JPS62108772A - Manufacture of cubic boron nitride sintered body - Google Patents

Manufacture of cubic boron nitride sintered body

Info

Publication number
JPS62108772A
JPS62108772A JP60247933A JP24793385A JPS62108772A JP S62108772 A JPS62108772 A JP S62108772A JP 60247933 A JP60247933 A JP 60247933A JP 24793385 A JP24793385 A JP 24793385A JP S62108772 A JPS62108772 A JP S62108772A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
sintered
temperature
pyrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60247933A
Other languages
Japanese (ja)
Other versions
JPH0445474B2 (en
Inventor
實 赤石
脩 福長
卓 川崎
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Denki Kagaku Kogyo KK filed Critical National Institute for Research in Inorganic Material
Priority to JP60247933A priority Critical patent/JPS62108772A/en
Publication of JPS62108772A publication Critical patent/JPS62108772A/en
Publication of JPH0445474B2 publication Critical patent/JPH0445474B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマイクロ波素子等の電子装置用ヒートシンクお
よび切削工具インサートとして好適な特性を有する緻密
な立方晶窒化ほう素焼粘体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a dense cubic boron nitride sintered viscous material having properties suitable for use as a heat sink for electronic devices such as microwave devices and as a cutting tool insert. be.

(従来の技術) 立方晶窒化ほう素はダイヤモンドに近い硬度および熱伝
導率を有し、しかも電気絶縁性にも優れていることから
、従来からの難削材用砥粒としての用途に加え、マイク
ロ波素子等の電子装置用ヒートシンクとしての利用が種
々試みられており、特に立方晶窒化ほう素の緻密焼結体
が注目されている。またこのような焼結体は切削工具イ
ンサートとしても優れた特性を発揮することが期待され
、立方晶窒化ほう素焼粘体の開発が進められている。
(Prior technology) Cubic boron nitride has hardness and thermal conductivity close to that of diamond, and also has excellent electrical insulation properties, so in addition to its conventional use as abrasive grains for difficult-to-cut materials, Various attempts have been made to use them as heat sinks for electronic devices such as microwave devices, and dense sintered bodies of cubic boron nitride have attracted particular attention. Furthermore, it is expected that such a sintered body will exhibit excellent properties as a cutting tool insert, and development of cubic boron nitride sintered bodies is progressing.

従来からの立方晶窒化ほう素焼粘体の製造方法としては
、 (イ)触媒を使用せずに低結晶性の六方晶窒化ほう素粉
束を出発原料として高温高圧条件下に処理する方法(温
度: 1250℃以上、好ましくは1450〜1600
℃以上、圧カニ 5Qkbar以上;マテリアルス・リ
サーチ・ブリチア (Mat、Res、Bull、) 
7 、999〜1004 (1972))。
Conventional methods for producing cubic boron nitride sintered viscous materials include (a) a method in which low-crystalline hexagonal boron nitride powder is treated as a starting material under high-temperature and high-pressure conditions without using a catalyst (temperature: 1250°C or higher, preferably 1450-1600
℃ or more, pressure crab 5Qkbar or more; Materials Research Buricia (Mat, Res, Bull,)
7, 999-1004 (1972)).

(ロ)低結晶性の六方晶窒化ほう素粉束にAIN等を添
加混合したものを出発原料として高温高圧条件下に処理
する方法(温度: 1700℃〜1800℃、圧カニ 
75 k b a r ;特開昭49−22925号公
報)。
(b) A method in which a low-crystalline hexagonal boron nitride powder bundle mixed with AIN, etc. is used as a starting material and treated under high temperature and high pressure conditions (temperature: 1700°C to 1800°C, pressure crab).
75 kbar; JP-A-49-22925).

(ハ)気相から析出させた六方晶窒化ほう素である熱分
解窒化ほう素(パイロリティックボロンナイトライド)
の成型体を直接高温高圧下に処理する方法(温度: 1
800℃以上、好ましくは2100〜2500℃、圧力
60kbar以上、好ましくは55kbar以上;特開
昭54−33510号公報)。
(c) Pyrolytic boron nitride (pyrolytic boron nitride), which is hexagonal boron nitride precipitated from the gas phase.
A method of directly processing the molded body under high temperature and high pressure (temperature: 1
800° C. or higher, preferably 2100 to 2500° C., and a pressure of 60 kbar or higher, preferably 55 kbar or higher; JP-A-54-33510).

