JPH075938B2 - Method for producing rapidly solidified metal-based powder - Google Patents

Method for producing rapidly solidified metal-based powder

Info

Publication number
JPH075938B2
JPH075938B2 JP23970587A JP23970587A JPH075938B2 JP H075938 B2 JPH075938 B2 JP H075938B2 JP 23970587 A JP23970587 A JP 23970587A JP 23970587 A JP23970587 A JP 23970587A JP H075938 B2 JPH075938 B2 JP H075938B2
Authority
JP
Japan
Prior art keywords
powder
metal
rapidly solidified
cylindrical container
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23970587A
Other languages
Japanese (ja)
Other versions
JPS6483604A (en
Inventor
通 河野
真人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP23970587A priority Critical patent/JPH075938B2/en
Publication of JPS6483604A publication Critical patent/JPS6483604A/en
Publication of JPH075938B2 publication Critical patent/JPH075938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、粉末治金に好適な急冷凝固金属基粉末の製
造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rapidly solidified metal-based powder suitable for powder metallurgy.

〔従来の技術〕 近年、特性のすぐれた粉末治金用急冷凝固粉末が開発さ
れて来ているが、その急冷凝固粉末の製造は、従来、メ
タルサブストレート法、水アトマイズ法、ガスアトマイ
ド法等の方法で製造されている。これらの製造法は、原
理的には目的とする粉末の組成からなる溶融液体を冷却
媒体となる固体、液体、あるいは気体と衝突させ、これ
により溶融液体を微粒化−急冷凝固した後、生成した粉
末と冷却媒体とを分離することにより目的とする急冷凝
固粉末を得るというものである。
[Prior Art] In recent years, a rapidly solidified powder for powder metallurgy with excellent characteristics has been developed. Conventionally, the rapidly solidified powder is produced by a metal substrate method, a water atomizing method, a gas atomizing method, or the like. Manufactured by the method. In these manufacturing methods, in principle, a molten liquid having a desired powder composition is caused to collide with a solid, a liquid, or a gas serving as a cooling medium, whereby the molten liquid is atomized and rapidly solidified, and then produced. The intended rapidly solidified powder is obtained by separating the powder and the cooling medium.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上述のような従来の粉末製造法では生成
した粉末と冷却媒体とを分離することが本質的に必要で
あり、これにより以下の様な問題点が必然的に伴う。
However, in the conventional powder manufacturing method as described above, it is essentially necessary to separate the produced powder and the cooling medium, which inevitably causes the following problems.

(a) メタルサブストレート法等の固体物質基板を冷
却媒体とする製造法に於いては、生成した粉末がしばし
ば冷却媒体中に凝着し、製造作業を阻害する。また得ら
れた粉末はフレーク状となり、流動性が悪く、再粉砕を
施さないと粉末治金用原料としては使用できず、また再
粉砕を施すと不純物の混入が避けられず、好ましくな
い。
(A) In a manufacturing method using a solid substance substrate as a cooling medium, such as a metal substrate method, the produced powder often adheres to the cooling medium, which hinders the manufacturing work. Further, the obtained powder is in the form of flakes and has poor fluidity and cannot be used as a raw material for powder metallurgy unless re-pulverized, and if re-pulverized, contamination of impurities cannot be avoided, which is not preferable.

(b) 水アトマイズ法等の液体物質を冷却媒体とする
製造法に於いては、生成した粉末と液体冷却媒体を分離
するために、液体を蒸発乾燥させる必要があり、多大に
エネルギー消費となる。また、液体冷却媒体との反応に
より、得られる粉末にはしばしばその表面に酸化物や水
酸化物等を生成し、焼結性が低下する。そのため、この
ままでは粉末治金には適さず、還元あるいは脱ガス工程
等を経る必要があり、高コスト化が避けられない。ま
た、成分組成によつては、還元が非常に困難であつた
り、還元、脱ガス工程中に粉末の急冷凝固組織を損なつ
たりし、好ましくない。
(B) In a production method using a liquid substance as a cooling medium, such as a water atomizing method, it is necessary to evaporate and dry the liquid in order to separate the produced powder and the liquid cooling medium, which consumes a lot of energy. . Further, due to the reaction with the liquid cooling medium, oxides, hydroxides, etc. are often generated on the surface of the obtained powder, and the sinterability decreases. Therefore, as it is, it is not suitable for powder metallurgy, and it is necessary to go through a reduction or degassing process, etc., and it is inevitable to raise the cost. Further, depending on the component composition, reduction is extremely difficult, or the rapidly solidified structure of the powder is impaired during the reduction and degassing steps, which is not preferable.

