JPS6211261A - Cmos memory device - Google Patents

Cmos memory device

Info

Publication number
JPS6211261A
JPS6211261A JP60150401A JP15040185A JPS6211261A JP S6211261 A JPS6211261 A JP S6211261A JP 60150401 A JP60150401 A JP 60150401A JP 15040185 A JP15040185 A JP 15040185A JP S6211261 A JPS6211261 A JP S6211261A
Authority
JP
Japan
Prior art keywords
type well
peripheral circuit
memory cell
well
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60150401A
Other languages
Japanese (ja)
Inventor
Manabu Ando
学 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60150401A priority Critical patent/JPS6211261A/en
Publication of JPS6211261A publication Critical patent/JPS6211261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain higher operation speed of a CMOS memory by making the concentration of the second conductive type well in which a memory cell matrix is formed lower than the concentration of the second conductive type well in which a peripheral circuit is formed. CONSTITUTION:On an N-type substrate 10, a memory cell matrix is formed in a P-type well 10 and a peripheral circuit in the memory cell part is smaller than a leakage current produced in the peripheral circuit, a high-speed operation is realized by reducing diffusion capacitance by making the impurity concentrations N1 and N2 of the wells 10 and 11 respectively conform the relation N1<N2. It is to be noted that, although the larger than channel width of a MOSFET, the larger an impact ionization current; the channel width of an FET with memory cells to the extent of 64kbit is less than 1/5 of the channel widths of the elements most frequently used in the peripheral circuit and its impact ionization current is also less than 1/5 of the current in the peripheral circuit so that the relation N1<N2 can be realized and the resistance to latching-up can be increased. With this concentration composition, a CMOS memory with a high operation speed can be obtained without deteriorating the resistance to latching-up.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCMOSメモリ装置に関する〇〔従来の技術〕 一般K C?vi OSメモリ装置のレイアウトは太き
く分りてメモリセルマトリックス部分と周辺回路部分に
分けられる。メモリセルマトリックス部分はワード線、
デジット線及びメモリセルから成っておシ一方周辺回路
部分は外部よシ加えられるアドレス信号に対応するメモ
リセルを選択し、そのメモリセルにデータを書き込み又
り耽む出すという動作を行なうための回路部分から成っ
ている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a CMOS memory device.〇 [Prior Art] General KC? The layout of a viOS memory device can be roughly divided into a memory cell matrix portion and a peripheral circuit portion. The memory cell matrix part is a word line,
The peripheral circuitry consists of a digit line and a memory cell, while the peripheral circuitry selects a memory cell corresponding to an externally applied address signal and writes or outputs data to that memory cell. consists of parts.

ところでMOSFETを用いるCMOSメモリ装置ri
第一導電型の基板に第−導を型とは相補関係にある第二
導を型のシェルを形成し、第−導%:型基板に第二導1
!型のMOSFETを、そして第二導を型ウェル内に第
一導電型のMOSFETを形成している。以下N型基板
にP型ウェルを設け、メモリセルとデジット線間でデー
タをやシ取シするためのトランスファーゲートとしてN
チャンネル型M O8F B ’1”を用いる場合につ
いて説明するがP型基板にN型りエルを設は上記トラン
スファーゲートとしてPチャンネルMO8FETを用い
る場合ても同様である。
By the way, CMOS memory device ri using MOSFET
A mold shell is formed with a second conductor having a complementary relationship with the first conductivity type substrate, and the second conductivity %: the second conductivity 1
! A first conductivity type MOSFET is formed in the second conductivity type well. Below, a P-type well is provided on the N-type substrate, and the N-type well is used as a transfer gate to transfer data between the memory cell and the digit line.
A case will be described in which a channel type MO8F B '1'' is used, but the same applies to the case where a P channel MO8FET is used as the transfer gate.

従来、CMOSメモリ装置はP型ウェルの不純物線度が
チップ内のすべてのPfiウェルにわたって同一でめっ
た。第2図はCMOSメモリ装置平面図でib、わかシ
やすくする為にウェル領域に斜線を施しである。
Conventionally, in CMOS memory devices, the impurity density of the P-type well is rarely the same across all Pfi wells in the chip. FIG. 2 is a plan view of a CMOS memory device, and the well region is shaded to make it easier to see.

