Commonwealth Scientific And Industrial Research Organisation Rotary atomiser for atomising molten material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155667A1 (en) 2008-06-27 2009-12-30 Commonwealth Scientific And Industrial Research Organisation Rotary atomiser for atomising molten material
CN102149454A (en) * 2008-06-27 2011-08-10 联邦科学及工业研究组织 Rotary atomiser for atomising molten material
EP2300139A4 (en) * 2008-06-27 2017-06-07 Commonwealth Scientific and Industrial Research Organisation Rotary atomiser for atomising molten material
US10029943B2 (en) 2008-06-27 2018-07-24 Commonwealth Scientific And Industrial Research Organisation Rotary atomiser for atomising molten material

Similar Documents

Publication Publication Date Title
US4069045A (en) Metal powder suited for powder metallurgical purposes, and a process for manufacturing the metal powder
US4063942A (en) Metal flake product suited for the production of metal powder for powder metallurgical purposes, and a process for manufacturing the product
US4435342A (en) Methods for producing very fine particle size metal powders
EP0226323B1 (en) Apparatus for preparing metal particles from molten metal
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
US4482375A (en) Laser melt spin atomized metal powder and process
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
US4450885A (en) Process for preparation of granules of low-melting-point metals
JPS62114755A (en) Production of metallic article
JPH0514779B2 (en)
JPH0754019A (en) Production of powder by multistage fissure and quenching
JPH03226508A (en) Manufacture of beryllium spherical particle
JPH0437122B2 (en)
JPS62112709A (en) Production of metallic powder
JPH04293276A (en) Manufacture of spherical powder thermoelectric material, and manufacture of thermoelectric material
JPH08209207A (en) Production of metal powder
JPS62112710A (en) Production of metallic powder
JPH0321603B2 (en)
JPS6127165A (en) Production of wear-resistant composite casting
JPH075938B2 (en) Method for producing rapidly solidified metal-based powder
JPS62107850A (en) Manufacture of metal product
JPS62130760A (en) Production of metallic articles
JPH0674444B2 (en) Metal powder manufacturing equipment
JPH02290907A (en) Method and apparatus for manufacturing solder fine powder
JPH075937B2 (en) Method for producing rapidly solidified metal-based composite powder