(c) ガスアトマイズ法等の気体物質を冷却媒体とす
る製造法に於いては、得られる粉末はしばしば気体冷却
媒体を含有したり、または気体冷却媒体として安価な空
気や窒素ガスを用いると、得られる粉末はしばしばその
表面に酸化物や窒化物等を生成したりし、上述の液体物
質を冷却媒体とする場合と同様の問題が生じる。また不
活性ガスを冷却媒体として用いた場合は、得られる粉末
は真球に近い形状をしており、成形性に劣る。更には溶
融物質の冷却速度が遅く、特性の優れた急冷凝固粉末が
得られない。またガスアトマイズ法において、冷却の補
助媒体として粉末を用いる方法も幾つか提案されている
が(特公昭49−6755号公報、特公昭52−19539号公
報)、これらは主とする冷却媒体としては通常のガスア
トマイズと同様に不活性ガスを用いており、冷却速度の
向上を目的としたものではない。
(C) In the production method using a gas substance as a cooling medium, such as a gas atomizing method, the obtained powder often contains a gas cooling medium, or when inexpensive air or nitrogen gas is used as the gas cooling medium, The resulting powder often forms oxides or nitrides on the surface thereof, and causes the same problems as when the above liquid substance is used as the cooling medium. Further, when an inert gas is used as the cooling medium, the obtained powder has a shape close to a true sphere, resulting in poor moldability. Furthermore, the cooling rate of the molten substance is slow, and a rapidly solidified powder having excellent properties cannot be obtained. In the gas atomizing method, some methods using powder as an auxiliary medium for cooling have been proposed (Japanese Patent Publication No. 49-6755 and Japanese Patent Publication No. 52-19539), but these are usually used as a main cooling medium. An inert gas is used in the same manner as the gas atomization of No. 1 and is not intended to improve the cooling rate.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上記従来の粉末製造技術の問題
点を解決すべく研究を行つた結果、 上記問題点の多くは、粉末製造に用いる冷却媒体を粉末
から分離することが本質的に必要でありながら粉末と冷
却媒体との凝着や反応により、これが阻害されるという
事実に起因していることを見出し、この分離工程を含ま
ない粉末製造法が従来技術の問題点を解決するものであ
り、これを実施するには冷却媒体に溶融物質と同一組成
の粉末を用いることが有効な手段であるとの知見を得た
のである。
Therefore, the present inventors have conducted research to solve the problems of the above-described conventional powder manufacturing technology, and as a result, many of the above problems are essentially to separate the cooling medium used for powder manufacturing from the powder. It was found that this is due to the fact that this is hindered by the adhesion and reaction between the powder and the cooling medium, which is necessary, and the powder manufacturing method that does not include this separation step solves the problems of the prior art. Therefore, it has been found that using a powder having the same composition as the molten substance as the cooling medium is an effective means for implementing this.

この発明は、かかる知見にもとづいてなされたものであ
つて、 平均粒径:1〜500μmの金属粉末を、周速度:20m/sec以
上で高速回転する円筒容器に導入し、上記金属粉末を遠
心力により上記円筒容器内壁に張りつかせながら上記円
筒容器と共に高速回転させ、 上記円筒容器内壁に張り付いて高速回転している上記金
属粉末に向つて、上記金属粉末と実質的に同一成分組成
の溶融金属を衝突させ、上記溶融金属を急冷凝固すると
同時に微粒化する急冷凝固金属基粉末の製造法に特徴を
有するものである。
The present invention has been made based on such findings, in which a metal powder having an average particle diameter of 1 to 500 μm is introduced into a cylindrical container which rotates at a high speed at a peripheral speed of 20 m / sec or more, and the metal powder is centrifuged. It is rotated at a high speed together with the cylindrical container while being attached to the inner wall of the cylindrical container by force, toward the metal powder that is attached to the inner wall of the cylindrical container and is rotating at a high speed, and has substantially the same composition as the metal powder. The method is characterized by a method for producing a rapidly solidified metal-based powder in which molten metal is made to collide and the molten metal is rapidly solidified and simultaneously atomized.