第2図において、20はメモリセルマトリックスが形成
されているP型ウェル、21は周辺回路が形成され1い
るP型ウェル、22は周辺回′路が形成されているN型
基板である。従来は20のP型ウェルも21のP型ウェ
ルも同一の不純物濃度であった。
In FIG. 2, 20 is a P-type well in which a memory cell matrix is formed, 21 is a P-type well in which a peripheral circuit is formed, and 22 is an N-type substrate in which a peripheral circuit is formed. Conventionally, the 20th P-type well and the 21st P-type well had the same impurity concentration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のcMosメモリ装&はP型ウェルの不純
物濃度がチップ内で一定であるため、動作速度が遅いと
いう欠点があった。以下にその理由を説明する。
The above-mentioned conventional cMOS memory devices have a drawback of slow operation speed because the impurity concentration of the P-type well is constant within the chip. The reason is explained below.

まずP型9エルの不純物濃度が半導体メモリ装置の特性
にとのように関与しているかを述べる。
First, it will be described how the impurity concentration of P-type 9L is related to the characteristics of a semiconductor memory device.

まず第一に動作速度であるが、動作速度は回路中の静電
容量を充放電するために擬する時間が短い11と速い。
First of all, the operating speed is fast, with a short simulation time of 11 to charge and discharge the capacitance in the circuit.

従って当然のことながら充放電すべき静電容量が/J%
さいほど速い。靜を容量は大別すると、CM08FET
のケート容量、CM08F)、Tのソース、ドレイン拡
散層容量、その他の配線容量の3つに分けることができ
、このうちNチャンネルMO8FETのソース・ドレイ
ン拡散層容量がP型ウェルの不純物濃度に依存する。
Therefore, it goes without saying that the capacitance to be charged and discharged is /J%
Very fast. The silence and capacity can be roughly divided into CM08FET.
It can be divided into three types: the gate capacitance of MO8FET (CM08F), the source and drain diffusion layer capacitance of T, and the other interconnect capacitance. Of these, the source/drain diffusion layer capacitance of N-channel MO8FET depends on the impurity concentration of the P-type well. do.

いまP型つェル円に形成されたN型拡散層の靜を容量を
Cdとし、P型ウェルの不純物濃度をNとすると aocJK という関係が成シ立つことが知られている。すなわち、
不純物濃度が高いほど拡散層容量は増加し従って動作速
度が遅くなる。
It is known that if the capacitance of the N-type diffusion layer formed in the P-type well circle is Cd, and the impurity concentration of the P-type well is N, the relationship aocJK holds true. That is,
The higher the impurity concentration, the greater the diffusion layer capacitance and therefore the slower the operating speed.

特にデジット線は多数のメモリセルが接続されているた
め静電容量が大きく、そのうちメモリセルのトランスフ
ァーゲートMO8FETのソース(或はドレイン〕の拡
散層容量は約6〜7割を占めている。またメモリセルに
用いられるMOSFETはメモリセルサイズを小さくす
る必要から、最小限のチャンネル幅となっているため読
み出し時にメモリセルデータをデジッ)&に伝達する速
度は拡散層容量が大きいと特に大きく遅れてし暑う。
In particular, the digit line has a large capacitance because it is connected to a large number of memory cells, of which the diffusion layer capacitance of the source (or drain) of the transfer gate MO8FET of the memory cell accounts for about 60 to 70%. MOSFETs used in memory cells have a minimum channel width because it is necessary to reduce the memory cell size, so the speed at which memory cell data is transmitted digitally during reading is significantly delayed, especially when the diffusion layer capacitance is large. It's hot.

従って動作速度の高速化のためにiP型タウエル不純物
濃度を低くした方がよいわけであるが、そうするとラッ
チアップ耐圧が悪化する。以下ラッチアップ現象につい
て第3図と第4図を用いて説明する。
Therefore, in order to increase the operating speed, it is better to lower the iP type Tawell impurity concentration, but this will deteriorate the latch-up breakdown voltage. The latch-up phenomenon will be explained below with reference to FIGS. 3 and 4.

