JPS62114240A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62114240A
JPS62114240A JP25529785A JP25529785A JPS62114240A JP S62114240 A JPS62114240 A JP S62114240A JP 25529785 A JP25529785 A JP 25529785A JP 25529785 A JP25529785 A JP 25529785A JP S62114240 A JPS62114240 A JP S62114240A
Authority
JP
Japan
Prior art keywords
oxide film
film
interlayer insulating
capacitor
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25529785A
Other languages
Japanese (ja)
Inventor
Akemichi Yonekura
米倉 明道
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25529785A priority Critical patent/JPS62114240A/en
Publication of JPS62114240A publication Critical patent/JPS62114240A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine semiconductor device having preferable characteristics by using a CVD oxide film formed on the sidewall of a capacitor electrode and a thermal oxide film formed on the upper surface as interlayer insulating films. CONSTITUTION:After a capacitor oxide film 23 is formed on an element region surrounded by a field oxide film 22 formed on a substrate 21, a first polycrystalline silicon film 24 is deposited, an impurity is doped, patterned to form a capacitor electrode 25 having a sidewall substantially perpendicular, and an unnecessary capacitor oxide film 23 is etched. Then, a CVD oxide film 26 to become an interlayer insulating film remains only on the sidewall of the electrode 25 by etching. Thereafter, a thermal oxide film 27 is formed, a gate oxide film 28 is formed by thermal oxidation for removing only a tin oxide film formed on the substrate 21, a second polycrystalline silicon film 29 is deposited, an impurity is doped, patterned to form a transfer gate electrode 30. With the electrodes 30, 25 and the film 22 as masks arsenic is ion implanted to form n<+> type source and drain regions 31, 32.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特に積層して形
成される導体層間の層間絶縁膜の形成方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for forming an interlayer insulating film between conductor layers formed in a stacked manner.

〔発明の技術的背景〕[Technical background of the invention]

半導体基板上に8!i層して形成された導体層を有する
半導体装置の製造方法を、ダイナミックRAMの場合を
例として、第2図(a)〜l)を参照して説明する。な
お、第2図(a)〜(C)の断面と第2図(d)の断面
とは互いに直交している。
8 on the semiconductor substrate! A method of manufacturing a semiconductor device having an i-layer conductor layer will be described using a dynamic RAM as an example with reference to FIGS. 2(a) to 2(l). Note that the cross sections of FIGS. 2(a) to (C) and the cross section of FIG. 2(d) are orthogonal to each other.

まず、例えばp型シリコン基板1表面に選択酸化法によ
りフィールド酸化膜2を形成する。次に、フィールド酸
化膜2に囲まれた素子領域表面にキャパシタ酸化膜3を
形成した後、全面に第1の多結晶シリコン膜4を堆積し
て不純物をドープする(第2図(a)図示)。次いで、
第1の多結晶シリコン1114を異方性エツチング法に
よりパターニングしてキャパシタ電極5を形成し、不要
なキャパシタ酸化膜3をエツチングする。このキャパシ
タ電極5はほぼ垂直な側壁を有する。つづいて、熱酸化
を行ない、キャパシタ電tj5表面に層間絶縁膜どなる
熱酸化膜6を形成し、基板1表面に形成される薄い酸化
膜のみを除去する(同図(’b)図示)。次いで、熱酸
化を行ない、露出している基板1表面にゲート酸化膜7
を形成した後、全面に第2の多結晶シリコン膜8を堆積
し、不純物をドープする(同図(C)図示)。次いで、
第2の多結晶シリコン膜8を異方性エツチング法により
パターニングしてトランスファゲート電極9を形成する
。つづいて、トランスファゲート電極9、キャパシタ電
極5及びフィールド酸化膜2をマスクとして例えばヒ素
をイオン注入することによりn+型ソース、ドレイン領
域10.11を形成する(同図(d)図示)。以下、全
面に例えばCVD酸化膜を堆積した後、ドレイン領域上
の部分を選択的にエツチングしてコンタクトホールを開
孔する。つづいて、全面に配線金属を蒸着した後、パタ
ーニングして配11(ビットI)を形成し、ダイナミッ
クRAMを製造する。
First, a field oxide film 2 is formed on the surface of a p-type silicon substrate 1 by selective oxidation, for example. Next, after forming a capacitor oxide film 3 on the surface of the element region surrounded by the field oxide film 2, a first polycrystalline silicon film 4 is deposited on the entire surface and doped with impurities (as shown in FIG. 2(a)). ). Then,
First polycrystalline silicon 1114 is patterned by anisotropic etching to form capacitor electrode 5, and unnecessary capacitor oxide film 3 is etched. This capacitor electrode 5 has substantially vertical side walls. Subsequently, thermal oxidation is carried out to form a thermal oxide film 6, which is an interlayer insulating film, on the surface of the capacitor electrode tj5, and only the thin oxide film formed on the surface of the substrate 1 is removed (as shown in FIG. 2('b)). Next, thermal oxidation is performed to form a gate oxide film 7 on the exposed surface of the substrate 1.
After forming a second polycrystalline silicon film 8, a second polycrystalline silicon film 8 is deposited on the entire surface and doped with an impurity (as shown in FIG. 3C). Then,
Transfer gate electrode 9 is formed by patterning second polycrystalline silicon film 8 by anisotropic etching. Next, using the transfer gate electrode 9, the capacitor electrode 5, and the field oxide film 2 as masks, ions of, for example, arsenic are implanted to form n+ type source and drain regions 10 and 11 (as shown in FIG. 3D). After depositing, for example, a CVD oxide film over the entire surface, a contact hole is formed by selectively etching a portion above the drain region. Subsequently, a wiring metal is deposited on the entire surface and then patterned to form a wiring 11 (bit I) to manufacture a dynamic RAM.

上記のような方法によれば、リソグラフィ一工程を使用
せずにセルファラインでキャパシタ電極5上の層間絶縁
膜となる熱酸化lll6を形成することができる。
According to the method described above, it is possible to form the thermally oxidized layer 116, which becomes the interlayer insulating film on the capacitor electrode 5, in a self-lined manner without using a single lithography process.

〔背景技術の問題点〕[Problems with background technology]

しかし、従来の方法では、第2図(b)の工程で形成さ
れる層間絶縁膜となる熱酸化16の膜厚はキャパシタ電
極5の形状に影響されて一様にならない。すなわち、第
3図に示すように、特にキャパシタ電極5側壁のフィー
ルド酸化膜2との境界近傍(図中Qで囲まれた領域)で
は熱酸化膜6の膜厚は非常に薄くなる。このようにキャ
パシタ電極5上に膜厚の非常に薄い部分がある層間絶縁
膜が形成され、更にその上にトランスファゲート電極9
が形成されると、層間絶縁膜の絶縁耐圧の低下、キャパ
シタ電極5−トランスファゲート電極9間での短絡等の
問題が生じる。
However, in the conventional method, the thickness of the thermally oxidized layer 16 forming the interlayer insulating film formed in the step shown in FIG. 2(b) is influenced by the shape of the capacitor electrode 5 and is not uniform. That is, as shown in FIG. 3, the thickness of the thermal oxide film 6 becomes extremely thin, especially near the boundary with the field oxide film 2 on the side wall of the capacitor electrode 5 (the area surrounded by Q in the figure). In this way, an interlayer insulating film having a very thin part is formed on the capacitor electrode 5, and the transfer gate electrode 9 is further formed on it.
If this happens, problems such as a decrease in the dielectric strength of the interlayer insulating film and a short circuit between the capacitor electrode 5 and the transfer gate electrode 9 will occur.

こうした問題は上述したようなダイナミックRAMの場
合だけでなく、例えばEPROMやEEPROMのフロ
ーティングゲートとコントロールゲートとの間の層間絶
縁膜等、各種半導体装置の層間絶縁膜について同様に生
じるものである。
These problems occur not only in the case of dynamic RAMs as described above, but also in interlayer insulating films of various semiconductor devices, such as interlayer insulating films between floating gates and control gates of EPROMs and EEPROMs.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであり
、セルファラインで層間絶縁膜を形成でき、しかも絶縁
耐圧の低下や短絡等の不良が生じない半導体装置の製造
方法を提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and aims to provide a method for manufacturing a semiconductor device in which an interlayer insulating film can be formed using self-line, and in which defects such as a decrease in dielectric strength voltage and short circuits do not occur. It is.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は、半導体基板上に第1
の導体層を堆積した後、パターニングしてほぼ垂直な側
壁を有する第1の導体層パターンを形成する工程と、全
面に絶縁膜を堆積した後、異方性エツチングによりエツ
チングして前記第1の導体層パターンの側壁に絶縁膜を
残存させる工程と、前記第1の導体層パターンの表面に
酸化膜を形成する工程と、全面に第2の導体層を堆積し
た後、パターニングして第2の導体層パターンを形成す
る工程とを具備したことを特徴とするものである。
In the method for manufacturing a semiconductor device of the present invention, a first
After depositing a conductor layer, patterning is performed to form a first conductor layer pattern having substantially vertical sidewalls; and after depositing an insulating film over the entire surface, etching is performed by anisotropic etching to form a first conductor layer pattern having substantially vertical sidewalls. A step of leaving an insulating film on the side wall of the conductor layer pattern, a step of forming an oxide film on the surface of the first conductor layer pattern, and a step of depositing a second conductor layer on the entire surface and then patterning it to form a second conductor layer. The method is characterized by comprising a step of forming a conductor layer pattern.

このような方法によれば、セルファラインで第1の導体
層パターンの側壁のどの部分でも膜厚の十分厚い層間絶
縁膜を形成することができ、層間絶縁膜の絶縁耐圧の低
下や導体層間の短絡を生じることがない。
According to such a method, it is possible to form a sufficiently thick interlayer insulating film on any part of the side wall of the first conductor layer pattern using Selfa Line, which prevents a decrease in the withstand voltage of the interlayer insulating film and prevents No short circuit will occur.

(発明の実施例〕 以下、本発明方法をダイナミックRAMの製造に適用し
た実施例を第1図(a)〜(e)を参照して説明する。
(Embodiments of the Invention) Hereinafter, embodiments in which the method of the present invention is applied to the manufacture of a dynamic RAM will be described with reference to FIGS. 1(a) to (e).

なお、第1図(a)〜(d)の断面と第1図(e)の断
面とは互いに直交している。
Note that the cross sections of FIGS. 1(a) to (d) and the cross section of FIG. 1(e) are orthogonal to each other.

まず、例えばp型シリコン基板21表面に選択酸化法に
よりフィールド酸化膜22を形成する。
First, a field oxide film 22 is formed, for example, on the surface of a p-type silicon substrate 21 by selective oxidation.