上記金属粉末は、十分に低い温度に冷却されているのが
好ましい。またこの金属粉末の平均粒径が500μm以上
であると、製造される粉末の中にフレーク状のものが含
まれるようになり、その流動性が低下するので好ましく
ない。逆に、この金属粉末の平均粒径が1μm以下であ
ると、得られる粉末の中にも1μm以下の粉末が多く含
まれ、その流動性、充填性を低下させるので好ましくな
い。したがつて、上記金属粉末の平均粒径は、1〜500
μmの範囲内にあるのが好ましい。
The metal powder is preferably cooled to a sufficiently low temperature. Further, if the average particle size of the metal powder is 500 μm or more, flakes are contained in the produced powder, and the fluidity thereof is reduced, which is not preferable. On the contrary, if the average particle size of the metal powder is 1 μm or less, a large amount of powder having a particle size of 1 μm or less is contained in the obtained powder, which deteriorates the fluidity and the filling property, which is not preferable. Therefore, the average particle size of the metal powder is 1 to 500.
It is preferably in the range of μm.

上記金属粉末が円筒内周に張りつくためには、この金属
粉末が受ける遠心力が重力より十分に大きい必要があ
る。言い換えれば、円筒内周部における向心加速度が重
力加速度G(9.8m/sec2)より十分大きい必要がある
が、この条件は、例えば円筒の内径が1mであれば、その
回転数が100PPM程度(5.6G、周速:5.2m/sec)で容易に
達成でき、後述する周速度:20m/sec以上という範囲にお
いては現実的に可能な円筒内径において常にみたされる
条件である。
In order for the metal powder to stick to the inner circumference of the cylinder, the centrifugal force applied to the metal powder needs to be sufficiently larger than the gravity. In other words, the centripetal acceleration in the inner circumference of the cylinder must be sufficiently larger than the gravitational acceleration G (9.8 m / sec 2 ), but this condition is that the rotation speed is about 100 PPM if the inner diameter of the cylinder is 1 m. (5.6 G, peripheral speed: 5.2 m / sec), it is a condition that can be easily achieved, and in the range of peripheral speed: 20 m / sec or more, which will be described later, it is a condition that is always satisfied in a practically possible cylindrical inner diameter.

円筒内周の周速度に関しては、これが高い程、製造され
る粉末の粒子径は小さくなり、これに伴い冷却速度も増
大する。この発明の目的とする104℃/sec以上の冷却速
度を得るためには、この周速度は、少くとも20m/sec以
上、好ましくは40m/sec以上必要である。
With respect to the peripheral speed of the inner circumference of the cylinder, the higher the peripheral speed, the smaller the particle size of the produced powder, and the cooling rate also increases accordingly. To obtain a 10 4 ° C. / sec or more cooling rate of the object of the present invention, the peripheral speed is at least 20 m / sec or more, preferably more than necessary 40 m / sec.

上記金属粉末の量と溶融物質の量の比率:Xは、溶融物質
の冷却凝固が十分かつ急速に行なわれる一方、冷却用粉
末の加熱が過度とならないように十分大きくなくてはな
らない。すなわち、対象物質に関して、 溶解潜熱+液相比熱×(溶融金属温度−融点) +固相比熱×(融点−限界温度)<X×固相比熱×(限
界温度−冷却用粉末温度) が成り立つ必要がある。ここで限界温度とは、溶融金属
から金属粉末への熱伝達により双方の温度が等しくなつ
た後(その時の温度をT0とする)、この熱により冷却用
粉末の急冷凝固組織がその後の粉末の放冷中には損なわ
れない温度T0の上限温度のことであり、この温度は粉末
の組成によつて異なるが、例えばアルミニウム合金粉末
であれば200〜500℃程度である。上式からXを計算する
と、その値は通常の金属組成において1.5以上、好まし
くは3以上であることがわかる。また上記Xの上限とし
ては20程度で十分であり、これ以上の値を用いること
は、工業的に無意味である。したがつて、金属粉末と溶
融金属の量の比率:Xは1.5〜20が好ましい。
The ratio X of the amount of the metal powder to the amount of the molten substance must be sufficiently large so that the molten substance is cooled and solidified sufficiently and rapidly, while the heating of the cooling powder is not excessive. That is, for the target substance, the following must be satisfied: latent heat of fusion + specific heat of liquid phase x (melting metal temperature-melting point) + specific heat of solid phase x (melting point-limit temperature) <X x specific heat of solid phase x (limit temperature-powder temperature for cooling) There is. Here, the critical temperature means that both temperatures become equal due to heat transfer from the molten metal to the metal powder (the temperature at that time is T 0 ), and this heat causes the rapidly solidified structure of the cooling powder to Is an upper limit temperature of the temperature T 0 that is not damaged during the cooling of the powder, and this temperature is different depending on the composition of the powder, but is about 200 to 500 ° C. for aluminum alloy powder, for example. When X is calculated from the above equation, it is found that the value is 1.5 or more, preferably 3 or more in a usual metal composition. The upper limit of X is about 20 and it is industrially meaningless to use a value higher than this. Therefore, the ratio of the amount of the metal powder to the molten metal: X is preferably 1.5 to 20.

