JPS6385055A - High density aluminum nitirde normal pressure sintered body - Google Patents

High density aluminum nitirde normal pressure sintered body

Info

Publication number
JPS6385055A
JPS6385055A JP61226160A JP22616086A JPS6385055A JP S6385055 A JPS6385055 A JP S6385055A JP 61226160 A JP61226160 A JP 61226160A JP 22616086 A JP22616086 A JP 22616086A JP S6385055 A JPS6385055 A JP S6385055A
Authority
JP
Japan
Prior art keywords
sintered body
metal
aim
content
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61226160A
Other languages
Japanese (ja)
Inventor
三森 隆
一郎 林
隆志 菅野
蔭山 信夫
恵一朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61226160A priority Critical patent/JPS6385055A/en
Publication of JPS6385055A publication Critical patent/JPS6385055A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は高密度窒化アルミニウム常圧焼結体に関する。[Detailed description of the invention] "Industrial application field" The present invention relates to a high-density pressureless sintered aluminum nitride body.

「従来の技術」 窒化アルミニウム(AIM)焼結体は室温および高温で
の曲げ強度が大きく(室温で30kg/rmm2以上、
1200℃で20kg/l+s2以上)、熱伝導率も太
きい(室温で30W/m/に以上)ため、耐熱材料、耐
熱衝撃材料、放熱材料として用いられている。
"Prior art" Aluminum nitride (AIM) sintered bodies have high bending strength at room temperature and high temperature (more than 30 kg/rmm2 at room temperature,
It has a high thermal conductivity (more than 30 W/m/m at room temperature) and is used as a heat-resistant material, thermal shock-resistant material, and heat dissipation material.

またAIMは周期率表のm族に属するAIとV族に属す
るNとの化合物であり、その焼結体が高強度、高熱伝導
率を備えるという特徴を利用してGaAsなどの■−V
族化合物半導体の製造装置用部品をこのAIM焼結体で
つくることが望まれている。
AIM is a compound of AI, which belongs to the m group of the periodic table, and N, which belongs to the V group, and its sintered body has high strength and high thermal conductivity.
It is desired to make parts for manufacturing equipment for group compound semiconductors using this AIM sintered body.

AIM焼結体の製造法としては従来より反応焼結法、ホ
ットプレス焼結法、常圧焼結法などが知られている。
Conventionally known methods for producing AIM sintered bodies include reaction sintering, hot press sintering, and pressureless sintering.

このうち反応焼結法では得られる焼結体が多孔質となっ
て低密度品しか得られず、かつ、焼結体内部に未反応の
金属が残存することが多く、耐熱性や高温強度が不足す
る。
Among these, in the reaction sintering method, the sintered body obtained is porous and only a low-density product can be obtained, and unreacted metal often remains inside the sintered body, resulting in poor heat resistance and high temperature strength. Run short.

ホットプレス焼結法は、周知の如く、モールド内に収容
した被焼結体に一軸方向の機械的圧力を印加しつつ高温
下で焼結するもので、この方法によれば、高密度化した
AIN焼結体が得られるが、複雑形状品や大型形状品が
製造できず、生産性が低く、コストも高くなるという欠
点があった・ 常圧焼結法は、あらかじめ任意形状に成形した成形体を
、大気圧前後の雰囲気中で何らの機械的圧力を印加する
ことなく、高温下で焼結するもので、この方法によれば
、量産化が容易であり複雑形状品や大型形状品も製造で
きる。しかし従来技術によれば、この常圧焼結法によっ
て高密度AIN焼結体を得るためには焼結助剤の添加が
必須であり、この焼結助剤としてはアルカリ土類元素や
希土類元素の化合物が採用されていた。
As is well known, the hot press sintering method involves applying mechanical pressure in a uniaxial direction to a sintered object housed in a mold and sintering it at high temperature. Although it is possible to obtain AIN sintered bodies, it has the drawbacks of not being able to produce complex-shaped or large-shaped products, resulting in low productivity and high costs. ・The pressureless sintering method is a process in which the sintered body is formed into an arbitrary shape in advance. The body is sintered at high temperature in an atmosphere around atmospheric pressure without applying any mechanical pressure.This method allows for easy mass production and can produce products with complex shapes and large shapes. Can be manufactured. However, according to the conventional technology, in order to obtain a high-density AIN sintered body by this pressureless sintering method, it is essential to add a sintering aid, and this sintering aid includes alkaline earth elements and rare earth elements. compounds were used.

