JPS62108579A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPS62108579A
JPS62108579A JP60249710A JP24971085A JPS62108579A JP S62108579 A JPS62108579 A JP S62108579A JP 60249710 A JP60249710 A JP 60249710A JP 24971085 A JP24971085 A JP 24971085A JP S62108579 A JPS62108579 A JP S62108579A
Authority
JP
Japan
Prior art keywords
layer
type
impurity
film
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60249710A
Other languages
Japanese (ja)
Inventor
Masato Asai
正人 浅井
Shigeo Matsumoto
重雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60249710A priority Critical patent/JPS62108579A/en
Publication of JPS62108579A publication Critical patent/JPS62108579A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simplify a process, and to reduce cost by forming an electrode to an antireflection-film coating surface, diffusing and shaping a second impurity region having the same conduction type as a semiconductor substrate onto a first impurity-region removing surface as required and forming an electrode on the first impurity-region removing surface. CONSTITUTION:A breakdown layer in the surface layer of a P-type silicon wafer 1 is removed and the surface layer is smoothed, a wafer 1 is washed and dried, and left as it is in a POCl3 vapor phase atmosphere, POCl3 is permeated and diffused, an N-type high concentration layer 2 is shaped onto the whole surface layer, and a TiO2 film 4 is formed on the light-receiving surface 3 side of the silicon wafer as an antireflection film 11. The silicon wafer is dipped into a sodium hydroxide aqueous solution to remove an N<+> layer on the surface layer not coated with the antireflection film, and Al paste 6 is printed on a surface 5 on the side reverse to the light-receiving surface and baked to shape a P-type high concentration layer 7. Ag paste is printed on the TiO2 film 4 and the Al printing baking surface and baked to form silver electrodes 8, and solder layers 9 are shaped onto the electrodes, thus completing a BSF type solar cell 10.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は太陽電池の製造方法に関する。さらに詳しく
は反射防止膜形成後直接アルカリエツチング処理に付す
ことにより作業工程を簡便化した太1!II池の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for manufacturing solar cells. In more detail, the work process has been simplified by applying direct alkaline etching treatment after forming the anti-reflection film. This invention relates to a method for producing a pond II.

(ロ)従来の技術 太陽電池には、両電極間に1つのPN接合のみを有する
もの(以下conv、型)と両電極間に1つのPN接合
と他の不純物領域を有するもの(BSF型)とがある。
(b) Conventional solar cells include those that have only one PN junction between both electrodes (hereinafter referred to as conv type) and those that have one PN junction and other impurity regions between both electrodes (BSF type). There is.

従来の太陽電池の製造方法を、BSF型(N÷/P/P
” )を例にとって第8図〜第16図により説明すると
、 1) P型シリコンウェハ(1)をアルカリエツチング
に付して表面を処理した後(第8図)、2)POCl2
等の気相拡散を行なって該ウェハの表層全体にN型高濃
度層(N”層”) 12Jを形成しく第9図)、3)受
光面(3)とする面上に5tO2等の反射防止膜[11
]を形成(第10図)後、4)受光面をレジストインク
、フォトレジスト等のマスキング材面で覆い(第11図
)、5)フッ硝酸(例えば硝酸:フッ酸=3 : 1 
)等の混酸で露出部をケミカルエツチングして接合分離
を行ない(N+/P接合の形成) (第12図)、6)
マスキング材+121を剥離(第13図)後、7)裏面
にAIペースト(6)を印刷し、750℃で焼成するこ
とにより該面の表面にP+層(刀を形成しくBSF処理
)(第14図)、8)受光1面、裏面にAgペーストを
印刷し焼成して電極(8)を形成しく第15図)、9)
ディッピングにより半田層(9)を両電極に形成(第1
6図)して製造されている。なお、(13)は得られた
BSF型太陽電池を示す。
The conventional solar cell manufacturing method has been changed to the BSF type (N÷/P/P
”) as an example and will be explained with reference to FIGS. 8 to 16. 1) After the P-type silicon wafer (1) is subjected to alkali etching to treat the surface (FIG. 8), 2) POCl2
3) Reflection of 5tO2, etc. on the surface to be the light-receiving surface (3) to form an N-type high concentration layer (N"layer") 12J on the entire surface layer of the wafer. Prevention film [11
) (Fig. 10), 4) Cover the light-receiving surface with a masking material such as resist ink or photoresist (Fig. 11), and 5) fluoro-nitric acid (for example, nitric acid: hydrofluoric acid = 3:1).
) and other mixed acids to chemically etch the exposed parts to separate the junctions (formation of N+/P junctions) (Fig. 12), 6)
After peeling off the masking material +121 (Fig. 13), 7) print AI paste (6) on the back side and bake it at 750°C to form a P+ layer (BSF treatment to form a sword) on the surface of the side (14th Figure), 8) Print Ag paste on the first and back sides of the light receiving surface and bake it to form the electrode (8). Figure 15), 9)
A solder layer (9) is formed on both electrodes by dipping (first
Figure 6). Note that (13) shows the obtained BSF type solar cell.