上記条件で溶融金属を金属粉末に衝突させると、溶融金
属は微細に分断され、また冷却用の金属粉末への熱放出
により急冷凝固され、金属粉末に凝着したまま、あるい
はこれと離脱した状態で共に回収される。
When the molten metal is collided with the metal powder under the above conditions, the molten metal is finely divided, and is rapidly cooled and solidified by releasing heat to the metal powder for cooling, and remains adhered to the metal powder or separated from it. Will be collected together.

上記金属粉末は、純金属粉末または合金粉末を用いるこ
とができるが、上記回収された粉末を十分冷却した後、
その一部を冷却用金属粉末として再使用することを繰り
返すことにより急冷凝固金属基粉末の製造が可能であ
る。
The metal powder may be a pure metal powder or an alloy powder, but after sufficiently cooling the recovered powder,
It is possible to produce a rapidly solidified metal base powder by repeating reuse of a part of the metal powder for cooling.

この発明による粉末製造工程は、バツチ処理により行う
ことが可能であるが、回転円筒容器に部分的に孔を開け
るかあるいは容器底部を擂針状にすることによつて粉末
製造と同時にその粉末の一部をとり出し、またこれを冷
却用金属粉末として再供給することにより連続処理を行
うことも可能である。
The powder manufacturing process according to the present invention can be carried out by a batch process, but at the same time as the powder manufacturing, the powder can be manufactured by partially making holes in the rotating cylindrical container or by making the bottom of the container into a needle-like shape. It is also possible to carry out continuous treatment by taking out a part and re-supplying it as a cooling metal powder.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically described based on Examples.

第1図は、この発明の急冷凝固金属基粉末の製造法を実
施するための装置の概略図である。上記第1図におい
て、1は円筒容器、2はモーター、3は金属粉末、4は
電気炉、5は坩堝、6は坩堝内加圧用Arガスボンベ、7
は溶融金属、8はスライド9を有するスライデイングノ
ズル、10は昇降装置、11は円筒容器の外周に取付けられ
ているラツク、12はピニオン、13は擂鉢状底部、14は排
出口である。
FIG. 1 is a schematic view of an apparatus for carrying out the method for producing a rapidly solidified metal-based powder according to the present invention. In the above FIG. 1, 1 is a cylindrical container, 2 is a motor, 3 is metal powder, 4 is an electric furnace, 5 is a crucible, 6 is an Ar gas cylinder for pressurizing the inside of the crucible, 7
Is a molten metal, 8 is a sliding nozzle having a slide 9, 10 is an elevating device, 11 is a rack attached to the outer periphery of a cylindrical container, 12 is a pinion, 13 is a mortar-like bottom, and 14 is a discharge port.

上記円筒容器1の底部には、排出口14を有する擂鉢状底
部13が設けられており、上記円筒容器の胴部にはラツク
11が取付けられている。上記ラツクはモーター2の軸に
取付けられているピニオン12と歯合し、モーター2の回
転により上記円筒容器1は回転するようになつている。
The bottom of the cylindrical container 1 is provided with a mortar-shaped bottom 13 having a discharge port 14, and the body of the cylindrical container has a rack.
11 is installed. The rack meshes with a pinion 12 attached to the shaft of the motor 2, and the rotation of the motor 2 causes the cylindrical container 1 to rotate.

坩堝5は、電気炉4で保温されており、上記坩堝5は昇
降装置10によつて昇降自在となつている。さらに上記坩
堝5には、坩堝内加圧用ボンベ6と連結されており、坩
堝内溶融金属7を加圧するようになつている。
The crucible 5 is kept warm in the electric furnace 4, and the crucible 5 can be raised and lowered by an elevating device 10. Furthermore, the crucible 5 is connected to a crucible pressurizing cylinder 6 so as to pressurize the crucible molten metal 7.