しかし、こうした焼結助剤は一般に高温における蒸気圧
が比較的高く、得られる焼結体はその表面部分が充分に
高密度化していなかったり、形状によっては変形すると
いう欠点があった。さらに例えば、m−v族化合物半導
体単結晶の引上げ用るつぼや引上げ装置用遮蔽管をかか
るAIN常圧焼結体製としても、得られるm−V族化合
物半導体単結晶は充分な物性を備えるものではなかった
However, such sintering aids generally have a relatively high vapor pressure at high temperatures, and the resulting sintered body has the disadvantage that the surface portion thereof is not sufficiently dense or is deformed depending on the shape. Furthermore, for example, even if the crucible for pulling the m-v group compound semiconductor single crystal and the shielding tube for the pulling device are made of such an AIN pressureless sintered body, the obtained m-v group compound semiconductor single crystal will have sufficient physical properties. It wasn't.

「発明の目的」 本発明は従来技術が有していた前述の欠点を解消しよう
とするものであり、すなわち、本発明は、大型形状品や
複雑形状品が容易に得られ、かつ、■−v族化合物半導
体製造装置用部材として好適に使用できる新規な高密度
A1%焼結体を提供することを目的とする。
``Object of the Invention'' The present invention aims to eliminate the above-mentioned drawbacks of the prior art. That is, the present invention allows large-sized products and complex-shaped products to be easily obtained, and It is an object of the present invention to provide a novel high-density A1% sintered body that can be suitably used as a member for a V-group compound semiconductor manufacturing device.

「発明の構成」 本発明は、アルミニウムを除く金属の総量が11000
pp以下であり、相対密度が98%以上であることを特
徴とする高密度窒化アルミニウム常圧焼結体である。
"Structure of the Invention" The present invention is characterized in that the total amount of metal excluding aluminum is 11,000
pp or less and a relative density of 98% or more.

本発明においてはAll焼結体中の金属不純物、すなわ
ちアルミニウム(AI)を除く金属の総量が11000
pp以下であることが重要である。こうした金属不純物
の総量が1000pp層より多く含まれるAIN焼結体
でm−v族化合物半導体製造用部品を形成すると、この
金属不純物がm−V族化合物半導体の中に混入し、その
結果、この半導体の特性が低下する。すなわち金属不純
物が■−v族化合物半導体中に混入すると、半導体結晶
に転位などの格子欠陥を増加させ、そのため電子の移動
度が低くなり、たとえばこの半導体を用いて演算回路を
構成すると、その演算速度は遅くなる。
In the present invention, the total amount of metal impurities in the All sintered body, that is, metals excluding aluminum (AI), is 11,000.
It is important that it is less than pp. When manufacturing parts for m-v group compound semiconductors are formed using an AIN sintered body containing such metal impurities in a total amount greater than 1000 pp layer, these metal impurities are mixed into the m-v group compound semiconductors, and as a result, this Semiconductor properties deteriorate. In other words, when metal impurities are mixed into a ■-V group compound semiconductor, they increase lattice defects such as dislocations in the semiconductor crystal, which lowers the mobility of electrons. The speed will be slower.

All焼結体中の含有量が11000pp以下とされる
べき金属不純物は、一般には金属単体として存在してい
るというよりは金属酸化物あるいは金属窒化物といった
金属化合物として存在していることが多いが、本発明に
おいてはこれらのいずれの形態であるかを問わず、金属
に換算してその総量が1000pp■以下、より好まし
くは500ppm以下、さらに好ましくは200ppm
以下とされていることが必要である。
Metal impurities whose content should be kept at 11,000 pp or less in an All sintered body generally exist as metal compounds such as metal oxides or metal nitrides rather than as simple metals. In the present invention, regardless of which of these forms it is, the total amount in terms of metal is 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 200 ppm.
It is necessary that the following are met.

ところでAll焼結体中に存在する金属不純物の影響を
金属種ごとに検討したところ、Si、Fe、Cu、Mg
の存在が得られるm−v族化合物半導体の物性を大きく
低下させることが認められた。
By the way, when we examined the influence of metal impurities present in All sintered bodies for each metal type, we found that Si, Fe, Cu, Mg
It has been found that the presence of the compound semiconductor greatly deteriorates the physical properties of the resulting m-v group compound semiconductor.

しかしテsi、Fe、Cu、MgについてはAll焼結
体中の含有量がそれぞれ20ppm以下、特には10p
p+s以下とすることが好ましい、これら以外の金属種
についてはそれぞれtoopp層以下とされるのが好ま
しい、またAll焼結体中のC(炭素)含有量も100
OPPII以下、さらには500pp−以下とするのが
、得られる■−V族化合物半導体の物性向上のためには
好ましい。
However, the content of Tesi, Fe, Cu, and Mg in the All sintered body is 20 ppm or less, especially 10 ppm or less.
It is preferable to set it to p+s or less, and it is preferable that metal species other than these are set to below the toopp layer, and the C (carbon) content in the All sintered body is also 100
It is preferable that the content be less than OPPII, more preferably less than 500 pp-, in order to improve the physical properties of the resulting ■-V group compound semiconductor.

なお、AIを除いたのは、AIが■族に属する元素であ
るため、GaAgなどの■−v族化合物半導体に少量混
入しても半導体物性にそれほど大きな影響を及ぼさない
ためである。
The reason for excluding AI is that since AI is an element belonging to group 1, even if a small amount is mixed into a group 2-v compound semiconductor such as GaAg, it does not have a great effect on the physical properties of the semiconductor.

また本発明のAIN焼結体は相対密度(理論密度を10
0%としたときの相対値)が98%以上であることが必
要である。これより低密度のAIN焼結体では、特にそ
の表層部分がAl2O3,Al0Nなどに富む多孔質と
なりやすく、曲げ強度や熱伝導率が低下する上に、Ga
Agをはじめとする各種の高温ガスとの反応が起こるこ
ととなって好ましくない、また肉薄量AIM焼結体の場
合にはGaAsなとのガスの浸透、リークも起きて好ま
しくない。
Furthermore, the AIN sintered body of the present invention has a relative density (theoretical density is 10
(relative value when taken as 0%) is required to be 98% or more. In an AIN sintered body with a lower density than this, the surface layer in particular tends to become porous, rich in Al2O3, Al0N, etc., which reduces bending strength and thermal conductivity, and also reduces Ga
Reactions with various high-temperature gases including Ag occur, which is undesirable, and in the case of a thin AIM sintered body, gases such as GaAs also permeate and leak, which is undesirable.

本発明のAIN焼結体は常圧焼結法によって製造される
。この方法によれば、複雑形状品や大型形状品も製造で
き、量産化も容易で低コスト化が可能である。ここで常
圧焼結とは典型的には大気圧前後の圧力下で焼結するも
のであり、雰囲気ガスとしては非酸化性雰囲気、特には
窒素ガス雰囲気が採用される。しかし、本発明のAIN
常圧焼結体は0.5〜50気圧の非酸化性均等圧雰囲気
下で焼結されたものをも包含し、またいったん得られた
常圧焼結体をさらに10〜3000気圧下で再焼結する
と、さらに高密度、高強度の焼結体が得られて好ましい
The AIN sintered body of the present invention is manufactured by a pressureless sintering method. According to this method, products with complex shapes and large shapes can be manufactured, mass production is easy, and costs can be reduced. Here, pressureless sintering typically means sintering under pressure around atmospheric pressure, and a non-oxidizing atmosphere, particularly a nitrogen gas atmosphere, is employed as the atmospheric gas. However, the AIN of the present invention
Pressureless sintered bodies include those sintered under a non-oxidizing uniform pressure atmosphere of 0.5 to 50 atm, and the pressureless sintered body once obtained is further re-sintered under 10 to 3000 atm. Sintering is preferable because a sintered body with even higher density and higher strength can be obtained.

本発明のAIM常圧焼結体は典型的には次のようにして
製造される。
The AIM pressureless sintered body of the present invention is typically manufactured as follows.

まずAIM原料粉末として金属不純物の含有量が100
0pp−以下の高純度品を採用する。得られる焼結体中
の金属不純物を500ppmあるいは200ppm以下
としたり、さらにはSi、Fe、Cu、Mgの焼結体中
の含有量を20ppm以下とする場合はそれぞれ原料A
IN粉末として、これらの条件を満足するものを採用す
ることはいうまでもない。
First, the content of metal impurities as AIM raw powder is 100%.
Adopt high purity products with 0 pp- or less. If the metal impurities in the obtained sintered body are 500 ppm or 200 ppm or less, and the content of Si, Fe, Cu, or Mg in the sintered body is 20 ppm or less, each raw material A is used.
It goes without saying that an IN powder that satisfies these conditions should be used as the IN powder.

こうした高純度AIN原料粉末の採用は高密度焼結体を
得るという観点からも有利である。すなわち金属不純物
含有量が11000ppより多いAIN原料粉末を用い
ると、焼結助剤なしでは相対密度98%以上の焼結体が
得がたい、これは、金属分に対応して原料粉末中の酸素
含有量も多くなり、これが焼結性を低下させているもの
と考えられる。
The employment of such high-purity AIN raw material powder is also advantageous from the viewpoint of obtaining a high-density sintered body. In other words, if an AIN raw material powder with a metal impurity content of more than 11,000 pp is used, it is difficult to obtain a sintered body with a relative density of 98% or more without a sintering aid. It is thought that this decreases the sinterability.

AIN常圧焼結体を得るにあたって常用されているアル
カリ土類元素や希土類元素の化合物といった焼結助剤は
本発明焼結体製造にあたっては−・切配合しない。
Sintering aids such as compounds of alkaline earth elements and rare earth elements, which are commonly used in obtaining AIN pressureless sintered bodies, are not added in the production of the sintered bodies of the present invention.

かかる高純度AIM微粉末と有機ポリマーバインダ、可
塑剤とを配合し、ボールミルなどにより混合、粉砕した
のち、乾燥、造粒、分級を行なう、そして通常の金型成
形法、冷間静水圧加圧法などによって成形する。内面に
AI金金属よび/またはA1化合物(AIMを除く)を
塗布されたカーボン製の容器、特には内面にAI金金属
塗布されたカーボン製の容器内に得られた成形体を収容
し、0.5〜50気圧の窒素ガス雰囲気下、特には大気
圧前後の窒素ガス雰囲気下で、1800〜2000℃で
焼結する。
The high-purity AIM fine powder, an organic polymer binder, and a plasticizer are blended, mixed and pulverized using a ball mill, etc., and then dried, granulated, and classified, and then subjected to the usual molding method and cold isostatic pressing method. Shaped by etc. The obtained molded body is housed in a carbon container whose inner surface is coated with AI gold metal and/or A1 compound (excluding AIM), particularly a carbon container whose inner surface is coated with AI gold metal, and Sintering is carried out at 1,800 to 2,000°C under a nitrogen gas atmosphere of .5 to 50 atmospheres, particularly in a nitrogen gas atmosphere around atmospheric pressure.

「実施例」 以下、実施例および比較例に基づいて本発明の詳細な説
明する。
"Examples" The present invention will be described in detail below based on Examples and Comparative Examples.

実施例1 元素分析による金属不純物含有量(pp鳳)がSi  
330.Mg  110.Fe  3G、Cu(10,
Ti(10,Gr(1G、Ca80、K(10であり、
かつ他の金属を含めたAI以外の金属総量が800pp
m以下、C含有量900ppitであるAIN微粉末に
適量の有機ポリマー、有機可塑剤を配合し、常法に従っ
て混合、粉砕、乾燥、造粒、分級したのち、焼結後の寸
法が外径200■、肉厚10m+m、高さ500+im
のパイプ形状となるように冷間静水圧加圧法によって成
形した。内面に金属AIペーストを塗布したカーボン製
有蓋さや内にこの成形体を収容し、窒素1気圧の雰囲気
下で1900℃にて5時間焼結した。
Example 1 Metal impurity content (pp) determined by elemental analysis is Si
330. Mg 110. Fe3G, Cu(10,
Ti(10, Gr(1G, Ca80, K(10),
And the total amount of metals other than AI including other metals is 800pp
After mixing, grinding, drying, granulating, and classifying fine AIN powder with a C content of 900 ppt and an appropriate amount of organic polymer and organic plasticizer according to conventional methods, the size after sintering is 200 ppt. ■, wall thickness 10m+m, height 500+im
It was molded by cold isostatic pressing into a pipe shape. This molded body was housed in a carbon covered sheath whose inner surface was coated with metal AI paste, and sintered at 1900° C. for 5 hours in an atmosphere of 1 atm of nitrogen.

得られたパイプ状AIM焼結体の相対密度は98.5%
であり、またこの焼結体を元素分析したところ、各金属
種ごとの、および総量としての金属不純物の含有量、さ
らにC含有量は原料中のそれと本質的に変らなかった。
The relative density of the obtained pipe-shaped AIM sintered body was 98.5%.
Further, elemental analysis of this sintered body revealed that the content of metal impurities for each metal type and as a total amount, as well as the C content, were essentially the same as those in the raw material.

p−BN製るつぼ、カーボン製るつぼ受けを備えるGa
As単結晶引上げ装置において、上で得たパイプ状AI
M焼結体を遮蔽管として使用したところ、使用条件下で
何ら問題なく使用でき、引上げられたGaAs単結晶の
電子移動度は4200cm2/V/secと良好なもの
であった。
Ga equipped with p-BN crucible and carbon crucible holder
In the As single crystal pulling apparatus, the pipe-shaped AI obtained above
When the M sintered body was used as a shielding tube, it could be used without any problems under the operating conditions, and the electron mobility of the pulled GaAs single crystal was as good as 4200 cm2/V/sec.

実施例2 元素分析による金属不純物含有PM (ppm)が、S
i  50.Mg  40.Fe  20.Gu(1,
TiclO,0r(10,Ca  ao、K(1であり
、かつ他の金属を含めたA1以外の金属総量が400p
pm以下、C含有量450ppmテアルAIM微粉末を
用い、実施例1と同様にして、相対密度99.5%のパ
イプ形状AIN焼結体を得た。各金属種ごとの、および
総量としての金属不純物の含有量、さらにC含有量は原
料中のそれと木質的に変らなかった。
Example 2 Metal impurity-containing PM (ppm) determined by elemental analysis was found to be S
i50. Mg40. Fe 20. Gu(1,
TiclO,0r(10, Cao,K(1), and the total amount of metals other than A1 including other metals is 400p
A pipe-shaped AIN sintered body with a relative density of 99.5% was obtained in the same manner as in Example 1 using Teal AIM fine powder with a C content of 450 ppm or less. The content of metal impurities for each metal type and as a total amount, as well as the C content, were not different from those in the raw material in terms of wood quality.

このパイプ状AIM焼結体を遮蔽管として実施例1と同
様のGaAs単結晶引上げ装置に使用したところ、使用
条件下で何ら問題なく使用でき、引上げられたGaAs
単結晶の電子移動度は4500cm2 /V/seeと
良好なものであった。
When this pipe-shaped AIM sintered body was used as a shielding tube in the same GaAs single crystal pulling apparatus as in Example 1, it could be used without any problems under the usage conditions, and the pulled GaAs
The single crystal had a good electron mobility of 4500 cm2/V/see.

比較例1 元素分析による金属不純物含有量(ppm)が、Si 
1200.Mg 240.Fe 1150.Cu 5.
Ti 40.Or 20.Ca145、K(lであり、
かつ他の金属を含めたAI以外の金属総量が3000p
pm以下であるAll微粉末を用いて実施例1と同様に
焼結したところ、相対密度80%のパイプ状AIM焼結
体を得た。各金属ごとの、および総量としての金属不純
物の含有量は原料中のそれと本質的に変らなかった。
Comparative Example 1 The metal impurity content (ppm) determined by elemental analysis was
1200. Mg 240. Fe 1150. Cu5.
Ti 40. Or 20. Ca145, K (l,
And the total amount of metals other than AI including other metals is 3000p
When sintering was carried out in the same manner as in Example 1 using All fine powder having a particle size of pm or less, a pipe-shaped AIM sintered body with a relative density of 80% was obtained. The content of metal impurities for each metal and as a total amount was essentially unchanged from that in the raw material.

このパイプ状AIM焼結体を遮蔽管として実施例1と同
様のGaAs単結晶単結晶製置に使用したところ、引上
げられたGaAg単結晶の電子移動度は2100cm2
/V/seaと不満足なものであった。この原因は遮蔽
管中の金属不純物の分解・蒸発および遮蔽管からのガス
のリークによるものと考えられた。
When this pipe-shaped AIM sintered body was used as a shielding tube to prepare a GaAs single crystal in the same manner as in Example 1, the electron mobility of the pulled GaAg single crystal was 2100 cm2.
/V/sea, which was unsatisfactory. The cause of this was thought to be the decomposition and evaporation of metal impurities in the shield tube and the leakage of gas from the shield tube.

比較例2 元素分析による金属不純物含有量(ppm)が。Comparative example 2 Metal impurity content (ppm) by elemental analysis.

Si 510.Mg 90.Fe 500.Cu 3.
Ti 20.Cr 10.Ca80、K(1であり、か
つ他の金属を含めたAI以外の金属総量が1500pp
m以下であるAll微粉末を用いて実施例1と同様に焼
結したところ、相対密度95%のパイプ状AIM焼結体
を得た。各金属ごとの、および総量としての金属不純物
の含有量は原料中のそれと本質的に変らなかった。
Si510. Mg90. Fe 500. Cu 3.
Ti 20. Cr10. Ca80, K (1, and the total amount of metals other than AI including other metals is 1500pp
When sintering was performed in the same manner as in Example 1 using All fine powder having a particle size of less than m, a pipe-shaped AIM sintered body with a relative density of 95% was obtained. The content of metal impurities for each metal and as a total amount was essentially unchanged from that in the raw material.

このパイプ状AIN焼結体を遮蔽管として実施例1と同
様のGaAs単結晶引上げ装置に使用したところ、引上
げられたGaAs単結晶の電子移動度は21300c鵬
2/V/seaと不満足なものであった。
When this pipe-shaped AIN sintered body was used as a shielding tube in the same GaAs single crystal pulling apparatus as in Example 1, the electron mobility of the pulled GaAs single crystal was 21,300 c 2/V/sea, which was unsatisfactory. there were.

実施例3 元素分析による金属不純物含有量(ppm)が、Si 
 15.Mg  12.Fe(10,Cu<1.Ti(
1G、0r(io、ca  80.にくlであり、かつ
他の金属を含めたAI以外の金属総量がlaoppm以
下、C含有量150pp■であるAll微粉末を用いた
こと、および成形体の形状を、焼結後の寸法が頭部外径
100mm 、底部外径90m5+、高さ 100量層
、肉厚5鵬層となるるつぼ状としたことの他は実施例1
と同様にして、相対密度89.8%のるつぼ状AIM焼
結体を得た。各金属ごとの、およびmuとしての金属不
純物の含有量、さらにC含有量は原料中のそれと本質的
に変らなかった。
Example 3 The metal impurity content (ppm) determined by elemental analysis was
15. Mg 12. Fe(10,Cu<1.Ti(
1G, 0r(io, ca 80.Nikul), the total amount of metals other than AI including other metals is less than 10ppm, and the C content is 150pp■, and Example 1 except that the shape after sintering was a crucible with a head outer diameter of 100 mm, a bottom outer diameter of 90 m5+, a height of 100 layers, and a wall thickness of 5 layers.
In the same manner as above, a crucible-shaped AIM sintered body having a relative density of 89.8% was obtained. The content of metal impurities for each metal and as mu, as well as the C content, was essentially unchanged from that in the raw material.

カーボン製るつぼ受け、AIN製遮蔽管を備えるGaA
s単結晶引上げ装置において、上で得たるつぼ状AIM
焼結体をGaAsを溶融するるつぼとして使用したとこ
ろ、使用条件下で何ら問題なく使用でき、引上げられた
GaAj単結晶の電子移動度は4800c■2/V/s
eaと良好なものであった。
GaA with carbon crucible holder and AIN shielding tube
s In the single crystal pulling apparatus, the crucible-shaped AIM obtained above is
When the sintered body was used as a crucible for melting GaAs, it could be used without any problems under the usage conditions, and the electron mobility of the pulled GaAj single crystal was 4800c2/V/s.
It was good with ea.

比較例3 実施例3に用いたと同じAll微粉末89重量部に焼結
助剤として炭酸カルシウム 1重量部を添加した他は実
施例3と同様にして相対密度38.8%のるつぼ状AI
M焼結体を得た。焼結体中のCa以外の各金属ごとの金
属不純物の含有量は原料中のそれと本質的に変らなかっ
たが、 Caは約4000pp層検出され、したがって
総量としての金属不純物の含有量は約4100ppmで
あった。
Comparative Example 3 A crucible-shaped AI with a relative density of 38.8% was prepared in the same manner as in Example 3, except that 1 part by weight of calcium carbonate was added as a sintering aid to 89 parts by weight of the same All fine powder used in Example 3.
An M sintered body was obtained. The content of metal impurities for each metal other than Ca in the sintered body was essentially the same as that in the raw material, but approximately 4000 ppm of Ca was detected, so the total content of metal impurities was approximately 4100 ppm. Met.

このるつぼ状AIM焼結体をGaAs溶融用るつぼとし
て実施例3のGaAs単結晶引上げ装置に使用したとこ
ろ、引上げられたGaAs単結晶の電子移動度は150
0cs2/V/secと不満足なものであった。
When this crucible-shaped AIM sintered body was used as a GaAs melting crucible in the GaAs single crystal pulling device of Example 3, the electron mobility of the pulled GaAs single crystal was 150.
It was 0cs2/V/sec, which was unsatisfactory.

実施例4 実施例1に用いたと同じAll微粉末を用いたこと、お
よび成形体の形状を、焼結後の寸法が頭部外径110m
m、底部外径100層■、高さ 120m層、肉厚5■
となるるつぼ状としたことの他は実施例1と同様にして
、相対密度98.5%のるつぼ状AIM焼結体を得た。
Example 4 The same All fine powder used in Example 1 was used, and the shape of the molded body was changed so that the size after sintering was 110 m in outer diameter of the head.
m, bottom outer diameter 100 layers■, height 120m layers, wall thickness 5■
A crucible-shaped AIM sintered body with a relative density of 98.5% was obtained in the same manner as in Example 1 except that it was shaped like a crucible.

各金属ごとの、および総量としての金属不純物の含有量
、さらにC含有量は原料中のそれと本質的に変らなかっ
た。
The content of metal impurities for each metal and as a total amount, as well as the C content, was essentially unchanged from that in the raw material.

AIM製るつぼ、AIN製遮蔽管を備えるGaAs単結
晶引上げ装置において、上で得たるつぼ状AIN焼結体
をるつぼ受けとして使用しところ、使用条件下で何ら問
題なく使用でき、引上げられたGaAs単結晶の電子移
動度は8100c+*2/V/secと良好なものであ
った。
When the crucible-shaped AIN sintered body obtained above was used as a crucible holder in a GaAs single crystal pulling device equipped with an AIM crucible and an AIN shielding tube, it could be used without any problems under the usage conditions, and the pulled GaAs single The electron mobility of the crystal was as good as 8100c+*2/V/sec.

比較例4 比較例1に用いたと同じAIM@粉末全粉末たことの他
は実施例4と同様にして、相対密度90%のるつぼ状A
IN焼結体を得た。各金属ごとの、および総量としての
金属不純物の含有量は原料中のそれと本質的に変らなか
った。
Comparative Example 4 A crucible-shaped A with a relative density of 90% was prepared in the same manner as in Example 4, except that the same AIM @ powder as used in Comparative Example 1 was used.
An IN sintered body was obtained. The content of metal impurities for each metal and as a total amount was essentially unchanged from that in the raw material.

AIM製るつぼ、AIM製遮蔽管を備えるGaAs単結
晶引上げ装置において、上で得たるつぼ状AIM焼結体
をるつぼ受けとして使用しところ、引上げられたGaA
s単結晶の電子移動度は5200cm2/V/seeと
実施例4に比べて低い値を示した。
When the crucible-shaped AIM sintered body obtained above was used as a crucible holder in a GaAs single crystal pulling apparatus equipped with an AIM crucible and an AIM shielding tube, the pulled GaAs
The electron mobility of the s single crystal was 5200 cm2/V/see, which was lower than that of Example 4.

「発明の効果」 以上、詳細に説明した通り、本発明によれば、従来技術
によっては得られなかった高密度にして、かつ、高純度
のAIM常圧焼結体が得らる。このAIM常圧焼結体は
焼結助剤を含んでなく、シかも焼結助剤以外にも金属不
純物はきわめて少量しか含んでいない高純度品であるた
め、微量金属不純物による汚染を鎌う用途にはきわめて
好適である。また高密度であるため、肉薄量であっても
、ガスの浸透、リークがなくなる。そのため本発明焼結
体は半導体、特にはGaAsをはじめとするm−v族化
合物半導体の製造装置部品用として好適である。かかる
部品としては遮蔽管、るつぼ受けなどのように■−v族
化合物半導体の半導体の蒸気が周辺に存在する部位に使
用される部品のみならず、るつぼの如く、溶融もしくは
軟化している■−v族化合物半導体半導体に直接接触し
ている部位に使用される部品にも適用できる。後者の場
合には本発明焼結体において、AIを除く金属の総量が
500pp厘以下、特には200ppm以下とするのが
好ましい。
"Effects of the Invention" As described above in detail, according to the present invention, an AIM pressureless sintered body with high density and high purity, which could not be obtained by conventional techniques, can be obtained. This AIM pressureless sintered body does not contain any sintering aids, and is a high-purity product that contains only a very small amount of metal impurities in addition to the sintering aids, so it is susceptible to contamination by trace metal impurities. It is extremely suitable for this purpose. Also, because of its high density, there is no gas penetration or leakage even if the thickness is thin. Therefore, the sintered body of the present invention is suitable as a component for manufacturing equipment for semiconductors, particularly m-v group compound semiconductors including GaAs. Such parts include not only parts used in parts such as shielding tubes and crucible holders where ■-V group compound semiconductor semiconductor vapor is present around them, but also parts that are melted or softened, such as crucibles. It can also be applied to parts used in parts that are in direct contact with V group compound semiconductors. In the latter case, the total amount of metals excluding AI in the sintered body of the present invention is preferably 500 ppm or less, particularly 200 ppm or less.