またconv、型(N” /P)を製造する場合は上記
方法の1)の工程を省いた方法により製造されれている
In addition, when manufacturing a conv type (N''/P), it is manufactured by a method that omits step 1) of the above method.

(ハ)発明が解決しようとする問題点 しかしながら従来の製造方法では上記4)、5)及び6
)の工程であるレジストの印刷及びレジストの剥離にか
なりの時間と労力が必要であり、また混酸の使用量がか
なり多くコスト高となる等の問題点があった。
(c) Problems to be solved by the invention However, in the conventional manufacturing method, the above-mentioned 4), 5) and 6
) The process of printing the resist and peeling off the resist requires a considerable amount of time and effort, and there are also problems such as the amount of mixed acid used is quite large, resulting in high costs.

この発明は、かかる問題点を解消すべくなされたもので
あり、ことにレジストの印刷及びレジストの剥M等の作
業を必要としない簡便な製造工程でかつ低コスト化等を
はかれる太陽電池の製造方法を提供しようとするもので
ある。
This invention was made to solve these problems, and in particular, it is possible to manufacture solar cells using a simple manufacturing process that does not require operations such as resist printing and resist peeling, and which can reduce costs. It is intended to provide a method.

〈二、)問題点を解決するための手段 かくしてこの発明によれば、一導電型の半導体基板に逆
導電型の第1不純物を拡散させて表層に第1不純物領域
を有する半導体基板を得、該基板の一面に金属酸化物か
らなる反射防止膜を形成した後、この基板を直接アルカ
リエツチング処理に付すことにより他面の第1不純物領
域を除去し、次いで反射防止膜被覆面に電極を形成する
工程および上記第1不純物領域除去面に必要に応じて半
導体基板と同一導電型の第2不純物領域を拡散形成した
後、該面に電極を形成する工程を行なって太陽電池を得
ることを特徴とする太陽電池の製造方法が提供される。
(2.) Means for Solving the Problems Thus, according to the present invention, a first impurity of an opposite conductivity type is diffused into a semiconductor substrate of one conductivity type to obtain a semiconductor substrate having a first impurity region in the surface layer, After forming an antireflection film made of a metal oxide on one side of the substrate, the first impurity region on the other side is removed by directly subjecting the substrate to an alkali etching treatment, and then an electrode is formed on the antireflection film-covered surface. and a second impurity region having the same conductivity type as the semiconductor substrate is diffused as necessary on the surface from which the first impurity region has been removed, and then a step of forming an electrode on the surface is performed to obtain a solar cell. A method of manufacturing a solar cell is provided.

この発明の最も特徴とする点は、半導体基板の一面(受
光面)を反射防止膜で被覆した後、該基板を直接アルカ
リエツチングに付し他面の表層に形成された第1不純物
領域を溶解除去(P−N接合分離)することにある。
The most characteristic feature of this invention is that after one surface (light-receiving surface) of a semiconductor substrate is coated with an antireflection film, the substrate is directly subjected to alkali etching to dissolve the first impurity region formed on the surface layer of the other surface. (P-N junction separation).

上記反射防止膜はアルカリ処理に比較的安定であり膜形
成が比較的簡便に行なえ、結晶性が良好で、屈折率の大
きいものが適しており、たとえばT+ 02 、S! 
02等の酸化膜が好ましい。
The above-mentioned antireflection film is relatively stable to alkali treatment, can be formed relatively easily, has good crystallinity, and has a large refractive index, such as T+ 02, S!
An oxide film such as 02 is preferable.