(ニ)六方晶窒化ほう素のホットプレス焼結体にMg5
B2L等の触媒を拡散含浸させたものを高温高圧処理す
る方法(温度:1510〜1550℃、圧力5.2〜5
.7GPa ;特公昭60−28782号公報)。
(d) Mg5 in a hot-pressed sintered body of hexagonal boron nitride
A method in which a catalyst such as B2L is diffused and impregnated with high temperature and high pressure treatment (temperature: 1510-1550°C, pressure 5.2-5
.. 7 GPa; Japanese Patent Publication No. 60-28782).

等が知られている。etc. are known.

(発明が解決しようとする問題点) しかし、これらの方法にはそれぞれ問題があり、これら
の方法によって得られる立方晶窒化ほう素はヒートシン
ク用立方晶窒化ほう素焼粘体を工業的に製造するには不
適当であった。まず、(イ)の方法では高温高圧処理後
の立方晶窒化ほう素マトリックス中に未変換の六方晶窒
化ほう素が残留し、立方晶窒化ほう素焼粘体の熱的、機
械的性質を著しく低下させることが起こりやすい。これ
を避けるには、例えば1700℃、7万気圧の非常に厳
しい高温高圧処理が必要になるので、この方法は工業的
生産に不適当である。また(口)の方法では添加したA
1等が触媒として作用するので(イ)の方法よりも穏や
かな高温高圧条件下に立方晶窒化ほう素への変換が可能
であるが、AIN添加量をlθ〜20重量%程度にする
必要があり、立方晶窒化ほう素変換への後に多量のAI
Nが焼結体中に残留するので立方晶窒化ほう素の有する
優れた熱伝導性が損なわれる欠点がある。くハ)の方法
では緻密で高熱伝導性の立方晶窒化ほう素焼粘体を製造
できるが、圧力5万気圧以上、温度1800℃以上の厳
しい条件が必要になるので、この方法は(イ)の方法と
同様に工業的生産に不適当である。(ニ)の方法では触
媒が原料六方晶窒化ほう素中に極めて均一に含まれるの
で、穏やかな高圧高温条件下に均一な立方晶窒化ほう素
焼粘体が得られる特長があるが、六方晶窒化ほう素のホ
ットプレス焼結体は酸化物形態の結合剤を含んでおり、
そのままでは立方晶窒化ほう素焼粘体とした時の組織の
均一性が阻害されるので、予めホットプレス焼結体を不
活性雰囲気下に高温で熱処理して酸素含有量を減らす工
程が必要になる。この熱処理としては、例えば窒素気流
中で2100℃において2時間以上の加熱を行う。上述
のように、(ニ)の方法では特性の優れた立方晶窒化ほ
う素焼粘体が穏やかな高圧高温条件下に得られるが、こ
の方法は長時間の脱酸素前処理工程が必要になる欠点が
ある。
(Problems to be Solved by the Invention) However, each of these methods has its own problems, and the cubic boron nitride obtained by these methods is not suitable for industrially producing cubic boron nitride sintered viscous bodies for heat sinks. It was inappropriate. First, in method (a), unconverted hexagonal boron nitride remains in the cubic boron nitride matrix after high-temperature and high-pressure treatment, which significantly deteriorates the thermal and mechanical properties of the cubic boron nitride sintered viscous body. things tend to happen. In order to avoid this, extremely severe high temperature and high pressure treatment at 1700° C. and 70,000 atmospheres is required, so this method is unsuitable for industrial production. In addition, in the method (mouth), the added A
Since 1 etc. act as a catalyst, conversion to cubic boron nitride is possible under milder high temperature and high pressure conditions than in method (a), but the amount of AIN added needs to be about lθ ~ 20% by weight. Yes, a large amount of AI after conversion to cubic boron nitride
Since N remains in the sintered body, the excellent thermal conductivity of cubic boron nitride is impaired. Although method (c) can produce a dense cubic boron nitride sintered viscous material with high thermal conductivity, it requires severe conditions such as a pressure of 50,000 atmospheres or more and a temperature of 1,800°C or more, so this method is different from method (a). as well as unsuitable for industrial production. In method (d), the catalyst is extremely uniformly contained in the raw material hexagonal boron nitride, so a uniform cubic boron nitride sintered viscous body can be obtained under mild high-pressure and high-temperature conditions. The raw hot-pressed sintered body contains a binder in the form of an oxide,
If the cubic boron nitride sintered viscous body is made into a sintered viscous body, the uniformity of the structure will be impaired, so a step of heat-treating the hot-pressed sintered body at a high temperature in an inert atmosphere to reduce the oxygen content is required in advance. As this heat treatment, for example, heating is performed at 2100° C. for 2 hours or more in a nitrogen stream. As mentioned above, in method (d), a cubic boron nitride sintered viscous material with excellent properties can be obtained under mild high-pressure and high-temperature conditions, but this method has the disadvantage of requiring a long deoxidation pretreatment step. be.