さらに本発明焼結体は焼結助剤を含有していないため長
期使用中にも焼結助剤が析出・浸潤・揮散するようなこ
とがなく、したがって非酸化性雰囲気下で長期安定性を
要求される用途にも好適に使用できる。
Furthermore, since the sintered body of the present invention does not contain a sintering aid, the sintering aid will not precipitate, infiltrate, or volatilize even during long-term use, and therefore has long-term stability in a non-oxidizing atmosphere. It can also be suitably used for required purposes.

Claims (1)

【特許請求の範囲】 1、アルミニウムを除く金属の総量が1000ppm以
下であり、相対密度が98%以上であることを特徴とす
る高密度窒化アルミニウム常圧焼結体。 2、アルミニウムを除く金属の総量が500ppm以下
である特許請求の範囲第1項記載の高密度窒化アルミニ
ウム常圧焼結体。
[Scope of Claims] 1. A high-density atmospheric pressure sintered body of aluminum nitride, characterized in that the total amount of metals excluding aluminum is 1000 ppm or less, and the relative density is 98% or more. 2. The high-density pressureless sintered aluminum nitride body according to claim 1, wherein the total amount of metals other than aluminum is 500 ppm or less.
JP61226160A 1986-09-26 1986-09-26 High density aluminum nitirde normal pressure sintered body Pending JPS6385055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226160A JPS6385055A (en) 1986-09-26 1986-09-26 High density aluminum nitirde normal pressure sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226160A JPS6385055A (en) 1986-09-26 1986-09-26 High density aluminum nitirde normal pressure sintered body

Publications (1)

Publication Number Publication Date
JPS6385055A true JPS6385055A (en) 1988-04-15

Family

ID=16840800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226160A Pending JPS6385055A (en) 1986-09-26 1986-09-26 High density aluminum nitirde normal pressure sintered body

Country Status (1)

Country Link
JP (1) JPS6385055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021139A1 (en) * 1994-02-03 1995-08-10 Ngk Insulators, Ltd. Aluminum nitride sinter and production method therefor
JPH08208338A (en) * 1995-01-31 1996-08-13 Kyocera Corp Corrosion resistant member and wafer holding device
EP0771772A3 (en) * 1995-11-01 1997-10-08 Ngk Insulators Ltd Aluminium nitride sintered bodies and their manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021139A1 (en) * 1994-02-03 1995-08-10 Ngk Insulators, Ltd. Aluminum nitride sinter and production method therefor
US5767027A (en) * 1994-02-03 1998-06-16 Ngk Insulators, Ltd. Aluminum nitride sintered body and its production method
JPH08208338A (en) * 1995-01-31 1996-08-13 Kyocera Corp Corrosion resistant member and wafer holding device
EP0771772A3 (en) * 1995-11-01 1997-10-08 Ngk Insulators Ltd Aluminium nitride sintered bodies and their manufacture
US5998320A (en) * 1995-11-01 1999-12-07 Ngk Insulators, Ltd. Aluminum nitride sintered body, metal including member, electrostatic chuck, method of producing aluminum nitride sintered body, and method of producing metal including member
US6174583B1 (en) 1995-11-01 2001-01-16 Ngk Insulators, Ltd. Aluminum nitride sintered body, metal including member, electrostatic chuck, method of producing aluminum nitride sintered body, and method of producing metal including member

Similar Documents

Publication Publication Date Title
US4778778A (en) Process for the production of sintered aluminum nitrides
GB2168722A (en) High thermal conductivity ceramic body
JPS61155263A (en) Manufacture of high heat conductivity ceramic body
US4578234A (en) Process of pressureless sintering to produce dense high thermal conductivity ceramic body of deoxidized aluminum nitride
US4539298A (en) Highly heat-conductive ceramic material
US5011639A (en) Method for the preparation of a sintered body of silicon carbide
JPS6385055A (en) High density aluminum nitirde normal pressure sintered body
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
US5283214A (en) Increasing AlN thermal conductivity via pre-densification treatment
JPH0336782B2 (en)
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0518776B2 (en)
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPS5921577A (en) Method of sintering silicon carbide powder molded body
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JP2975490B2 (en) Method for producing high thermal conductivity β-type silicon carbide sintered body
JPS63156007A (en) Production of aluminium nitride powder
JPS61168567A (en) Manufacture of silicon carbide sintered body
KR101627461B1 (en) a manufacturing method of aluminum composite reinforced by aluminum nitride and an aluminum composite manufactured by the same method
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS589788B2 (en) Manufacturing method of silicon nitride sintered body