線膜は気相成長法(以下CVD)等により簡便に実行で
き、その形成膜厚は800〜1000人程度が好ましい
The linear film can be easily formed by a vapor phase growth method (hereinafter referred to as CVD), and the thickness of the formed film is preferably about 800 to 1,000.

上記アルカリエツチングに用いるアルカリ溶液の種類、
処理温度及び処理時間は用いる半導体基板及び反射防止
膜の種類により適宜選択されるが、表面処理等に通常用
いられる方法、すなわち比較的高濃度(20〜50%)
の水酸化アルカリ水溶液を用いて比較的高温(80〜9
0℃)でディッピングする方法が適しており、ディッピ
ングする時間は半導体基板の表層を溶解して不要な第1
不純物fR域を除去し、かつ該基板の受光面に被覆され
た反射防止膜の膜厚、結晶性等に影響を与えない時間が
適している。たとえば半導体基板にP型シリコンウェハ
を用い、反射防止膜として膜厚800〜1000人のT
iO2を用いた場合、50%−水酸化ナトリウム水溶液
中に液温的90℃で0.5〜1分間ディッピングする等
が挙げられる。
The type of alkaline solution used in the above alkaline etching,
The treatment temperature and treatment time are appropriately selected depending on the type of semiconductor substrate and antireflection film used, but the method usually used for surface treatment, that is, relatively high concentration (20 to 50%)
using an aqueous alkali hydroxide solution at a relatively high temperature (80 to 9
A method of dipping at 0℃) is suitable, and the dipping time is such that the surface layer of the semiconductor substrate is dissolved and unnecessary first layer is removed.
A suitable time is to remove the impurity fR region and not to affect the thickness, crystallinity, etc. of the antireflection film coated on the light-receiving surface of the substrate. For example, a P-type silicon wafer is used as a semiconductor substrate, and the anti-reflection film has a thickness of 800 to 1000 T.
When iO2 is used, dipping in a 50% aqueous sodium hydroxide solution at a liquid temperature of 90°C for 0.5 to 1 minute can be mentioned.

なお、この発明の方法に用いる一導電型半導体基板はシ
リコン等からなる半導体基板が好ましい。
Note that the semiconductor substrate of one conductivity type used in the method of the present invention is preferably a semiconductor substrate made of silicon or the like.

上記基板は予め受光面となる面が表面処理されているこ
とが好ましい。該処理には、該面を緻密なピラミッド状
凸凹にするテクスチャ処理(異方性エツチング)または
該の破壊層を除去して平滑面にする処理等がある。なお
前者の処理は受光面での光の反射をより少なくしたタイ
プの太Ill電池の製造に適したとえば(100)又は
(511)の結晶軸をもつシリコンウェハを用いて行な
われる。
Preferably, the surface of the substrate that will become the light-receiving surface is surface-treated in advance. The processing includes a texturing process (anisotropic etching) that makes the surface have dense pyramid-like irregularities, or a process that removes the destroyed layer to make the surface smooth. The above process is performed using a silicon wafer having, for example, a (100) or (511) crystal axis, which is suitable for manufacturing a type of thick Ill battery in which reflection of light on the light receiving surface is reduced.

この発明の方法に用いる第1不純物の拡散は、気相拡散
で行なわれ、たとえばP型半導体基板にN型不純物を拡
散させる場合、N型不純物源としてPOCI 3を用い
て気層拡散が行なわれる。
Diffusion of the first impurity used in the method of the present invention is performed by vapor phase diffusion. For example, when diffusing an N-type impurity into a P-type semiconductor substrate, vapor phase diffusion is performed using POCI 3 as an N-type impurity source. .

この発明の方法に用いる電極の形成および必要に応じて
設けられる第2不純物領域の形成等は当該分野で公知の
物質(たとえば、A1ペースト、A!+ペースト等)を
用いて公知の方法(たとえば、印刷焼成等)により形成
される。
The formation of the electrodes used in the method of the present invention and the formation of the second impurity region provided as necessary are performed using materials known in the art (for example, A1 paste, A!+ paste, etc.) and by known methods (for example, , printing, firing, etc.).

(ホ)作 用 表層に第2不純物がドープされてさらに受光面とする一
面にTi 02 、S! 02等からなる反射防止膜が
形成された半導体基板を直接比較的高濃度の水酸化アル
カリ水溶液に比較的高温の液温で短時間ディッピングす
ると、この間に該基板の該反射防止膜に被覆されていな
い面が直接上記アルカリ溶液に接触し反応して溶解し、
法面の表層に形成された第1不純物領域が除去される。
(E) Function The surface layer is doped with a second impurity, and the surface layer that serves as the light-receiving surface is coated with Ti 02 , S! When a semiconductor substrate on which an antireflection film made of 02 or the like is directly dipped in a relatively high concentration aqueous alkali hydroxide solution at a relatively high temperature for a short period of time, the antireflection film on the substrate is dipped during this time. The side that does not have any surface directly contacts the above alkaline solution, reacts and dissolves,
The first impurity region formed on the surface layer of the slope is removed.

一方上記反射防止膜は、上記アルカリエツチングにより
上記領域が除去される間は充分に安定である。すなわち
この発明の方法によれば反射防止膜が実質的にアルカリ
エツチングされず、一種のマスキング材として働く。
On the other hand, the antireflection coating is sufficiently stable while the areas are removed by the alkaline etching. That is, according to the method of the present invention, the antireflection film is not substantially etched with alkali and acts as a kind of masking material.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図〜第7図はこの発明の方法により製造されるBS
F型太陽電池の各工程の説明図を示している。
(f) Examples Figures 1 to 7 show BSs manufactured by the method of this invention.
An explanatory diagram of each process of an F-type solar cell is shown.

まずAsカット状態のP型シリコンウェハ(1)(厚さ
500μ)を、液温90℃の50%−水酸化ナトリウム
水溶液中に5分間ディッピングして、上記P型シリコン
ウェハ(1)の表層の破壊層を除去し、表面を平滑にす
る(第1図)。次いで該P型シリコンウェハ(1)を洗
浄して乾燥した後、900℃のPOCI3(N型ドープ
剤)気相雰囲気中に60分分間中ェハを放置して、PO
CI 3を浸透拡散させて、N型高濃度層(N+層)(
2)を表層全体に形成させる(第2図)。その後上記シ
リコンウェハの受光面(3)側に、法面での光の反射を
おさえる為に、反射防止膜(1υとしてTiO2膜(4
)をCVD法により所定の膜厚800人に形成する。こ
のとき中膜の屈接率は2.3であった(第3図)。その
後、該シリコンウェハを、液温90℃の50%−水酸化
ナトリウム水溶液中に約0.5分間ディッピングして該
反射防止膜で被覆されていない表層のN+層を除去する
(第4図)。次に受光面と反対側の面(裏面)(5)に
A1ペースト(P型ドープ剤)(6)を印刷して750
℃で焼成することによりP壁高濃度層(P’層)(刀を
形成しく第5図)、その後前記Tl0q膜(4)及び上
記A1印刷焼成面上にA(]ペーストを印刷して700
℃で焼成し銀電極(8)を形成したく第6図)後、該電
極上にディッピングにより半田層(9)を形成してこの
発明の方法による88F型太陽電池(K)) (第7図
)が完成した。
First, an As-cut P-type silicon wafer (1) (thickness 500μ) was dipped in a 50% sodium hydroxide aqueous solution at a temperature of 90°C for 5 minutes to remove the surface layer of the P-type silicon wafer (1). The destroyed layer is removed and the surface is smoothed (Figure 1). Next, after washing and drying the P-type silicon wafer (1), the wafer was left in a POCI3 (N-type dopant) gas phase atmosphere at 900°C for 60 minutes, and PO
CI 3 is permeated and diffused to form an N-type high concentration layer (N+ layer) (
2) is formed on the entire surface layer (Fig. 2). After that, an anti-reflection film (1υ) and a TiO2 film (4
) is formed to a predetermined film thickness of 800 mm using the CVD method. At this time, the refractive index of the tunica media was 2.3 (Fig. 3). Thereafter, the silicon wafer is dipped in a 50% sodium hydroxide aqueous solution at a temperature of 90°C for about 0.5 minutes to remove the surface N+ layer that is not covered with the antireflection film (Figure 4). . Next, print A1 paste (P-type dopant) (6) on the surface opposite to the light-receiving surface (back surface) (5) and
By baking at ℃, a P wall high concentration layer (P' layer) (to form a sword (Fig. 5)) was formed, and then A(] paste was printed on the Tl0q film (4) and the A1 printing and baking surface to form a layer of 700℃.
℃ to form a silver electrode (8) (Fig. 6), a solder layer (9) is formed on the electrode by dipping to form an 88F type solar cell (K)) (No. 7) by the method of the present invention. Figure) has been completed.

上記方法により得られたBSF型太陽電池(11)につ
いて電気特性を測定したところ、従来の方法による製品
と同等の優れた特性を示した。
When the electrical properties of the BSF type solar cell (11) obtained by the above method were measured, it showed excellent properties equivalent to those of products produced by the conventional method.

(ト)発明の効果 この発明の方法によれば反射防止膜として用いるTiO
2及び5f02等の膜がアルカリ溶液に安定であり一方
半導体基板がアルカリ溶液に反応する性質を利用してア
ルカリエツチングにより簡便にP−N接合分離が達成で
きるため、従来の製造方法のようにレジストインクの印
刷や、フォトレジストのコーティング及びレジストの剥
離といった労力のかかる作業が省かれ、作業工程の簡易
化と能率の向上がはかれ、人件費の低減が可能となる。
(g) Effect of the invention According to the method of this invention, TiO used as an antireflection film
Films such as 2 and 5f02 are stable in alkaline solutions, while the semiconductor substrate reacts to alkaline solutions, making it possible to easily achieve P-N junction separation by alkali etching. Labor-intensive operations such as ink printing, photoresist coating, and resist peeling are eliminated, simplifying the work process, improving efficiency, and reducing labor costs.

またざらに接合分離の為の混酸の如き高価なエツチング
液が不要になり全体的に太陽電池の低コスト化がはかれ
ることになる。
Moreover, an expensive etching solution such as a mixed acid for separating the junctions is no longer necessary, and the overall cost of the solar cell can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図はこの発明の方法の一例の工程説明図、
第8図〜第16図は従来方法の工程説明図である。 (1)・・・・・・P型シリコンウェハ、(2)・・・
・・・N”ll!、(3)・・・・・・受光面、(4)
・・・・・・T i 02 li、 f5)・・・・・
・裏面、(6)・・・・・・AIペースト、(刀・・・
・・・P÷層、(8)・・・・・・銀電極、(9)・・
・・・・半田層、(ト))・・・・・・この発明の方法
により製造された太陽電池、(11)・・・・・・反射
防止膜、O9・・・・・・マスキング材、(13]・・
・・・・従来の方法により製造された太陽電池。 第1図    給5図 第2図       第6図 第3図 第8図     第13図
FIGS. 1 to 7 are process explanatory diagrams of an example of the method of this invention,
FIG. 8 to FIG. 16 are process explanatory diagrams of the conventional method. (1)...P-type silicon wafer, (2)...
...N"ll!, (3)... Light receiving surface, (4)
...T i 02 li, f5) ...
・Back side, (6)...AI paste, (sword...
...P÷layer, (8)...Silver electrode, (9)...
... Solder layer, (g) ... Solar cell manufactured by the method of this invention, (11) ... Antireflection film, O9 ... Masking material , (13)...
...Solar cells manufactured by conventional methods. Figure 1 Figure 5 Figure 2 Figure 6 Figure 3 Figure 8 Figure 13

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基板に逆導電型の第1不純物を拡
散させて表層に第1不純物領域を有する半導体基板を得
、該基板の一面に金属酸化物からなる反射防止膜を形成
した後、この基板を直接アルカリエッチング処理に付す
ことにより他面の第1不純物領域を除去し、次いで反射
防止膜被覆面に電極を形成する工程および上記第1不純
物領域除去面に必要に応じて半導体基板と同一導電型の
第2不純物領域を拡散形成した後、該面に電極を形成す
る工程を行なつて太陽電池を得ることを特徴とする太陽
電池の製造方法。 2、反射防止膜がSiO_2またはTiO_2からなる
特許請求の範囲第1項記載の方法。
[Claims] 1. Diffusion of a first impurity of an opposite conductivity type into a semiconductor substrate of one conductivity type to obtain a semiconductor substrate having a first impurity region on the surface layer, and a reflective layer made of metal oxide on one surface of the substrate. After forming the antireflection film, the first impurity region on the other side is removed by directly subjecting the substrate to an alkali etching treatment, and then a step of forming an electrode on the antireflection film-covered surface and a step on the surface from which the first impurity region has been removed are performed. A method for manufacturing a solar cell, which comprises, if necessary, diffusing and forming a second impurity region of the same conductivity type as the semiconductor substrate, and then performing a step of forming an electrode on the surface to obtain a solar cell. 2. The method according to claim 1, wherein the antireflection film is made of SiO_2 or TiO_2.
JP60249710A 1985-11-06 1985-11-06 Manufacture of solar cell Pending JPS62108579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60249710A JPS62108579A (en) 1985-11-06 1985-11-06 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249710A JPS62108579A (en) 1985-11-06 1985-11-06 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPS62108579A true JPS62108579A (en) 1987-05-19

Family

ID=17197047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249710A Pending JPS62108579A (en) 1985-11-06 1985-11-06 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPS62108579A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2149126A1 (en) * 1999-01-11 2000-10-16 Univ Pais Vasco Solar cell manufacture, comprises intercalating etched silicon substrate with boron and phosphorus and coating with silver paste by silkscreen printing
CN102309106A (en) * 2010-07-08 2012-01-11 富士迈半导体精密工业(上海)有限公司 Luminous solar umbrella
WO2012162901A1 (en) * 2011-05-27 2012-12-06 苏州阿特斯阳光电力科技有限公司 Method for manufacturing back contact crystalline silicon solar cell sheet
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
CN104258850A (en) * 2014-09-26 2015-01-07 苏州纽艾之光净化设备有限公司 Ag-doped TiO2 nano thin film and composite material containing thin film
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2149126A1 (en) * 1999-01-11 2000-10-16 Univ Pais Vasco Solar cell manufacture, comprises intercalating etched silicon substrate with boron and phosphorus and coating with silver paste by silkscreen printing
CN102309106A (en) * 2010-07-08 2012-01-11 富士迈半导体精密工业(上海)有限公司 Luminous solar umbrella
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
WO2012162901A1 (en) * 2011-05-27 2012-12-06 苏州阿特斯阳光电力科技有限公司 Method for manufacturing back contact crystalline silicon solar cell sheet
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9209342B2 (en) 2011-05-27 2015-12-08 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9281435B2 (en) 2011-05-27 2016-03-08 Csi Cells Co., Ltd Light to current converter devices and methods of manufacturing the same
CN104258850A (en) * 2014-09-26 2015-01-07 苏州纽艾之光净化设备有限公司 Ag-doped TiO2 nano thin film and composite material containing thin film

Similar Documents

Publication Publication Date Title
JP5215330B2 (en) Manufacturing method of back electrode type solar cell, back electrode type solar cell and back electrode type solar cell module
HUT63711A (en) Method for making semiconductor device, as well as solar element made from said semiconductor device
JP2000183379A (en) Method for manufacturing solar cell
JPH02177569A (en) Manufacture of solar cell
JPH07135333A (en) Fabrication of solar cell
JP3377931B2 (en) Solar cell element
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP2951061B2 (en) Solar cell manufacturing method
JP2000101111A (en) Manufacture of solar cell
RU2139601C1 (en) METHOD FOR MANUFACTURING n+-p-p+ STRUCTURE SOLAR CELL
CN103314455A (en) Solar cell, method for producing same, and solar cell module
JPS62108579A (en) Manufacture of solar cell
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
JPH07326784A (en) Manufacture of solar battery element
JP3652128B2 (en) Method for manufacturing solar cell element
JP3676954B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JP4587988B2 (en) Method for manufacturing solar cell element
JP2002198546A (en) Formation method for solar cell element
JP2003273382A (en) Solar cell element
JPH11312665A (en) Surface-roughening method of semiconductor substrate
JP2958203B2 (en) Method of manufacturing solar cell element
JP3045917B2 (en) Solar cell manufacturing method
JP2007266649A (en) Method of manufacturing solar cell element
JP6741626B2 (en) High efficiency back electrode type solar cell and manufacturing method thereof