(問題点を解決するための手段) 本発明者等は、従来の立方晶窒化ほう素焼粘体の製造方
法が有する上述の欠点を解決することを目的に研究を重
ね、特別の前処理を必要とせずに穏やかな高温高圧条件
下において、特性の低下を招く不純物含有量が極めて少
ない立方晶窒化ほう素緻密焼結体を製造する方法を見い
出した。
(Means for Solving the Problems) The present inventors have conducted extensive research with the aim of solving the above-mentioned drawbacks of conventional methods for producing cubic boron nitride sintered viscous materials, and have found that We have discovered a method for manufacturing dense cubic boron nitride sintered bodies under mild conditions of high temperature and high pressure, without causing any problems, with extremely low content of impurities that could cause deterioration of properties.

本発明の立方晶窒化ほう素焼粘体の製造方法は、熱分解
窒化ほう集成型体にアルカリ金属もしくはアルカリ土類
金属の窒化物もしくはほう窒化物を0.1〜5モ/し%
の割合で拡散含有させ、これを立方晶窒化ほう素の熱力
学的安定条件下に、1300℃以上の温度および4万気
圧以上の圧力において立方晶窒化ほう素に変換すること
を特徴とする。
The method for producing a cubic boron nitride sintered viscous body of the present invention includes adding 0.1 to 5 mo/% of an alkali metal or alkaline earth metal nitride or boron nitride to a pyrolytic boron nitride assembly.
It is characterized in that it is diffused into cubic boron nitride at a ratio of 1,300° C. or higher and at a pressure of 40,000 atmospheres or higher under thermodynamically stable conditions for cubic boron nitride.

本発明で用いる熱分解窒化ほう素(PBN)成型体は、
化学気相蒸着刃(CVD)法によって合成される高配向
性の六方晶窒化ほう素で、厚さ数u程度の板等として市
販されている。CVD法による熱分解窒化ほう素の合成
は、例えば米国特許第3,152、006号に開示され
ているように、三塩化ほう素(BCl2)等のハロゲン
化ほう素ガスとアンモニアガスとを原料とし、50To
rr以下の減圧下に1400〜2300℃の温度で、黒
鉛等の基材の表面上に窒化ほう素を気相から析出させる
ことにより達成され、この方法により極めて高純度の熱
分解窒化ほう集成型体が得られる。
The pyrolytic boron nitride (PBN) molded body used in the present invention is
It is a highly oriented hexagonal boron nitride synthesized by chemical vapor deposition (CVD), and is commercially available as a plate with a thickness of several micrometers. The synthesis of pyrolytic boron nitride by the CVD method uses boron halide gas such as boron trichloride (BCl2) and ammonia gas as raw materials, as disclosed in, for example, U.S. Pat. No. 3,152,006. Toshi, 50To
This is achieved by depositing boron nitride from the gas phase on the surface of a substrate such as graphite at a temperature of 1400 to 2300°C under reduced pressure below rr, and this method produces an extremely high purity pyrolytic boron nitride assembly. You get a body.

このような熱分解窒化ほう素はその析出成長方向に対し
て垂直な方向に層状組織が拡がった異方性の非常に強い
構造を有し、しかも六方晶窒化ほうS結晶格子のC軸は
熱分解窒化ほう素の析出成長方向く即ち厚さ方向)に高
度に配向している。
Such pyrolytic boron nitride has a highly anisotropic structure with a layered structure extending perpendicular to the direction of precipitation growth, and the C axis of the hexagonal boron nitride S crystal lattice is It is highly oriented in the direction of precipitation growth of decomposed boron nitride (ie, in the thickness direction).

熱分解窒化ほう素は空気中で非常に安定で、市販の六方
晶窒化ほう素粉束に見られる表面酸化現象を無視できる
ので、特別な処理および取扱いを行わなくても酸素含有
量の極めて少ない窒化ほう素数型体と見なすことができ
る。熱分解窒化ほう素はCVD法で製造されるため、肉
厚試料を得ることが困難であるが、立方晶窒化ほう素焼
粘体の出発原料とするには数mmの厚さがあれば十分で
、市販の熱分解窒化ほう素板状成型体を支障なく使用で
きる。
Pyrolytic boron nitride is very stable in air and can ignore the surface oxidation phenomenon observed in commercially available hexagonal boron nitride powder bundles, so it has an extremely low oxygen content without special treatment and handling. It can be considered as a boron nitride number type field. Since pyrolytic boron nitride is produced by the CVD method, it is difficult to obtain thick samples, but a thickness of several mm is sufficient to use it as a starting material for cubic boron nitride sintered viscous bodies. A commercially available pyrolytic boron nitride plate-shaped molded body can be used without any problem.

熱分解窒化ほう素板は所望の形状・寸法に加工され、次
いて立方晶窒化ほう素への変換触媒であるアルカリ金属
もしくはアルカリ土類金属の窒化物もしくはほう窒化物
を熱分解窒化ほう素中に拡散含浸させる。拡散含浸の方
法としては、触媒もしくは窒化ほう素と反応して触媒と
なる物質の粉末中に熱分解窒化ほう素数型体を埋め込ん
で非酸化性雰囲気中で加熱して熱分解窒化ほう素数型体
に反応拡散させる方法が一例としてあげられる。
The pyrolytic boron nitride plate is processed into the desired shape and dimensions, and then the nitride or boron nitride of an alkali metal or alkaline earth metal, which is a conversion catalyst to cubic boron nitride, is heated in pyrolytic boron nitride. Diffuse and impregnate. The diffusion impregnation method involves embedding a pyrolytic boron nitride number type body in powder of a catalyst or a substance that reacts with boron nitride to become a catalyst, and heating it in a non-oxidizing atmosphere to form a pyrolytic boron nitride number type body. An example is a method of reaction-diffusion.

この際、加熱の温度および時間を調節することにより、
熱分解窒化ほう素中の触媒含有量を調節することができ
る。
At this time, by adjusting the heating temperature and time,
The catalyst content in the pyrolytic boron nitride can be adjusted.

触媒として有効なアルカリ金属もしくはアルカリ土類金
属の窒化物もしくはほう窒化物の例は、し13N+ M
g3N2.Ca3N2,5r3N2.Ba3N2.Mg
5N4B2.Ca3N4B2 。
Examples of alkali metal or alkaline earth metal nitrides or boronitrides useful as catalysts include 13N+M
g3N2. Ca3N2,5r3N2. Ba3N2. Mg
5N4B2. Ca3N4B2.

5r3N4B2.5r3N4B2. Ba3N4B2等
である。これらの触媒は単体では空気中の水分と反応し
て分解しやすいが、熱分解窒化ほう素成型体中に拡散含
浸されている状態では安定性が著しく向上するので取扱
いが極めて容易である。
5r3N4B2.5r3N4B2. Ba3N4B2, etc. When used alone, these catalysts tend to react with moisture in the air and decompose, but when they are diffused and impregnated into a pyrolytic boron nitride molded product, their stability is significantly improved and handling is extremely easy.

触媒の含有割合は、原料である熱分解窒化ほう素に対し
て0.1〜5モル%であることが必要である。0.1モ
ル%未満では立方晶窒化ほう素への変換が完全には行わ
れず、また5モル%を越えると過剰量の触媒が焼結体粒
界に残留し、立方晶窒化ほう素本来の特性が損なわれる
The content of the catalyst is required to be 0.1 to 5 mol% relative to the pyrolytic boron nitride as a raw material. If it is less than 0.1 mol%, the conversion to cubic boron nitride will not be completed, and if it exceeds 5 mol%, an excessive amount of catalyst will remain in the grain boundaries of the sintered body, and the original cubic boron nitride will not be converted. properties are impaired.

このようにして得た触媒含有熱分解窒化ほう素数型体を
出発原料として高温高圧処理することにより立方晶窒化
ほう素焼粘体への変換を行うと、従来の立方晶窒化ほう
素合成法には見られない種々の利点が得られる。まず、
本発明における出発原料では立方晶窒化ほう素変換触媒
が極めて均一に分散しているので、立方晶窒化ほう素へ
の変換が熱分解窒化ほう素成型形の全体にわたって極め
て均一に起こり、組織の均一性の優れた立方晶窒化ほう
素焼粘体が得られる。また出発原料が立方晶窒化ほう素
変換触媒を含んでいるので立方晶窒化ほう素への変換に
必要な高温高圧条件も立方晶窒化ほう素の熱力学的安定
域における穏やかな条件でよい。従って、従来から知ら
れている熱分解窒化ほう素数型体を触媒無添加で高温高
圧処理して立方晶窒化ほう素焼粘体を製造する場合に必
要な条件、例えば2000〜2300℃、65〜75K
barよりはるかに穏やかな条件下に熱伝導性等の優れ
た緻密な立方晶窒化ほう素焼粘体が生成する。従って、
高温高圧装置の損傷が生じにくく、装置の長寿命化が可
能となり、工業的生産性を著しく改善することができる
。また、熱分解窒化ほう素の異方性のために、変換後の
立方晶窒化ほう素焼粘体はその厚さ方向に高熱伝導方位
である<ILD方位が高度に配向した焼結体になるので
、ヒートシンクとして用いるのに最適の特性を有する立
方晶窒化ほう素焼粘体が得られる。さらに本発明におけ
る出発原料は、本質的に酸素の混入が起こらない方法で
合成され、かつ空気中における安定性および耐酸化性に
優れているので酸素含有量が極めて低(、出発原料とし
て通常の六方晶窒化ほう素ホットプレス成型体を使用す
る場合に必要である脱酸素熱処理工程が不必要になる利
点がある。
When the catalyst-containing pyrolytic boron nitride number type body obtained in this way is converted into a cubic boron nitride sintered viscous body by treating it at high temperature and high pressure as a starting material, it is possible to convert Various advantages can be obtained that cannot be achieved with other methods. first,
Since the cubic boron nitride conversion catalyst is extremely uniformly dispersed in the starting material of the present invention, the conversion to cubic boron nitride occurs extremely uniformly throughout the pyrolytic boron nitride molding, resulting in a uniform structure. A cubic boron nitride sintered viscous material with excellent properties is obtained. Furthermore, since the starting material contains a catalyst for converting cubic boron nitride, the high temperature and high pressure conditions required for conversion to cubic boron nitride may be mild conditions within the thermodynamic stability range of cubic boron nitride. Therefore, the conditions necessary to produce a cubic boron nitride sintered viscous body by subjecting a conventionally known pyrolytic boron nitride number type body to high temperature and high pressure treatment without adding a catalyst, such as 2000 to 2300°C, 65 to 75K, are necessary.
A dense cubic boron nitride sintered viscous material with excellent thermal conductivity is produced under conditions much milder than bar. Therefore,
The high temperature and high pressure equipment is less likely to be damaged, the life of the equipment can be extended, and industrial productivity can be significantly improved. In addition, due to the anisotropy of pyrolytic boron nitride, the cubic boron nitride sintered viscous body after conversion becomes a sintered body in which the <ILD orientation, which is a high thermal conductivity orientation, is highly oriented in the thickness direction. A cubic boron nitride sintered viscous body with optimal properties for use as a heat sink is obtained. Furthermore, the starting material used in the present invention is synthesized using a method that essentially does not cause oxygen contamination, and has excellent stability and oxidation resistance in the air, so it has an extremely low oxygen content (commonly used as a starting material). There is an advantage that the deoxidizing heat treatment step that is necessary when using a hexagonal boron nitride hot press molded body is unnecessary.

本発明における立方晶窒化ほう素焼粘体への変換温度圧
力条件は含有させた窒化物触媒の種類および分量により
異なるが、緻密な高熱伝導性立方晶窒化ほう素焼粘体を
得るには1300℃以上の温度および4万気圧以上の圧
力が必要である。
The temperature and pressure conditions for converting cubic boron nitride to a sintered viscous body in the present invention vary depending on the type and amount of the nitride catalyst contained, but in order to obtain a dense highly thermally conductive cubic boron nitride sintered viscous body, a temperature of 1300°C or higher is required. and a pressure of 40,000 atmospheres or more is required.

本発明においては、出発原料の脱酸素等の特別な前処理
を行う必要がな(、立方晶窒化ほう素の熱力学的安定域
内の工業生産上有利な穏やかな高温高圧条件下において
緻密な立方晶窒化ほう素焼粘体が得られ、しかもこの焼
結体は特性低下の原因となる過剰の不純物を含まないの
でヒートシンクとして適切な特性を有するものである。
In the present invention, there is no need to perform any special pretreatment such as deoxidation of the starting material. A sintered viscous body of crystalline boron nitride is obtained, and this sintered body does not contain excessive impurities that would cause deterioration of properties, so it has properties suitable as a heat sink.

(実施例) 以下に本発明を実施例および比較例について説明する。(Example) The present invention will be described below with reference to Examples and Comparative Examples.

実施例1〜3および比較例1〜3 市販されているl a+m厚の熱分解窒化ほう素板を超
音波加工機により直径25+nmの熱分解窒化ほう素置
板に加工した。この熱分解窒化ほう素置板をMg5L粉
末中に埋め込み、窒素雰囲気中において1350℃の温
度で所定時間加熱処理して種々の触媒含有量の立方晶窒
化ほう素焼粘体原料用熱分解窒化ほう素置板を得た。各
加熱処理条件下に複数個の試片を製造し、その一部をB
、N、Mgの定量分析に用いた。
Examples 1 to 3 and Comparative Examples 1 to 3 A commercially available pyrolytic boron nitride plate having a thickness of l a+m was processed into a pyrolytic boron nitride mounting plate having a diameter of 25+ nm using an ultrasonic processing machine. This pyrolytic boron nitride mounting plate was embedded in Mg5L powder and heat-treated at a temperature of 1350°C for a predetermined period of time in a nitrogen atmosphere to produce a pyrolytic boron nitride mounting plate for cubic boron nitride sintered viscous raw materials with various catalyst contents. Got the board. Multiple specimens were produced under each heat treatment condition, and some of them were
, N, and Mg.

このようにして得た試片を出発原料とし、ベルト型高圧
装置内において温度1400℃、圧力5.5万気圧の条
件下に1時間処理して焼結体を得た。これら焼結体につ
いてX線回折法により生成相の同定を行い、さらに熱伝
導率を測定した。
The specimen thus obtained was used as a starting material and treated in a belt-type high-pressure device at a temperature of 1400° C. and a pressure of 55,000 atmospheres for 1 hour to obtain a sintered body. The generated phases of these sintered bodies were identified by X-ray diffraction, and the thermal conductivity was also measured.

これらの結果を表1にまとめて示す。なあ、表1におい
て、出発原料中の金属窒化物量は、MgがM g 3 
N 2 として存在するとして、Mg含有壷の測定値か
ら求めた計算値である。
These results are summarized in Table 1. Incidentally, in Table 1, the amount of metal nitride in the starting material is as follows: Mg is M g 3
This is a calculated value obtained from measurements of Mg-containing pots assuming that it exists as N 2 .

実施例4 直径25mm、厚さ1mInの熱分解窒化ほう素置板を
Mg382N4粉末中に埋め込み、窒素雰囲気中におい
て1200℃の温度で5時間加熱して0.5モル%のM
g+BJsを含む立方晶窒化ほう素焼粘体原料用熱分解
窒化ほう素置板を得た。得られた試片を出発原料とし、
実施例1〜3と同一の装置および条件を使用して高温高
圧処理して立方晶窒化ほう素焼給体に変換した。X線回
折によるとこの焼結体は立方晶窒化ほう素のみからなり
、しかも円板の厚さ方向に<111>方位が高度に配向
していた。また、ヌープ硬度は6.500kg/mm2
と極めて高く、熱伝導率は5W/cm−に以上と高い値
を示した。
Example 4 A pyrolytic boron nitride mounting plate with a diameter of 25 mm and a thickness of 1 mIn was embedded in Mg382N4 powder and heated at a temperature of 1200°C for 5 hours in a nitrogen atmosphere to form a 0.5 mol% M
A pyrolytic boron nitride mounting plate for cubic boron nitride sintered viscous material containing g+BJs was obtained. The obtained specimen is used as a starting material,
Using the same equipment and conditions as in Examples 1 to 3, high-temperature and high-pressure treatment was carried out to convert into a cubic boron nitride burner. According to X-ray diffraction, this sintered body consisted only of cubic boron nitride, and was highly oriented in the <111> direction in the thickness direction of the disk. In addition, Knoop hardness is 6.500kg/mm2
The thermal conductivity was extremely high, exceeding 5 W/cm-.

(発明の効果) 本発明によれば高配向性で熱伝導率が高く、かつ高硬度
の立方晶窒化ほう素焼給体が得られ、従って生成する立
方晶窒化ほう素焼給体はヒートシンクおよび切削工具へ
の応用に適している。特に、本発明では、従来の製造方
法とは異なり、熱分解窒化ほう素成型体を出発原料とし
て使用しているので出発原料の脱酸素前処理が不要であ
り、しかも触媒含浸後の原料は空気中で取扱っても酸化
を受けないので取扱いが容易である利点がある。しかも
、本発明においては少量の立方晶窒化ほう素変換触媒を
使用しているので、従来方法より穏やかな高温高圧条件
下に立方晶窒化ほう素焼粘体への変換が行われ、従って
高温高圧装置の損傷が生じにり<、装置の長寿命化が可
能となり、工業的生産性が著しく改善される利点がある
ほか、生成する焼結体が過剰の不純物を含まれないので
立方晶窒化ほう素の特性の低下が起こらない利点がある
(Effects of the Invention) According to the present invention, a cubic boron nitride heat-generating body with high orientation, high thermal conductivity, and high hardness can be obtained, and therefore, the cubic boron nitride heat-generating body produced can be used as a heat sink and a cutting tool. suitable for application. In particular, unlike conventional manufacturing methods, the present invention uses a pyrolytic boron nitride molded body as a starting material, so there is no need to pre-treat the starting material for deoxygenation, and the material after impregnating the catalyst is air-filled. It has the advantage of being easy to handle because it does not undergo oxidation even when handled inside. Moreover, since a small amount of cubic boron nitride conversion catalyst is used in the present invention, the conversion to cubic boron nitride sintered viscous material is performed under milder high temperature and high pressure conditions than in conventional methods, and therefore In addition to the advantages of significantly improving industrial productivity by extending the life of the equipment and eliminating the possibility of damage, the sintered body produced does not contain excessive impurities. This has the advantage that properties do not deteriorate.

手  続  補  正  書 昭和61年10月 4日 特許庁長官  黒  1) 明  雄  殿1、事件の
表示 昭和60年特許願第247933号 2、発明の名称 立方晶窒化ほう素焼粘体の製造方法 3補正をする者 事件との関係 特許出願人 (329)電気化学工業株式会社 科学技術庁無機材質研究所長 後藤 優4、代理人 1、明細書第8頁第4〜5行の「L+3N、 lAg3
N2・・・5r3N、B2. Ba3N4B2等である
。」を[l、l:lN、 Mg3N2゜Ca3N2. 
5r3N2.  Ba3N2.  Mg5N4B2もし
くは!Jg3N3B。
Procedure Amendment Written by the Commissioner of the Patent Office on October 4, 1986 Black 1) Mr. Akiyu 1. Indication of the case 1985 Patent Application No. 247933 2. Name of the invention Process for manufacturing cubic boron nitride sintered viscous material 3 Amendment Patent applicant (329) Denki Kagaku Kogyo Co., Ltd. Director of Inorganic Materials Research Institute, Science and Technology Agency Yu Goto 4, Agent 1, "L+3N, lAg3" on page 8 of the specification, lines 4-5
N2...5r3N, B2. Ba3N4B2, etc. ” as [l, l:lN, Mg3N2°Ca3N2.
5r3N2. Ba3N2. Mg5N4B2 or! Jg3N3B.

Ca3N4L もしくはCa3N3B、 5r3N4B
2 もしくは5r3N3B、 (la、N4[12もし
くはBa3N38等である。」に訂正する。
Ca3N4L or Ca3N3B, 5r3N4B
2 or 5r3N3B, (la, N4 [12 or Ba3N38, etc.)".

2、同第9頁第1〜2行の「原料では・・・分散してい
るので、」を「原料では熱分解窒化ほう素中に不純物成
分が存在しないので、含浸された立方晶窒化ほう素転換
触媒が高温高圧処理時に極めて均一に拡散して行くので
、」に訂正する。
2. In the same page 9, lines 1 and 2, "Since the raw material... is dispersed," was replaced with "As there are no impurity components in the pyrolytic boron nitride, impregnated cubic nitride is used as the raw material." The elementary conversion catalyst diffuses extremely uniformly during high-temperature, high-pressure treatment, so the correction was made to ``.

3、同第9頁下から4行〜第10頁第2行の「また、熱
分解窒化ほう素の異方性・・・焼結体がi等られる。
3. From the 4th line from the bottom of page 9 to the 2nd line of page 10, ``Also, the anisotropy of pyrolytic boron nitride...the sintered body is i, etc.''

を削除する。Delete.

4、同第14頁第10〜11行の「しかも円板の厚さ方
向に<111>方位が高度に配向していた。」を削除す
る。
4. Delete "Moreover, the <111> orientation was highly oriented in the thickness direction of the disk" on page 14, lines 10-11.