かかる装置を用いて、急冷凝固金属基粉末を次のように
して製造した。
Using such an apparatus, a rapidly solidified metal base powder was produced as follows.

内径:400mmのステンレス鋼製円筒容器1をモーター2に
より回転数:3000r.p.m.で回転させ(周速度:63m/sec、
2×103G)、この円筒容器1の内側面に、予めガスアト
マイズ法で作製した粒度:−100〜+350mesh、平均粒
径:50μmの純アルミニウム粉末2kgを遠心力で張り付か
せた。
A stainless steel cylindrical container 1 having an inner diameter of 400 mm is rotated at a rotation speed of 3000 rpm by a motor 2 (peripheral speed: 63 m / sec,
2 × 10 3 G), 2 kg of pure aluminum powder having a particle size of −100 to +350 mesh and an average particle size of 50 μm, which was previously produced by the gas atomizing method, was attached to the inner surface of the cylindrical container 1 by centrifugal force.

一方、純アルミニウムインゴツトを坩堝5内に装入し、
電気炉4により温度:750℃に加熱溶融し、その温度に保
温する。上記溶融アルミニウム7の表面をArガスボンベ
6からのArガス圧により加圧し、坩堝の底に設けた内
径:1mmのスライデイングノズル8のスライダー9をスラ
イドさせることにより上記スライデイングノズル8から
上記溶融純アルミニウムを1kg/minの流量で30秒間、計
0.5kgを強制放出させ、遠心力で上記円筒容器1の内側
面に張りついている純アルミニウム粉末3に衝突させ
た。上記スライデイングノズル8は円筒容器側壁に対し
て傾斜して取付け、溶融金属7を遠心力で張りついてい
る金属粉末3に対して斜めに衝突させるのが好ましい。
On the other hand, a pure aluminum ingot is charged into the crucible 5,
It is heated and melted to a temperature of 750 ° C. by the electric furnace 4 and kept at that temperature. The surface of the molten aluminum 7 is pressurized by Ar gas pressure from the Ar gas cylinder 6, and the slider 9 of the sliding nozzle 8 having an inner diameter of 1 mm provided at the bottom of the crucible is slid to slide the molten pure material from the sliding nozzle 8. Aluminum at a flow rate of 1 kg / min for 30 seconds
0.5 kg was forcibly discharged and collided with pure aluminum powder 3 attached to the inner surface of the cylindrical container 1 by centrifugal force. It is preferable that the sliding nozzle 8 is attached so as to be inclined with respect to the side wall of the cylindrical container, and the molten metal 7 is caused to collide obliquely with the metal powder 3 adhered thereto by centrifugal force.

また、坩堝5を昇降装置10により上下動させ、溶融金属
7が金属粉末3の全表面に均一に衝突するように調節制
御するが好ましい。
Further, it is preferable that the crucible 5 is moved up and down by the elevating device 10 and the molten metal 7 is adjusted and controlled so as to uniformly collide with the entire surface of the metal powder 3.

上記金属粉末3は、衝突した溶融金属7を急冷凝固せし
める作用もあるので、できるだけ低温であることが望ま
しいが、実用的には室温で十分である。
Since the metal powder 3 also has the function of rapidly solidifying the molten metal 7 that has collided, it is desirable that the temperature be as low as possible, but room temperature is practically sufficient.

このようにして、溶融金属7を遠心力により張りついて
いる金属粉末3の全表面に均一に衝突したのち、モータ
ー2の回転を停止すると、遠心力で張りついていた金属
粉末および衝突により急冷凝固微粒化した粉末は、とも
に落下し、擂鉢状底部13により中央に集められ、排出口
14から排出される。上記排出口14から排出された急冷凝
固金属基粉末の一部を冷却し、円筒容器1に導入して金
属粉末3として再利用してもよい。
In this way, after the molten metal 7 is uniformly impinged on the entire surface of the metal powder 3 adhered by the centrifugal force, when the rotation of the motor 2 is stopped, the metal powder adhered by the centrifugal force and the rapidly solidified fine particles are collided by the collision. The powdered powder falls together and is collected in the center by the mortar-shaped bottom 13 and the discharge port
Emitted from 14. A part of the rapidly solidified metal base powder discharged from the discharge port 14 may be cooled, introduced into the cylindrical container 1 and reused as the metal powder 3.