次に、フィールド酸化1!!22に囲まれた素子領域表
面にキャパシタ酸化[123を形成した後、全面に例え
ば膜厚4000人の第1の多結晶シリコン膜24を堆積
して不純物をドープする(第ψ図(a)図示)。次いで
、第1の多結晶シリコン膜24を反応性イオンエツチン
グ(RIE)法によりパターニングしてほぼ垂直な側壁
を有するキャパシタ電極25を形成し、不要なキャパシ
タ酸化膜23をエツチングする。つづいて、LPGVD
法により、全面に例えば膜厚1500人のCVD酸化膜
を堆積した後、RIEによりエツチングしてキャパシタ
電極25側壁にのみ層間絶縁膜となるCVDI!I化1
26を残存させる(同図(b)図示)。次いで、熱酸化
を行ない、キャパシタ電極25側壁に層間絶縁膜となる
熱酸化膜27を形成し、基板21表面に形成される薄い
酸化膜のみを除去する(同図(C)図示)。次いで、熱
酸化を行ない、露出している基板21表面にゲート酸化
膜28を形成した後、全面に例えば膜厚4000人の第
2の多結晶シリコンIt!29を堆積し、不純物をドー
プする(同図1)図示〉。次いで、第2の多結晶シリコ
ン膜29をRIEによりバターニングしてトランスファ
ゲート電極30を形成する。つづいて、トランスファゲ
ート電極30、キャパシタ電極25及びフィールド酸化
!1122をマスクとして例えばヒ素をイオン注入する
ことによりn+型ソース、ドレイン領域31.32を形
成する(同図(e)図示)。以下、全面に例えばCVD
酸化膜を堆積した後、トレイン領域上の部分を選択的に
エツチングしてコンタクトホールを開孔する。つづいて
、全面に配線金属を蒸着した後、パターニングして配線
(ビット線)を形成し。
Next, field oxidation 1! ! After forming a capacitor oxidation layer 123 on the surface of the element region surrounded by 22, a first polycrystalline silicon film 24 having a thickness of, for example, 4,000 wafers is deposited on the entire surface and doped with impurities (as shown in Fig. ψ (a)). ). Next, the first polycrystalline silicon film 24 is patterned by reactive ion etching (RIE) to form a capacitor electrode 25 having substantially vertical sidewalls, and unnecessary capacitor oxide film 23 is etched. Next, LPGVD
After depositing a CVD oxide film with a thickness of, for example, 1,500 yen on the entire surface using the CVDI method, etching is performed using RIE to form an interlayer insulating film only on the side walls of the capacitor electrode 25. I conversion 1
26 (as shown in FIG. 3(b)). Next, thermal oxidation is performed to form a thermal oxide film 27 serving as an interlayer insulating film on the side wall of the capacitor electrode 25, and only the thin oxide film formed on the surface of the substrate 21 is removed (as shown in FIG. 2C). Next, thermal oxidation is performed to form a gate oxide film 28 on the exposed surface of the substrate 21, and then a second polycrystalline silicon It!, for example, with a thickness of 4000 is applied to the entire surface. 29 and doped with impurities (as shown in FIG. 1). Next, the second polycrystalline silicon film 29 is patterned by RIE to form a transfer gate electrode 30. Next, transfer gate electrode 30, capacitor electrode 25, and field oxidation! By ion-implanting, for example, arsenic using 1122 as a mask, n+ type source and drain regions 31 and 32 are formed (as shown in FIG. 3(e)). Below, for example, CVD is applied to the entire surface.
After depositing the oxide film, a contact hole is formed by selectively etching the portion above the train region. Next, wiring metal is deposited on the entire surface and then patterned to form wiring (bit lines).

ダイナミックRAMを製造する。Manufactures dynamic RAM.

上記のような方法では、第1図(b)の工程でキャパシ
タ電極25側壁に形成されるCVD酸化8!26及び同
図(C)の工程で形成されるキャパシタ電極25上面に
形成される熱酸化膜27が1間絶縁膜となる。すなわち
、従来の熱酸化膜からなる層間絶縁膜の場合と異なり、
キャパシタ電極25側壁のフィールド酸化膜22近傍を
含むどの位置でも十分厚いCVD酸化18126が形成
される。
In the above method, the CVD oxidation 8!26 formed on the side wall of the capacitor electrode 25 in the step of FIG. 1(b) and the heat generated on the upper surface of the capacitor electrode 25 in the step of FIG. The oxide film 27 becomes a temporary insulating film. In other words, unlike the case of a conventional interlayer insulation film made of a thermal oxide film,
Sufficiently thick CVD oxide 18126 is formed at any position including the vicinity of field oxide film 22 on the sidewall of capacitor electrode 25.

したがって、層間絶縁膜の絶縁耐圧を向上させることが
でき、キャパシタ電極25−トランスファゲート電極2
9間の短絡も生じない。また、層間絶縁膜の形成はリソ
グラフィー技術を用いずに、セルファラインで形成する
ことができるので、マスク合わせずれ等を考慮する必要
がなく、より微細化したパターンにも適用することがで
きる。
Therefore, the dielectric strength of the interlayer insulating film can be improved, and the capacitor electrode 25 - transfer gate electrode 2
No short circuit occurs between the two. Further, since the interlayer insulating film can be formed by self-line without using lithography technology, there is no need to consider mask misalignment, etc., and it can be applied to even finer patterns.

なお、上記実施例では第1図(b)の工程でキ:25 ヤパシタ電極Mの側壁にCVD酸化1126を形成した
後、同図(C)の工程でキャパシタ1橿25上面に熱酸
化膜27を形成したが、この順序は逆にしてもよい。
In the above embodiment, after forming a CVD oxide film 1126 on the side wall of the capacitor electrode M in the process shown in FIG. , but this order may be reversed.

また、上記実施例ではキャパシタ電極25側壁に残存さ
せる絶縁膜としてCVD酸化膜26を用いたが、これに
限らず窒化シリコン膜等他の絶縁膜を用いてもよい。
Further, in the above embodiment, the CVD oxide film 26 was used as the insulating film left on the side wall of the capacitor electrode 25, but the present invention is not limited to this, and other insulating films such as a silicon nitride film may be used.

更に、以上の説明ではダイナミックRAMのキャパシタ
電極とトランスフ1ゲート電極間の層間絶縁膜について
述べたが、本発明方法は例えばEPROMやEEPRO
M(7)70−ティ’/グゲートとコントロールゲート
との間の層間絶縁膜等、他の半導体装置の層間絶縁膜の
形成にも同様に適用できることは勿論である。
Furthermore, in the above explanation, the interlayer insulating film between the capacitor electrode and the transfer 1 gate electrode of a dynamic RAM was described, but the method of the present invention can be applied to, for example, an EPROM or an EEPRO.
It goes without saying that the present invention can be similarly applied to the formation of interlayer insulating films of other semiconductor devices, such as interlayer insulating films between M(7)70-T'/gates and control gates.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明方法によれば、セルファライン
で層間絶縁膜を形成でき、しかも絶縁耐圧の低下や短絡
等の不良を招くことがないので、微細で特性の良好な半
導体装置を製造できる等顕著な効果を秦するものである
As detailed above, according to the method of the present invention, it is possible to form an interlayer insulating film in a self-aligned manner without causing defects such as a decrease in dielectric strength voltage or short circuits, so that it is possible to manufacture fine semiconductor devices with good characteristics. It has a remarkable effect on Qin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の実施例にお【才るダイ
ナミックRAMの製造方法を示す断面図、第2図(a)
〜(d)は従来のダイナミックRAMの製造方法を示す
断面図、第3図は従来の方法の欠点を示す説明図である
。 21・・・p型シリコン基板、22・・・フィールド酸
化膜、23・・・キャパシタ酸化膜、24・・・第1の
多結晶シリコン膜、25・・・キャパシタ電極、26・
・・CVD酸化膜、27・・・熱酸化膜、28・・・ゲ
ート酸化膜、29・・・第2の多結晶シリコン膜、30
・・・トランスファゲート電極、31.32・・・n“
型ソース、ドレイン領域。
1(a) to 1(e) are cross-sectional views showing a method of manufacturing a dynamic RAM according to an embodiment of the present invention, and FIG. 2(a)
-(d) are cross-sectional views showing a conventional method of manufacturing a dynamic RAM, and FIG. 3 is an explanatory diagram showing the drawbacks of the conventional method. 21... P-type silicon substrate, 22... Field oxide film, 23... Capacitor oxide film, 24... First polycrystalline silicon film, 25... Capacitor electrode, 26...
...CVD oxide film, 27...thermal oxide film, 28...gate oxide film, 29...second polycrystalline silicon film, 30
...Transfer gate electrode, 31.32...n"
type source, drain region.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に第1の導体層を堆積した後、パターニン
グしてほぼ垂直な側壁を有する第1の導体層パターンを
形成する工程と、全面に絶縁膜を堆積した後、異方性エ
ッチングによりエッチングして前記第1の導体層パター
ンの側壁に絶縁膜を残存させる工程と、前記第1の導体
層パターンの表面に酸化膜を形成する工程と、全面に第
2の導体層を堆積した後、パターニングして第2の導体
層パターンを形成する工程とを具備したことを特徴とす
る半導体装置の製造方法。
After depositing a first conductor layer on a semiconductor substrate, patterning is performed to form a first conductor layer pattern having substantially vertical sidewalls; and after depositing an insulating film on the entire surface, etching is performed by anisotropic etching. and leaving an insulating film on the sidewalls of the first conductor layer pattern, forming an oxide film on the surface of the first conductor layer pattern, and depositing a second conductor layer on the entire surface, A method for manufacturing a semiconductor device, comprising the step of patterning to form a second conductor layer pattern.
JP25529785A 1985-11-14 1985-11-14 Manufacture of semiconductor device Pending JPS62114240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25529785A JPS62114240A (en) 1985-11-14 1985-11-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25529785A JPS62114240A (en) 1985-11-14 1985-11-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62114240A true JPS62114240A (en) 1987-05-26