代理人ブ?理士   杉   村   暁   秀外I
Agent Bu? Physician Akira Sugimura Shugai I
given name

Claims (1)

【特許請求の範囲】[Claims] 1、熱分解窒化ほう素成型体にアルカリ金属もくしはア
ルカリ土類金属の窒化物もしくはほう素窒化物を0.1
〜5モル%の割合で拡散含有させ、これを立方晶窒化ほ
う素の熱力学的安定条件下に、1300℃以上の温度お
よび4万気圧以上の圧力において立方晶窒化ほう素に変
換することを特徴とする立方晶窒化ほう素焼結体の製造
方法。
1. Add 0.1 of alkali metal or alkaline earth metal nitride or boron nitride to the pyrolytic boron nitride molded body.
Diffused in a proportion of ~5 mol% and converted to cubic boron nitride at a temperature of 1300°C or higher and a pressure of 40,000 atmospheres or higher under thermodynamically stable conditions for cubic boron nitride. A method for producing a characteristic cubic boron nitride sintered body.
JP60247933A 1985-11-07 1985-11-07 Manufacture of cubic boron nitride sintered body Granted JPS62108772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247933A JPS62108772A (en) 1985-11-07 1985-11-07 Manufacture of cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247933A JPS62108772A (en) 1985-11-07 1985-11-07 Manufacture of cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JPS62108772A true JPS62108772A (en) 1987-05-20
JPH0445474B2 JPH0445474B2 (en) 1992-07-24

Family

ID=17170712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247933A Granted JPS62108772A (en) 1985-11-07 1985-11-07 Manufacture of cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JPS62108772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950075A (en) * 1982-09-14 1984-03-22 昭和電工株式会社 Manufacture of cubic boron nitride sintered body
JPS5957967A (en) * 1982-09-27 1984-04-03 科学技術庁無機材質研究所長 Manufacture of light permeable cubic boron nitride fine body
JPS60204674A (en) * 1984-03-30 1985-10-16 東芝タンガロイ株式会社 Manufacture of cubic boron nitride sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950075A (en) * 1982-09-14 1984-03-22 昭和電工株式会社 Manufacture of cubic boron nitride sintered body
JPS5957967A (en) * 1982-09-27 1984-04-03 科学技術庁無機材質研究所長 Manufacture of light permeable cubic boron nitride fine body
JPS60204674A (en) * 1984-03-30 1985-10-16 東芝タンガロイ株式会社 Manufacture of cubic boron nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it
US7703710B2 (en) 2003-08-20 2010-04-27 Showa Denko K.K. Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact
JP4684599B2 (en) * 2003-08-20 2011-05-18 昭和電工株式会社 Method for producing cubic boron nitride

Also Published As

Publication number Publication date
JPH0445474B2 (en) 1992-07-24

Similar Documents

Publication Publication Date Title
US5942455A (en) Synthesis of 312 phases and composites thereof
Cao et al. High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N 2 atmospheres
WO1997018162A9 (en) Synthesis of 312 phases and composites thereof
JPH11246271A (en) Cubic boron nitride sintered body and its production
CN107675260B (en) AlN-SiC solid solution whisker and preparation method thereof
JPS62108772A (en) Manufacture of cubic boron nitride sintered body
EP1460040B1 (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
JPS62108718A (en) Production of sintered body of cubic boron nitride
JPS61201668A (en) High heat conducting aluminum nitride sintered body and manufacture
JPS63260865A (en) Cubic crystal boron nitride sintered body and manufacture
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JPH07121835B2 (en) Cubic boron nitride coating
JPS59217608A (en) Method for synthesizing cubic boron nitride
JPH0455144B2 (en)
Naka et al. Effect of ambient pretreatment of graphite and solvent-catalyst on diamond formation
JP2628668B2 (en) Cubic boron nitride sintered body
JP2938500B2 (en) Method for producing raw material for cubic boron nitride sintered body
JPH01184033A (en) Production of cubic boron nitride
JPS62108716A (en) Production of cubic boron nitride
JPH044966B2 (en)
JP2621192B2 (en) Manufacturing method of aluminum nitride sintered body
JPS59131578A (en) Silicon carbide powder composition
JPS6385055A (en) High density aluminum nitirde normal pressure sintered body
JPH05213673A (en) Production of silicon carbide-based sintered compact having high heat conductivity