第3図HCMOSメモリ装置の断面図である。FIG. 3 is a cross-sectional view of the HCMOS memory device.

第3図において、30はへ型基板、31はP型ウェル3
28,32D龜PチャンネルMO8FETのソース、ド
レイン拡散層、338,33DはNチャンネルMO8F
ETのソース、ドレイン拡散層、34はゲート醒化膜、
35はポリシリコンからなるゲー)!極、36はN型基
板30を電源電位にするための基板コンタクト、37は
P型ウェルを接地電位にするだめのウェルコンタクト、
38は入力端子、39は出力端子、50社電源である。
In FIG. 3, 30 is a negative-type substrate, 31 is a P-type well 3
28, 32D are source and drain diffusion layers of P-channel MO8FET, 338, 33D are N-channel MO8F
ET source and drain diffusion layers; 34 is a gate diffusion film;
35 is a game made of polysilicon)! 36 is a substrate contact for bringing the N-type substrate 30 to a power supply potential; 37 is a well contact for bringing the P-type well to ground potential;
38 is an input terminal, 39 is an output terminal, and 50 is a power source.

第4図は第3図に示すCMOSメモリ装置の回路図であ
る。
FIG. 4 is a circuit diagram of the CMOS memory device shown in FIG. 3.

第4図において、40はN型基板30の基板抵抗、41
はP型りエル31のウェル抵抗、44はP型ウェル31
に流れ込む洩れ電流を等価的に表わす抵抗、42はN型
基板30をコレクタ、P星つェル31をベース、Nチャ
ンネルMO8FETのソース拡散層338をエミッタと
するNPNバイホーラトランジスタ、43はPチャンネ
ルトランジスタのソース拡散層328をエミッタ、N型
基板30をベース、P型ウェル31をコレクタとするP
NPバイポーラトランジスタである。
In FIG. 4, 40 is the substrate resistance of the N-type substrate 30, and 41
is the well resistance of the P-type well 31, and 44 is the P-type well 31.
42 is an NPN bihole transistor whose collector is the N-type substrate 30, the P-star transistor 31 is the base, and the emitter is the source diffusion layer 338 of the N-channel MO8FET; 43 is the P-channel transistor; A P transistor with the source diffusion layer 328 as the emitter, the N-type substrate 30 as the base, and the P-type well 31 as the collector.
It is an NP bipolar transistor.

いま、P型りエル31に流れ込む洩れ電流がないとすれ
は一路中に存在するすべてのP−N接合は逆バイアスさ
れているためPNP )ランジスタ43、NPN)ラン
ジスタ42はオフとなっておシラッチアップh起きない
Now, if there is no leakage current flowing into the P-type relay 31, all the P-N junctions in the path are reverse biased, so the PNP) transistor 43 and the NPN) transistor 42 are turned off, and the transistor 42 is turned off. Latch-up does not occur.

しかしNチャンネルMO8FETが動作する時に起きる
インパクトイオン化等によってP型ウェル31Kt源5
0から抵抗44を通して洩れ電流が流れ込むとウェル抵
抗41のために洩れ電流の発生源付近の電位が接地電位
よシ上昇する。電位上昇は洩れ電流値と洩れ電流が生じ
ている部分とつエルコンタクト37間のウェル抵抗の槓
で決まるので洩れ電流が増加するすなわち等価抵抗44
が小さくなると電位上昇も大きくなる。電位上昇が犬き
くなるとやがてP型ウェル31とNチャンネルMO8F
ETの接地電位に接続されているソース拡散層338と
の間のPN接合が順バイアス状態になシj@方向電流が
流れる。
However, due to impact ionization that occurs when the N-channel MO8FET operates, the P-type well 31Kt source 5
When a leakage current flows from the well resistor 41 through the resistor 44, the potential near the source of the leakage current rises above the ground potential due to the well resistor 41. The potential increase is determined by the leakage current value and the well resistance between the part where the leakage current occurs and the well contact 37, so the leakage current increases, that is, the equivalent resistance 44
The smaller the value, the greater the potential rise. As the potential rise becomes steeper, P-type well 31 and N-channel MO8F
The PN junction between the ET and the source diffusion layer 338 connected to the ground potential is in a forward bias state, and a current flows in the direction.

すなわち、第4図におけるNPN トランジスタ420
ペース電流が流れNPN)ランジスタ42がオンとなる
。従ってコレクタに相当するN型基板30からNチャン
ネルMO8FETのソース拡散層338に向ってコレク
タ電流が流れ込むことになる。コレクタ電流は基板コン
タクト36から基板抵抗40を通してPaウェル31に
流れ込むのでN型基板30内で電位降下が発生する。す
るとP型MO8FETO電源電位に接続されているソー
ス拡散層328をエミッタとし基板をペースとするPN
P)ランジスタ43のペース・エミッタ間のPN接合が
順バイアスされることにな、9、PNPトランジスタ4
3がオンとなる。PNP)ランジスタ43がオンとなる
とPfiウェル電位は更に上昇し、それがまたh型基板
電位の低下をもたらす。
That is, NPN transistor 420 in FIG.
A pace current flows and the NPN transistor 42 is turned on. Therefore, a collector current flows from the N-type substrate 30 corresponding to the collector toward the source diffusion layer 338 of the N-channel MO8FET. Since the collector current flows from the substrate contact 36 to the Pa well 31 through the substrate resistor 40, a potential drop occurs within the N-type substrate 30. Then, the source diffusion layer 328 connected to the P-type MO8FETO power supply potential is used as the emitter, and the substrate is used as the base.
P) The PN junction between the pace emitter of the transistor 43 is forward biased, and the PNP transistor 4
3 is turned on. When the PNP) transistor 43 is turned on, the Pfi well potential further increases, which also causes the h-type substrate potential to decrease.

この様にして、電源から接地を位に向けてN型基板30
からP型ウェル31を通して大電流が流れる。これがラ
ッチアップ現象である。
In this way, turn the N-type board 30 from the power supply to the ground.
A large current flows from the P-type well 31 through the P-type well 31. This is the latch-up phenomenon.

このようにラッチアップは洩れ電流の存在と、それによ
るP型ウェル31の電位上昇、N型基板20の電位低下
により1起きるものである。P型ウェル31の電位上昇
N型基板30の電位低下は洩れ電流が大きいほど、又、
基板、ウェル抵抗40゜41が大きい#1ど大きい。一
方基板ρエル抵抗40゜41は、N型基板30及びP型
ウェル31の不純物濃度にほぼ反比例する。すなわち、
N型基板30又はP型ウェル31の不純物濃度が低い#
1ど、基板、ウェル抵抗40.41が高くなシ、従って
2ツチアツプは発生しやすくなる。
In this way, latch-up occurs due to the presence of leakage current, the resulting rise in the potential of the P-type well 31, and the drop in the potential of the N-type substrate 20. The potential increase of the P-type well 31 and the decrease of the potential of the N-type substrate 30 increase as the leakage current increases.
#1 has a large substrate and well resistance of 40°41. On the other hand, the substrate ρ-well resistance 40° 41 is approximately inversely proportional to the impurity concentration of the N-type substrate 30 and the P-type well 31. That is,
The impurity concentration of the N-type substrate 30 or P-type well 31 is low #
First, the substrate and well resistances 40 and 41 are high, so double-up is more likely to occur.

以上説明した様に高速動作という観点から見ると不純物
濃度が低い方が好ましく、ラッチアップという観点から
見ると不純物濃度は高い方が好ましいことになる。
As explained above, from the viewpoint of high-speed operation, it is preferable that the impurity concentration is low, and from the viewpoint of latch-up, it is preferable that the impurity concentration is high.

近年半導体メモリ装置は高密度化が著しく進んでおシこ
れにつれて使用するMOSFETのチャンネル長り、−
を丁まず短くなシ、又、ゲート酸化膜厚は薄くなシつつ
ある。この結果MO8FETが動作する時に発生するイ
ンパクトイオン化電流は著しく増加しておシ、ラッチア
ップを防ぐために基板及びウェルの不純物濃度は高くな
ってきている。
In recent years, the density of semiconductor memory devices has significantly increased, and as a result, the channel length of the MOSFETs used has increased.
The gate oxide film thickness is becoming shorter and shorter, and the gate oxide film thickness is becoming thinner. As a result, the impact ionization current generated when the MO8FET operates has increased significantly, and the impurity concentration in the substrate and well has become high to prevent latch-up.

このため高速動作の実現が困難であるという欠点があっ
た。
Therefore, there is a drawback that it is difficult to realize high-speed operation.

本発明の目的は、上記欠点を除去し、高速動作が1」能
でしかもラッチアップ現象の発生しにくいCMOSメモ
リ装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a CMOS memory device which eliminates the above drawbacks, is capable of high-speed operation, and is less prone to latch-up phenomena.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のCMOSメモリ装置は、第−導*mの半導体基
板に第二導電型のウェルを形成し、この第二導電型ウェ
ル内にメそリセルマトリックスと周辺回路とが形成され
ているものであって、このメモリセルマトリックスが形
成されている第二導を型ウェルの不純物濃度を周辺回路
部分が形成され1いる第二導電型ウェルの不純物飯度よ
シ低くしたものである。
The CMOS memory device of the present invention is one in which a second conductivity type well is formed in a -th conductivity*m semiconductor substrate, and a mesoricell matrix and a peripheral circuit are formed in the second conductivity type well. The impurity concentration of the second conductive type well in which the memory cell matrix is formed is lower than that of the second conductive type well in which the peripheral circuit portion is formed.

〔実施例〕〔Example〕

次に本発明の実施例について図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例の平面図である。FIG. 1 is a plan view of one embodiment of the present invention.

第1図において、10はメモリセルマトリックスが形成
され1いるP型ウェル、11はメモリセルマトリックス
以外の周辺回路が形成されているP型ウェル、12は周
辺回路が形成されているN型基板であシ、メモリセルマ
トリックスが形成されているP型ウェル10の不純物濃
度をN1とし。
In FIG. 1, 10 is a P-type well in which a memory cell matrix is formed, 11 is a P-type well in which a peripheral circuit other than the memory cell matrix is formed, and 12 is an N-type substrate in which a peripheral circuit is formed. Assume that the impurity concentration of the P-type well 10 in which the memory cell matrix is formed is N1.

周辺(ロ)路が形成されているP型ウェル11の不純物
濃度をN、とするとNI<Nzの関係を有している。
If the impurity concentration of the P-type well 11 in which the peripheral (b) path is formed is N, then there is a relationship of NI<Nz.

このようにメモリセルマトリックスの形成され1いるP
型ウェル10の不純物濃度を低くできる理由仁、メモリ
セル部分で発生する洩れ電流が周辺回路で発生する洩れ
電流よシも小さいためであるO ラッチアップの原因はMOSFETでのインパクトイオ
ン化による洩れ電流が主であ、9、MOSFETでのイ
ンパクトイオン化電流はMO8P″ETのチャンネル電
流の大きさに比例するから、MOSFETのチャンネル
幅が大きいほどインパクトイオン化電流は大きくなる。
In this way, the memory cell matrix is formed.
The reason why the impurity concentration in the mold well 10 can be lowered is because the leakage current generated in the memory cell is smaller than the leakage current generated in the peripheral circuitry.The cause of latch-up is the leakage current due to impact ionization in the MOSFET. Mainly, 9. Since the impact ionization current in a MOSFET is proportional to the magnitude of the channel current of MO8P''ET, the larger the channel width of the MOSFET, the larger the impact ionization current.

通常、64キロビット程度のメモリ装置でLメそりセル
のMOSFETのチャンネル幅は周辺回路で最も多く使
用されるMOSFETのチャンネル幅の115以下であ
るから、メモリセルでのインパクトイオン化電流は周辺
回路の115以下である。
Normally, in a memory device of about 64 kilobits, the channel width of the L-mesh cell MOSFET is 115 or less than the channel width of the MOSFET most often used in peripheral circuits, so the impact ionization current in the memory cell is 115 It is as follows.

従って、メモリセルマトリックスの形成されているP型
ウェル10の不純物濃度を周辺回路の形成されているP
fiウェlL/11の不純物濃度よシ低くすることがで
きる。
Therefore, the impurity concentration of the P-type well 10 where the memory cell matrix is formed is set to
The impurity concentration of the fi well IL/11 can be lowered.

尚、上記実施例ではN型基板を用いた場合について説明
したがP型基板を用いてもよいことは勿論である。
Incidentally, in the above embodiment, the case where an N-type substrate is used has been described, but it goes without saying that a P-type substrate may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれはメモリセルマトリ
ックスが形成される第二導電型ウェルの不純物濃度をメ
モリセルマトリックス以外の周辺回路が形成される第二
導を型ウェルの不純物濃度より低くすることにより、ラ
ッチアップに対する強さを悪化させることなしによシ高
速動作が可能なCMOSメモリ装置が得られる。
As explained above, according to the present invention, the impurity concentration of the second conductivity type well in which the memory cell matrix is formed is lower than the impurity concentration of the second conductivity type well in which peripheral circuits other than the memory cell matrix are formed. As a result, a CMOS memory device that can operate at high speed without deteriorating its resistance to latch-up can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1本発明の一実施例の平面図、第2図は従来のC
MOSメモリ装置の平面図、第3図はラッチアップ現象
を説明するためのCMOSメモリ装置の断面図、第41
扛第3図に示すCMOSメモリ装置の等価回路図である
。 10.20・・・・・・メモリセルマトリックスが形成
されているP型ウェル、11.21・・・・・・周辺回
路が形成されているP型ウェル、12.22・・・・・
・周辺回路が形成されているN型基板、30・・・・・
・N型基板、31・・・・・・P型ウェル、328,3
2D・・・・・・PチャンネルMO8FETのソニス、
ドレイン拡散層、31)、33D・・・・・・Nチャン
ネル型MO8FETのソース、ドレイン拡散層、34・
・・・・・ゲート酸化膜、35・・・・・・ゲート電極
、36・・・・・・基板コンタクト、37・・・・・・
ウェルコンタクト、38・・・・・・入力端子、39・
・・・・・出力端子、40・・・・・・基板抵抗、41
・・・・・・ウェル抵抗%42・・・・・・Nチャンネ
ルMO8FETのソース拡散層をエミッタ、P型ウェル
をベース。 N型基板をコレクタとするNPNバイざ−ラトランジス
タ、43・・・・・・Pチャンネルトランジスタのソー
ス拡散層をエミッタ、N型基板をペース、Pをウェルを
コレクタとするPNPバイポーラトランジスタ、44・
・・・・・洩れ電流を等測的に表わす抵抗、50・・・
・・・電源。 代理人 弁理士  内 原   晋1″′第 1  図 茅 2 図 茅 3  ス a 半 4 図
Fig. 1 is a plan view of an embodiment of the present invention, Fig. 2 is a plan view of a conventional C
FIG. 3 is a plan view of the MOS memory device, and FIG. 41 is a cross-sectional view of the CMOS memory device for explaining the latch-up phenomenon.
FIG. 4 is an equivalent circuit diagram of the CMOS memory device shown in FIG. 3; 10.20... P-type well in which memory cell matrix is formed, 11.21... P-type well in which peripheral circuit is formed, 12.22...
・N-type substrate on which peripheral circuits are formed, 30...
・N-type substrate, 31...P-type well, 328,3
2D...P channel MO8FET Sonis,
Drain diffusion layer, 31), 33D... Source and drain diffusion layer of N-channel MO8FET, 34.
...Gate oxide film, 35...Gate electrode, 36...Substrate contact, 37...
Well contact, 38... Input terminal, 39.
...Output terminal, 40...Substrate resistance, 41
...Well resistance %42...The source diffusion layer of N-channel MO8FET is the emitter, and the P-type well is the base. NPN bipolar transistor with N-type substrate as collector, 43... PNP bipolar transistor with source diffusion layer of P-channel transistor as emitter, N-type substrate as base, P well as collector, 44.
...Resistance that expresses leakage current isometrically, 50...
···power supply. Agent Patent Attorney Susumu Uchihara 1''' 1st figure 2 3rd half 4th figure

Claims (1)

【特許請求の範囲】[Claims]  第一導電型の半導体基板に第二導電型のウェルを形成
し該第二導電型ウェル内にメモリセルマトリックスと周
辺回路とを形成してなるCMOSメモリ装置において、
前記メモリセルマトリックスが形成されている第二導電
型ウェルの不純物濃度を周辺回路が形成されている第二
導電型ウェルの不純物濃度より低くしたことを特徴とす
るCMOSメモリ装置。
In a CMOS memory device, a well of a second conductivity type is formed in a semiconductor substrate of a first conductivity type, and a memory cell matrix and a peripheral circuit are formed in the well of the second conductivity type,
A CMOS memory device characterized in that the impurity concentration of the second conductivity type well in which the memory cell matrix is formed is lower than the impurity concentration in the second conductivity type well in which the peripheral circuit is formed.
JP60150401A 1985-07-08 1985-07-08 Cmos memory device Pending JPS6211261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150401A JPS6211261A (en) 1985-07-08 1985-07-08 Cmos memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150401A JPS6211261A (en) 1985-07-08 1985-07-08 Cmos memory device

Publications (1)

Publication Number Publication Date
JPS6211261A true JPS6211261A (en) 1987-01-20

Family

ID=15496165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150401A Pending JPS6211261A (en) 1985-07-08 1985-07-08 Cmos memory device

Country Status (1)

Country Link
JP (1) JPS6211261A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194565A (en) * 1981-05-25 1982-11-30 Toshiba Corp Semiconductor memory device
JPS5848959A (en) * 1981-09-18 1983-03-23 Toshiba Corp Semiconductor device
JPS59130462A (en) * 1983-10-28 1984-07-27 Hitachi Ltd Complementary type metal oxide semiconductor memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194565A (en) * 1981-05-25 1982-11-30 Toshiba Corp Semiconductor memory device
JPS5848959A (en) * 1981-09-18 1983-03-23 Toshiba Corp Semiconductor device
JPS59130462A (en) * 1983-10-28 1984-07-27 Hitachi Ltd Complementary type metal oxide semiconductor memory

Similar Documents

Publication Publication Date Title
US4769561A (en) Bipolar transistor-field effect transistor composite circuit
JP3400215B2 (en) Semiconductor device
US4672584A (en) CMOS integrated circuit
US4616243A (en) Gate protection for a MOSFET
JPH06163824A (en) Semiconductor integrated circuit
US5831316A (en) Multi-finger MOS transistor element
US20060189189A1 (en) Electrostatic discharge circuit
JP2003007833A (en) Semiconductor device
US4714876A (en) Circuit for initiating test modes
US6414360B1 (en) Method of programmability and an architecture for cold sparing of CMOS arrays
JPH09102551A (en) Semiconductor device
US6707653B2 (en) Semiconductor controlled rectifier for use in electrostatic discharge protection circuit
JPS6211261A (en) Cmos memory device
JPH09326685A (en) Semiconductor device
JPS60231356A (en) Complementary type metal-oxide-film semiconductor integrated circuit device
JPH0532908B2 (en)
JP3274561B2 (en) Semiconductor integrated circuit
JP2001291775A (en) Method for designing layout of integrated circuit
JPS6193655A (en) Semiconductor device
KR100476699B1 (en) Electrostatic discharge protection circuit and method of manufacturing the same
KR20020013124A (en) Elector static discharge protection circuit
JPH05235344A (en) Semiconductor integrated circuit device
KR20020055936A (en) Electrostatic discharge protection circuit
JP3034531B2 (en) Semiconductor integrated circuit
JPH06188380A (en) Semiconductor integrated circuit device