Family

ID=17276812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25529785A Pending JPS62114240A (en) 1985-11-14 1985-11-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62114240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434098A (en) * 1993-01-04 1995-07-18 Vlsi Techology, Inc. Double poly process with independently adjustable interpoly dielectric thickness

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111247A (en) * 1980-01-24 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111247A (en) * 1980-01-24 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434098A (en) * 1993-01-04 1995-07-18 Vlsi Techology, Inc. Double poly process with independently adjustable interpoly dielectric thickness

Similar Documents

Publication Publication Date Title
KR960001602B1 (en) Fabricating method of integrated circuit device
EP0348046A2 (en) Method of producing a semiconductor device
US4641170A (en) Self-aligned lateral bipolar transistors
KR910001426B1 (en) A method of manufacturing semiconductor device
JP3229665B2 (en) Method of manufacturing MOSFET
JPS6041470B2 (en) Manufacturing method of semiconductor device
JPS60124967A (en) Integrated circuit structure
JPS6156445A (en) Semiconductor device
EP0008774B1 (en) A method of manufacturing a device in a silicon wafer
JPH0580150B2 (en)
JPS62114240A (en) Manufacture of semiconductor device
KR20020096550A (en) Semiconductor device and method for fabricating the same
US5817570A (en) Semiconductor structure for an MOS transistor and method for fabricating the semiconductor structure
JPS62224077A (en) Semiconductor integrated circuit device
KR100198637B1 (en) Fabricating method of semiconductor device
JPS59112656A (en) Semiconductor device and manufacture thereof
JPS61225851A (en) Semiconductor device and manufacture thereof
JPH01215060A (en) Manufacture of memory storage
KR100209210B1 (en) Method for forming a contact of semiconductor device
JP4508397B2 (en) Manufacturing method of semiconductor device
KR100291517B1 (en) SIO structure semiconductor integrated circuit and its manufacturing method
KR950014268B1 (en) Forming method of contact
US5821165A (en) Method of fabricating semiconductor devices
JPH1126756A (en) Manufacture of semiconductor device
JPH0834309B2 (en) Method for manufacturing MOS semiconductor device