得られた急冷凝固金属基粉末には、表面に溶融アルミニ
ウムが付着凝固した粉末、すなわち第2図の光学顕微鏡
写真にみられるような断面を有する粉末が混合してい
た。上記光学顕微鏡写真にみられる凝固したアルミニウ
ムのデンドライト組織の大きさから推定した冷却速度は
約105℃/secであつた。また、得られた急冷凝固金属基
粉末全体の平均粒径は60μmであり、含有酸素量は0.03
%であつた。
The obtained rapidly solidified metal-based powder was mixed with a powder in which molten aluminum was adhered and solidified on the surface, that is, a powder having a cross section as seen in the optical micrograph of FIG. The cooling rate estimated from the size of the dendrite structure of the solidified aluminum seen in the above optical micrograph was about 10 5 ° C / sec. The average particle size of the entire rapidly solidified metal-based powder obtained was 60 μm, and the oxygen content was 0.03.
It was in%.

〔発明の効果〕〔The invention's effect〕

この発明の製造法によると、溶融金属を微粒化−急冷凝
固した後、生成した粉末と冷却媒体とを分離する必要が
なく、またこの発明により得られた粉末は、粉末の上に
溶融金属が付着凝固したものであるためその形状は不規
則形状をしている。
According to the production method of the present invention, it is not necessary to separate the generated powder and the cooling medium after atomizing-quenching and solidifying the molten metal, and the powder obtained by the present invention has the molten metal on the powder. The shape is irregular because it is adhered and solidified.

したがつて、成形性、流動性および充填性が良好であ
り、さらに不純物も少なく組織は微細であり、粉末治金
の原料粉末としてすぐれた粉末を提供することができ
る。
Therefore, the moldability, the fluidity, and the filling property are good, the impurities are few and the structure is fine, and it is possible to provide an excellent powder as a raw material powder for powder metallurgy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明を実施するための装置の概略図、 第2図は、この発明の製造法により製造した急冷凝固金
属基粉末の断面の光学顕微鏡写真である。 1……円筒容器、2……モーター、 3……金属粉末、4……電気炉、 5……坩堝、6……Arガスボンベ、 7……溶融金属、8……スライデイングノズル、 9……スライダー、10……昇降装置、 11……ラツク、12……ピニオン、 13……擂鉢状底部、14……排出口。
FIG. 1 is a schematic diagram of an apparatus for carrying out the present invention, and FIG. 2 is an optical micrograph of a cross section of a rapidly solidified metal-based powder produced by the production method of the present invention. 1 ... Cylindrical container, 2 ... Motor, 3 ... Metal powder, 4 ... Electric furnace, 5 ... Crucible, 6 ... Ar gas cylinder, 7 ... Molten metal, 8 ... Sliding nozzle, 9 ... Slider, 10 ...... Lifting device, 11 ...... Rack, 12 ...... Pinion, 13 ...... Bowl bottom, 14 ...... Discharge port.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属粉末を高速回転する円筒容器に導入
し、遠心力により上記金属粉末を上記円筒容器内壁に張
りつかせながら上記円筒容器と共に高速回転させ、 上記円筒容器内壁に張りついて高速回転している上記金
属粉末に向つて、上記金属粉末と実質的に同一成分組成
の溶融金属を衝突させ、上記溶融金属を急冷凝固すると
同時に微粒化することを特徴とする急冷凝固金属基粉末
の製造法。
1. A metal powder is introduced into a high-speed rotating cylindrical container, and the metal powder is rotated at a high speed together with the cylindrical container while being attached to the inner wall of the cylindrical container by centrifugal force. Toward the above-mentioned metal powder, the molten metal having substantially the same composition as the above-mentioned metal powder is made to collide, and the above-mentioned molten metal is rapidly solidified, and at the same time, atomized and solidified. Law.
【請求項2】上記金属粉末の平均粒径は、1〜500μm
であることを特徴とする特許請求の範囲第1項記載の急
冷凝固金属基粉末の製造法。
2. The average particle size of the metal powder is 1 to 500 μm.
The method for producing a rapidly solidified metal base powder according to claim 1, wherein
【請求項3】上記高速回転する円筒容器に導入する金属
粉末の総量は、上記溶融金属の総量の1.5〜20倍である
ことを特徴とする特許請求の範囲第1〜2項記載の急冷
凝固金属基粉末の製造法。
3. The rapid solidification method according to claim 1, wherein the total amount of the metal powder introduced into the high-speed rotating cylindrical container is 1.5 to 20 times the total amount of the molten metal. Manufacturing method of metal-based powder.
【請求項4】上記円筒容器の高速回転速度は、20m/sec
以上の周速度であることを特徴とする特許請求の範囲第
1〜3項記載の急冷凝固金属基粉末の製造法。
4. The high-speed rotation speed of the cylindrical container is 20 m / sec.
The method for producing a rapidly solidified metal-based powder according to any one of claims 1 to 3, wherein the peripheral speed is the above.
【請求項5】上記金属粉末は、急冷凝固金属基粉末を再
使用することを特徴とする特許請求の範囲第1〜4項記
載の急冷凝固金属基粉末の製造法。
5. The method for producing a rapidly solidified metal-based powder according to claim 1, wherein the rapidly solidified metal-based powder is reused as the metal powder.
【請求項6】上記金属粉末は、純金属または合金粉末で
あることを特徴とする特許請求の範囲第1〜5項記載の
急冷凝固金属基粉末の製造法。
6. The method for producing a rapidly solidified metal-based powder according to claim 1, wherein the metal powder is a pure metal or alloy powder.
JP23970587A 1987-09-24 1987-09-24 Method for producing rapidly solidified metal-based powder Expired - Fee Related JPH075938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23970587A JPH075938B2 (en) 1987-09-24 1987-09-24 Method for producing rapidly solidified metal-based powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23970587A JPH075938B2 (en) 1987-09-24 1987-09-24 Method for producing rapidly solidified metal-based powder

Publications (2)

Publication Number Publication Date
JPS6483604A JPS6483604A (en) 1989-03-29
JPH075938B2 true JPH075938B2 (en) 1995-01-25

Family

ID=17048696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23970587A Expired - Fee Related JPH075938B2 (en) 1987-09-24 1987-09-24 Method for producing rapidly solidified metal-based powder

Country Status (1)

Country Link
JP (1) JPH075938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941502A (en) * 1995-07-26 1997-02-10 Natl House Ind Co Ltd Water drip structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110014159B (en) * 2019-05-22 2024-01-19 宁波中久东方光电技术有限公司 Laser powder process equipment with improve metal powder sphericity function
CN112091223A (en) * 2020-09-23 2020-12-18 周满奇 Automatic feeding system for metal powder metallurgy and using method thereof
CN115837468B (en) * 2023-02-23 2023-05-05 天津市生态环境科学研究院(天津市环境规划院、天津市低碳发展研究中心) Production equipment for rapidly solidifying metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941502A (en) * 1995-07-26 1997-02-10 Natl House Ind Co Ltd Water drip structure

Also Published As

Publication number Publication date
JPS6483604A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
JPS6242705B2 (en)
CN106392089A (en) Preparation method of aluminum alloy powder for additive manufacturing
CN110480024A (en) A method of CuCrZr spherical powder is prepared based on VIGA technique
US5102620A (en) Copper alloys with dispersed metal nitrides and method of manufacture
JPH06292942A (en) Method and device for producing monotectic alloy
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
CN116765380B (en) Shape memory high-entropy alloy powder for additive manufacturing and preparation method thereof
US4961457A (en) Method to reduce porosity in a spray cast deposit
JPH075938B2 (en) Method for producing rapidly solidified metal-based powder
US4450885A (en) Process for preparation of granules of low-melting-point metals
WO1989000471A1 (en) Centrifugal disintegration
JPH0151523B2 (en)
JP3246358B2 (en) Forming method of semi-molten metal
Öztürk et al. Production of rapidly solidified metal powders by water cooled rotating disc atomisation
JPS60190503A (en) Production of metallic powder
US2811437A (en) Methods for conditioning molten metal
JPH075937B2 (en) Method for producing rapidly solidified metal-based composite powder
US4279843A (en) Process for making uniform size particles
JPS60138008A (en) Production of metallic powder
CN114686717B (en) Preparation method of high-entropy alloy
CN220240055U (en) Device for preparing superfine alloy by centrifugal method
JP2019044227A (en) Raw material for thixotropic molding, method for producing raw material for thixotropic molding, and molded body
JPS6283407A (en) Production of fine metallic powder
JPH05171229A (en) Production of spherical particle of metal, alloy or metal oxide
JP2001089292A (en) Method of producing high quality crystal material by collision solidification of freely falling liquid drop

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees