JPH11312665A - Surface-roughening method of semiconductor substrate - Google Patents

Surface-roughening method of semiconductor substrate

Info

Publication number
JPH11312665A
JPH11312665A JP10117579A JP11757998A JPH11312665A JP H11312665 A JPH11312665 A JP H11312665A JP 10117579 A JP10117579 A JP 10117579A JP 11757998 A JP11757998 A JP 11757998A JP H11312665 A JPH11312665 A JP H11312665A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
oxide film
unevenness
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10117579A
Other languages
Japanese (ja)
Inventor
Yosuke Inomata
洋介 猪股
Kenji Fukui
健次 福井
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10117579A priority Critical patent/JPH11312665A/en
Publication of JPH11312665A publication Critical patent/JPH11312665A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the formation of unevenness in an RIE process on one main surface side of a substrate, by forming an oxide film on the surface of the substrate, and roughening the surface by a reactive ion etching (RIE) method. SOLUTION: The semiconductor substrate consisting of silicon, etc., containing one conductivity type semiconductor impurity is prepared. A silicon substrate is dipped in hydrofluoric/nitric acid and a sodium hydroxide aqueous solution for removing the slice damage of the surface section of the silicon substrate, and etched in approximately 15 μm. The silicon substrate is washed by water, and dipped in an approximately 10% HF aqueous solution for several sec, an oxide film of a surface is removed, the substrate is washed by water, and immersed in an NaOH aqueous solution for several sec, and stained films may also be taken off. The processes of HF and NaOH are repeated at several times until a surface completely repels water. The substrate is washed by water, and introduced into a liquid having oxidation force such as nitric acid, sulfuric acid, etc., for several min, and an oxide film is formed uniformly on the substrate surface. When RIE is conducted, the oxide film is etched equally and irregularities begins to be formed simultaneously extending over the whole surface, thus forming irregularities without unevenness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板の粗面化
法に関し、特に半導体基板の表面を反応性イオンエッチ
ング法で粗面化する半導体基板の粗面化法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for roughening a semiconductor substrate, and more particularly to a method for roughening the surface of a semiconductor substrate by a reactive ion etching method.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】シリ
コン基板を用いて太陽電池素子を形成する場合に、基板
表面を水酸化ナトリウムなどのアルカリ水溶液でエッチ
ングすると、表面に微細な凹凸が形成され、基板表面で
の反射をある程度低減させることができる。
2. Description of the Related Art When a solar cell element is formed using a silicon substrate, when the surface of the substrate is etched with an aqueous alkali solution such as sodium hydroxide, fine irregularities are formed on the surface. Reflection on the substrate surface can be reduced to some extent.

【0003】面方位が(100)面の単結晶シリコン基
板を用いた場合は、このような方法でテクスチャー構造
と呼ばれるピラミッド構造を基板表面に均一に形成する
ことができるものの、多結晶シリコン基板で太陽電池素
子を形成する場合、アルカリ水溶液によるエッチングは
結晶の面方位に依存することから、ピラミッド構造を均
一には形成できず、そのため全体の反射率も効果的には
低減できないという問題がある。
When a single crystal silicon substrate having a (100) plane orientation is used, a pyramid structure called a texture structure can be uniformly formed on the substrate surface by such a method. When a solar cell element is formed, since the etching with an alkaline aqueous solution depends on the plane orientation of the crystal, a pyramid structure cannot be formed uniformly, and therefore, there is a problem that the entire reflectance cannot be effectively reduced.

【0004】このような問題を解決するために、太陽電
池素子を多結晶シリコン基板で形成する場合に、基板表
面に微細な突起を反応性イオンエッチング(Reactive I
on Etching : RIE)法で形成することが提案されている
(例えば特公昭60−27195号、特開平5−751
52号、特開平9−102625号公報参照)。この方
法によると、多結晶シリコンにおける不規則な結晶の面
方位に左右されることなく、微細な突起を均一に形成す
ることができ、特に多結晶シリコンを用いた太陽電池素
子においては、反射率をより効果的に低減することがで
きるようになる。
In order to solve such a problem, when a solar cell element is formed on a polycrystalline silicon substrate, fine projections are formed on the substrate surface by reactive ion etching (Reactive Ion Etching).
on Etching: RIE) method (for example, Japanese Patent Publication No. 60-27195, Japanese Patent Application Laid-Open No. 5-751).
No. 52, JP-A-9-102625). According to this method, fine projections can be uniformly formed without being affected by the plane orientation of irregular crystals in polycrystalline silicon. In particular, in a solar cell element using polycrystalline silicon, the reflectance is high. Can be more effectively reduced.

【0005】また、結晶系のシリコン太陽電池は通常イ
ンゴットをスライスしたウェハを用いて形成される。こ
のときウェハの表面にはスライスによるダメージがある
ため、表面接合(不純物拡散領域)を形成する前に、こ
のダメージ層を除去する必要がある。この深さは通常1
0〜15μm程度であるが、RIE法で粗面状にすると
しても、その凹凸の深さは高々数μmであり、ダメージ
層除去のためには足りない。そのため、RIE法で粗面
状にする前にほとんどのダメージ層を除去しておく必要
がある。このようなダメージ層除去のために、通常はフ
ッ硝酸や水酸化ナトリウム水溶液を用いる。
[0005] A crystalline silicon solar cell is usually formed using a wafer obtained by slicing an ingot. At this time, since the wafer surface is damaged by the slice, it is necessary to remove the damaged layer before forming the surface junction (impurity diffusion region). This depth is usually 1
Although it is about 0 to 15 μm, even if the surface is roughened by the RIE method, the depth of the unevenness is at most several μm, which is insufficient for removing the damaged layer. Therefore, it is necessary to remove most of the damaged layer before the surface is roughened by the RIE method. Usually, an aqueous solution of hydrofluoric nitric acid or sodium hydroxide is used to remove such a damaged layer.

【0006】ところが、これらの液を用いて、水洗・乾
燥してその後にRIE法で粗面状にすると、凹凸の形成
時にムラができるという問題があった。特に、ムラの部
分は凹凸の間に隙間が多く、充分な凹凸が形成できてい
ないため、太陽電池の表面反射率の増加につながり、太
陽電池特性を低下させる要因となる。
However, when these liquids are used, washed and dried, and then roughened by RIE, there is a problem that unevenness is generated when forming irregularities. In particular, in the uneven portion, there are many gaps between the irregularities, and sufficient irregularities cannot be formed, which leads to an increase in the surface reflectance of the solar cell, which is a factor of deteriorating the solar cell characteristics.

【0007】また、凹凸をウェハ全面に形成すると、表
面全体が暗くなることから、ムラが目立ちやすく、製品
にしたときの美観を著しく損ねる。
Further, when the unevenness is formed on the entire surface of the wafer, the entire surface is darkened, so that the unevenness is conspicuous and the appearance of the product is significantly impaired.

【0008】このムラはRIEの面内均一性に起因する
ものではなく、RIE前の洗浄ムラおよび乾燥ムラに起
因している。つまり、洗浄ムラや乾燥ムラで基板表面に
わずかな酸化膜などが部分的に存在すると、RIEによ
る凹凸形成に影響し、結果的に全体からみてムラとなる
のである。
This unevenness is not caused by the in-plane uniformity of RIE, but is caused by unevenness of cleaning and drying before RIE. That is, if a slight oxide film or the like is partially present on the substrate surface due to unevenness in cleaning or drying, the unevenness formed by RIE is affected, resulting in unevenness as a whole.

【0009】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、半導体基板の一主面側にR
IE工程でムラができるという従来方法の問題点を解消
した半導体基板の粗面化法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art.
It is an object of the present invention to provide a method for roughening a semiconductor substrate, which solves the problem of the conventional method in which unevenness occurs in the IE process.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る半導体基板の粗面化法では、半導体
基板の表面を反応性イオンエッチング法で粗面状にする
半導体基板の粗面化法において、前記半導体基板の表面
に酸化膜を形成した後、反応性イオンエッチング法で粗
面状にする。
According to a first aspect of the present invention, there is provided a semiconductor substrate roughening method, wherein the surface of the semiconductor substrate is roughened by a reactive ion etching method. In the surface roughening method, after an oxide film is formed on the surface of the semiconductor substrate, the surface is made rough by a reactive ion etching method.

【0011】この半導体基板の粗面化法では、前記半導
体基板を酸化性水溶液中に浸漬して前記酸化膜を形成す
ることが望ましい。
In this method of roughening a semiconductor substrate, it is preferable that the semiconductor substrate is immersed in an oxidizing aqueous solution to form the oxide film.

【0012】また、請求項3に係る半導体基板の粗面化
法では、半導体基板の表面を反応性イオンエッチング法
で粗面状にする半導体基板の粗面化法において、前記半
導体基板の表面領域を反応性イオンエッチング法で除去
した後に、この半導体基板の表面を反応性イオンエッチ
ング法で粗面状にする。
According to a third aspect of the present invention, in the method of roughening a semiconductor substrate, the surface of the semiconductor substrate is roughened by a reactive ion etching method. Is removed by reactive ion etching, and the surface of the semiconductor substrate is made rough by reactive ion etching.

【0013】この場合、前記半導体基板の表面領域をフ
ッ素化合物ガスを用いて除去すると共に、前記半導体基
板の表面をフッ素化合物ガス、塩素ガス、および酸素ガ
スを用いて粗面状にすることが望ましい。
In this case, it is desirable that the surface region of the semiconductor substrate is removed by using a fluorine compound gas and the surface of the semiconductor substrate is roughened by using a fluorine compound gas, chlorine gas and oxygen gas. .

【0014】上記半導体基板の粗面化法では、前記半導
体基板が多結晶シリコン基板であってもよい。
In the method for roughening a semiconductor substrate, the semiconductor substrate may be a polycrystalline silicon substrate.

【0015】[0015]

【発明の実施の形態】以下、各請求項に係る発明を添付
図面に基づき詳細に説明する。図1は、太陽電池素子の
形成方法を例にした半導体基板の粗面化法を示す工程
図、図2は断面図であり、1は半導体基板、2は反射防
止膜、3は表面電極、4は裏面電極である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a vehicle according to an embodiment of the present invention; FIG. 1 is a process diagram showing a method of forming a roughened surface of a semiconductor substrate by taking a method of forming a solar cell element as an example. FIG. 2 is a sectional view, wherein 1 is a semiconductor substrate, 2 is an antireflection film, 3 is a surface electrode, 4 is a back surface electrode.

【0016】まず、一導電型半導体不純物を含有するシ
リコンなどから成る半導体基板1を用意する。このシリ
コンなどから成る半導体基板1は、インゴットから所定
寸法に切り出されたものである(図2(a)参照)。こ
のシリコン基板1は、単結晶シリコン基板又は多結晶シ
リコン基板などから成る。このシリコン基板1は、一導
電型半導体不純物を1×1016atoms/cm3 程度
含有し、比抵抗1.5Ωcm程度の基板である。このシ
リコン基板1は、p型、n型のいずれでもよい。単結晶
シリコンの場合は引き上げ法などによって形成され、多
結晶シリコンの場合は鋳造法などによって形成される。
多結晶シリコンは、大量生産が可能で製造コスト面で単
結晶シリコンよりも極めて有利である。引き上げ法や鋳
造法によって形成されたインゴットを300μm程度の
厚みにスライスして、10cm×10cmもしくは15
cm×15cm程度の大きさに切断してシリコン基板と
なる。
First, a semiconductor substrate 1 made of silicon or the like containing a semiconductor impurity of one conductivity type is prepared. The semiconductor substrate 1 made of silicon or the like is cut into a predetermined size from an ingot (see FIG. 2A). This silicon substrate 1 is composed of a single crystal silicon substrate or a polycrystalline silicon substrate. This silicon substrate 1 is a substrate containing one conductivity type semiconductor impurity of about 1 × 10 16 atoms / cm 3 and a specific resistance of about 1.5 Ωcm. This silicon substrate 1 may be either p-type or n-type. In the case of single crystal silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like.
Polycrystalline silicon can be mass-produced and is extremely advantageous over single crystal silicon in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced into a thickness of about 300 μm, and is sliced into 10 cm × 10 cm or 15 cm.
The silicon substrate is cut into a size of about cm × 15 cm.

【0017】次に、このシリコン基板1の表面部のスラ
イスダメージを除去するために、フッ硝酸や水酸化ナト
リウム水溶液に浸漬して、15μm程度エッチングす
る。フッ硝酸としては、HNO3 :HF=7:1の水溶
液を用いることができ、水酸化ナトリウムとしては15
%程度の水溶液を用いることができる。
Next, in order to remove the slice damage on the surface of the silicon substrate 1, the substrate is immersed in an aqueous solution of hydrofluoric nitric acid or sodium hydroxide and etched to a thickness of about 15 μm. An aqueous solution of HNO 3 : HF = 7: 1 can be used as hydrofluoric nitric acid, and 15% as sodium hydroxide.
% Aqueous solution can be used.

【0018】次に、水洗し、10%程度のHF水溶液に
数秒浸し、表面の酸化膜を除去し、水洗後、さらに0.
3wt%NaOH水溶液中に数秒浸し、ステン膜(シリ
コンのアモルファス膜)を除去してもよい。HF処理で
付着することがあるためである。このHF、NaOHの
工程を表面が水を完全にはじくようになるまで数回繰り
返す。
Next, it is washed with water, immersed in a 10% HF aqueous solution for several seconds to remove an oxide film on the surface, washed with water, and further washed with 0.1% water.
The stainless film (amorphous silicon film) may be removed by dipping in a 3 wt% NaOH aqueous solution for several seconds. This is because they may adhere during the HF treatment. This process of HF and NaOH is repeated several times until the surface completely repels water.

【0019】次に、水洗後、硝酸、硫酸などの酸化力の
ある液に数分入れ、基板表面に一様に酸化膜を形成す
る。この酸化膜は、RIE工程でムラなく凹凸を形成す
ためには、数nm以下が好ましい。このように、基板表
面に酸化膜を形成してRIEを行うと、酸化膜が均一に
エッチングされて凹凸形成が全面にわたって同時に開始
されるため、ムラなく凹凸を形成できる。
Next, after washing with water, the substrate is immersed in an oxidizing liquid such as nitric acid or sulfuric acid for several minutes to uniformly form an oxide film on the substrate surface. This oxide film is preferably several nm or less in order to form unevenness without unevenness in the RIE process. As described above, when RIE is performed by forming an oxide film on the substrate surface, the oxide film is uniformly etched, and the formation of unevenness is started simultaneously over the entire surface, so that unevenness can be formed without unevenness.

【0020】次に、RIE法で微細な突起1cを多数形
成する。すなわち、チャンバー内に何らかの方法でプラ
ズマを作り、平板状の基板ホルダの上にウェハを乗せ、
これに高周波あるいは直流電圧を印加する。プラズマ中
に発生したイオンは、電界により基板に入射しエッチン
グをラジカルとともに行うものである。本発明では、例
えば三フッ化メタン(CHF3 )を5〜20sccm程
度、塩素(Cl2 )を50〜100sccm程度、酸素
(O2 )を5〜15sccm程度、および六フッ化硫黄
(SF6 )を50〜80sccm程度流しながら、反応
圧力50mTorr程度、プラズマをかけるRFパワー
300〜500W程度で、10秒〜15分間程度行う。
すると、幅と高さがそれぞれ2μm以下の微細な突起1
cが多数形成される。この突起1cの幅と高さが2μm
以上になると、エッチングの処理時間が長くなる。この
微細な突起1cをシリコン基板1の表面側の全面にわた
って均一且つ正確に制御性をもたせて形成するために、
1μm以下が好適である。また、この微細な突起は極め
て微小なものでも反射低減の効果はあるが、面内に均一
かつ正確に形成するためには、製造工程上1nm以上で
あることが望まれる。
Next, a number of fine projections 1c are formed by RIE. In other words, plasma is created in the chamber by some method, the wafer is placed on a flat substrate holder,
A high frequency or DC voltage is applied to this. Ions generated in the plasma are incident on the substrate by an electric field and perform etching together with radicals. In the present invention, for example, about 5 to 20 sccm of methane trifluoride (CHF 3 ), about 50 to 100 sccm of chlorine (Cl 2 ), about 5 to 15 sccm of oxygen (O 2 ), and sulfur hexafluoride (SF 6 ) Is performed at a reaction pressure of about 50 mTorr and an RF power of about 300 to 500 W for applying plasma for about 10 seconds to 15 minutes while flowing about 50 to 80 sccm.
Then, the fine projections 1 each having a width and a height of 2 μm or less are provided.
Many c are formed. The width and height of the projection 1c are 2 μm.
Above, the etching processing time becomes longer. In order to form the fine projections 1c uniformly and accurately with controllability over the entire front surface side of the silicon substrate 1,
1 μm or less is preferred. Even if the minute projections are extremely small, they have the effect of reducing reflection. However, in order to form the projections uniformly and accurately in a plane, it is desirable that the thickness be 1 nm or more in the manufacturing process.

【0021】次に、シリコン基板1の表面部に逆導電型
半導体不純物を気相拡散法、塗布拡散法、或いはイオン
打ち込み法などで拡散して逆導電型半導体不純物を含有
する層1aを形成すると共に、この層1aが基板1の表
面側のみに残るように、他の部分をエッチングする(同
図(c)参照)。
Next, a layer 1a containing the opposite conductivity type semiconductor impurity is formed on the surface of the silicon substrate 1 by diffusing the opposite conductivity type semiconductor impurity by a gas phase diffusion method, a coating diffusion method, an ion implantation method or the like. At the same time, other portions are etched so that this layer 1a remains only on the surface side of the substrate 1 (see FIG. 3C).

【0022】シリコン基板1の表面側には、逆導電型半
導体不純物が拡散された層1aが形成されている。この
逆導電型半導体不純物が拡散された層1aは、シリコン
基板1内に半導体接合部を形成するために設けるもので
あり、例えばn型の不純物を拡散させる場合、POCl
3 を用いた気相拡散法、P2 5 用いた塗布拡散法、お
よびP+ イオンを直接拡散させるイオン打ち込み法など
によって形成される。この逆導電型半導体不純物を含有
する層は、0.1〜0.5μm程度の深さに形成され
る。
On the surface side of the silicon substrate 1, a layer 1a in which a semiconductor impurity of the opposite conductivity type is diffused is formed. The layer 1a in which the opposite conductivity type semiconductor impurity is diffused is provided for forming a semiconductor junction in the silicon substrate 1. For example, when an n-type impurity is diffused, POCl is used.
It is formed by a gas phase diffusion method using 3 , a coating diffusion method using P 2 O 5 , and an ion implantation method in which P + ions are directly diffused. The layer containing the opposite conductivity type semiconductor impurity is formed at a depth of about 0.1 to 0.5 μm.

【0023】次に、シリコン基板1の裏面側に例えばア
ルミニウム(Al)などを主成分とする金属ペーストを
塗布して焼き付けることにより、シリコン基板1の裏面
側に一導電型半導体不純物を多量に拡散させた層1bを
形成する(同図(d)参照)。
Next, a metal paste containing, for example, aluminum (Al) as a main component is applied and baked on the back surface of the silicon substrate 1 to diffuse a large amount of one-conductivity-type semiconductor impurities on the back surface of the silicon substrate 1. The formed layer 1b is formed (see FIG. 4D).

【0024】シリコン基板1の裏面側には、一導電型半
導体不純物が高濃度に拡散された層1bを形成すること
が望ましい。この一導電型半導体不純物が高濃度に拡散
された層1bは、シリコン基板1の裏面近くでキャリア
の再結合による効率の低下を防ぐために、シリコン基板
1の裏面側に内部電界を形成するものである。つまり、
シリコン基板の裏面近くで発生したキャリアがこの電界
によって加速される結果、電力が有効に取り出されるこ
ととなり、特に長波長の光感度が増大すると共に、高温
における太陽電池特性の低下を軽減できる。このよう
に、一導電型半導体不純物が高濃度に拡散された層1b
が形成されたシリコン基板1の裏面側のシート抵抗は、
15Ω/□程度になる。
It is desirable to form a layer 1b in which a semiconductor impurity of one conductivity type is diffused at a high concentration on the back side of the silicon substrate 1. The layer 1b in which the one-conductivity-type semiconductor impurity is diffused at a high concentration forms an internal electric field on the back surface side of the silicon substrate 1 in order to prevent a decrease in efficiency due to carrier recombination near the back surface of the silicon substrate 1. is there. That is,
As a result of the electric field accelerating the carriers generated near the back surface of the silicon substrate, power is effectively extracted, and in particular, the photosensitivity at long wavelengths is increased, and the deterioration of solar cell characteristics at high temperatures can be reduced. Thus, the layer 1b in which the one-conductivity-type semiconductor impurity is diffused at a high concentration.
The sheet resistance on the back side of the silicon substrate 1 on which is formed
It becomes about 15Ω / □.

【0025】次に、シリコン基板1の表面側に例えば窒
化シリコン膜などから成る反射防止膜2をプラズマCV
D法などで厚み500〜2000Å程度の厚みに形成す
る(同図(e)参照)。
Next, an antireflection film 2 made of, for example, a silicon nitride film or the like is formed on the surface side of the silicon substrate 1 by plasma CV.
It is formed to a thickness of about 500 to 2000 mm by a method D or the like (see FIG. 3E).

【0026】この反射防止膜2は、シリコン基板1の表
面で光が反射するのを防止して、シリコン基板1内に光
を有効に取り込むために設ける。この反射防止膜は、シ
リコン基板1との屈折率差などを考慮して、屈折率が2
程度の材料で構成され、厚み500〜2000Å程度の
窒化シリコン(SiNx )膜や酸化シリコン(Si
2 )膜などで構成される。
The antireflection film 2 is provided to prevent light from being reflected on the surface of the silicon substrate 1 and to effectively take light into the silicon substrate 1. The antireflection film has a refractive index of 2 in consideration of a refractive index difference from the silicon substrate 1 and the like.
And a silicon nitride (SiN x ) film or silicon oxide (SiN x )
O 2 ) film.

【0027】最後に、シリコン基板1の表裏両面に銀
(Ag)を焼き付けたりスパッタリングして、銅(C
u)をメッキし、フィンガー電極3とバスバー電極4を
形成して完成する(同図(f)参照)。
Finally, silver (Ag) is baked or sputtered on the front and back surfaces of the silicon substrate 1 to form copper (C).
u) is plated to form finger electrodes 3 and bus bar electrodes 4 to complete the process (see FIG. 6F).

【0028】シリコン基板1の表面側に、表面電極3が
形成されている。この表面電極3は、銀(Ag)と銅
(Cu)の二層構造のものなどから成る。この表面電極
3は、例えば幅80μm程度に、またピッチ1.6mm
程度に形成される多数のフィンガー電極と、この多数の
フィンガー電極を相互に接続する2本のバスバー電極で
構成される。この表面電極3の表面部には、複数の太陽
電池素子同志をリード線で接続するための半田層などが
被着形成される。
A surface electrode 3 is formed on the front side of the silicon substrate 1. The surface electrode 3 has a two-layer structure of silver (Ag) and copper (Cu). The surface electrode 3 has, for example, a width of about 80 μm and a pitch of 1.6 mm.
It is composed of a large number of finger electrodes formed to a certain extent and two bus bar electrodes interconnecting the large number of finger electrodes. A solder layer or the like for connecting a plurality of solar cell elements with lead wires is formed on the surface of the front electrode 3.

【0029】シリコン基板1の裏面側には、裏面電極4
が形成されている。この裏面電極4も、銀(Ag)と銅
(Cu)の二層構造のものなどから成り、さらに半田層
が被着形成される。
On the back side of the silicon substrate 1, a back electrode 4
Are formed. The back electrode 4 also has a two-layer structure of silver (Ag) and copper (Cu), and further has a solder layer formed thereon.

【0030】次に、請求項3に係る半導体基板の粗面化
法の実施形態を図3に基づいて説明する。この半導体基
板の粗面化法では、半導体基板の表面領域を反応性イオ
ンエッチング法で除去した後に、この半導体基板の表面
を反応性イオンエッチング法で粗面状にする。この場
合、半導体基板の表面領域をSF6 、CF4 などフッ素
化合物ガスを用いて除去した後、フッ化メタンガスとフ
ッ化硫黄ガスなどのフッ素化合物ガス、塩素ガス、およ
び酸素ガスを用いて粗面状にする。
Next, an embodiment of a semiconductor substrate roughening method according to claim 3 will be described with reference to FIG. In this semiconductor substrate roughening method, after the surface region of the semiconductor substrate is removed by reactive ion etching, the surface of the semiconductor substrate is roughened by reactive ion etching. In this case, after removing the surface region of the semiconductor substrate using a fluorine compound gas such as SF 6 or CF 4 , the surface is roughened using a fluorine compound gas such as methane fluoride gas and sulfur fluoride gas, chlorine gas, and oxygen gas. Shape.

【0031】つまり、RIE処理前のスライスダメージ
をエッチングで除去し、水洗、乾燥した後、RIEのチ
ャンバ内で粗面状にする前に、同じチャンバ内で半導体
基板の表面領域をフッ素化合物ガスを用いて除去する。
That is, the slice damage before the RIE treatment is removed by etching, washed with water, dried, and before the surface is roughened in the RIE chamber, the surface region of the semiconductor substrate is flushed with a fluorine compound gas in the same chamber. To remove.

【0032】[0032]

【実施例1】15cm×15cm角多結晶シリコン基板
のスライスダメージを除去するために混酸(HNO3
HF=7:1、30℃)中で片面15μm程度エッチン
グした。水洗後、10%HF水溶液中に数秒浸し、表面
の酸化膜を除去した。水洗、乾燥した後、真空チャンバ
内に入れ、RIE法により表面層をエッチングした。こ
のときの条件はSF6 =60sccm、反応圧力50m
Torr、RFパワー300W、1分である。次に、三
フッ化メタン(CHF3 )を10sccm、塩素(Cl
2 )を75sccm、酸素(O2 )を10sccm、お
よび六フッ化硫黄(SF6 )を70sccm流しなが
ら、反応圧力50mTorr、RFパワー300Wで、
10分間エッチングを行って粗面状にした。その結果、
ムラがなく均一な凹凸ができた。
[Embodiment 1] A mixed acid (HNO 3 :
HF = 7: 1, 30 ° C.) and etched on one side by about 15 μm. After washing with water, it was immersed in a 10% HF aqueous solution for several seconds to remove an oxide film on the surface. After washing with water and drying, the substrate was placed in a vacuum chamber and the surface layer was etched by RIE. The conditions at this time are SF 6 = 60 sccm, reaction pressure 50 m
Torr, RF power 300 W, 1 minute. Next, 10 sccm of methane trifluoride (CHF 3 ) and chlorine (Cl
2 ) At a reaction pressure of 50 mTorr and an RF power of 300 W while flowing 75 sccm of oxygen, 10 sccm of oxygen (O 2 ), and 70 sccm of sulfur hexafluoride (SF 6 ),
Etching was performed for 10 minutes to form a rough surface. as a result,
Uniform unevenness was obtained without unevenness.

【0033】[0033]

【実施例2】15cm×15cm角多結晶シリコン基板
のスライスダメージを除去するために15%NaOH水
溶液、85℃中で片面15μm程度エッチングした。水
洗後、10%HF水溶液中に数秒浸し、表面の酸化膜を
除去した。水洗、乾燥した後、真空チャンバ内に入れ、
RIE法により表面層をエッチングした。このときの条
件はSF6 =60sccm、反応圧力50mTorr、
RFパワー300W、1分である。次に、三フッ化メタ
ン(CHF3 )を10sccm、塩素(Cl2)を75
sccm、酸素(O2 )を10sccm、および六フッ
化硫黄(SF6)を70sccm流しながら、反応圧力
50mTorr、RFパワー300Wで、10分間エッ
チングを行って粗面状にした。その結果、ムラがなく均
一な凹凸ができた。
Embodiment 2 In order to remove the slice damage of a 15 cm × 15 cm square polycrystalline silicon substrate, one side was etched at about 15 μm in a 15% NaOH aqueous solution at 85 ° C. After washing with water, it was immersed in a 10% HF aqueous solution for several seconds to remove an oxide film on the surface. After washing with water and drying, put it in a vacuum chamber,
The surface layer was etched by RIE. The conditions at this time were SF 6 = 60 sccm, reaction pressure 50 mTorr,
RF power 300 W, 1 minute. Next, methane trifluoride (CHF 3 ) was added at 10 sccm, and chlorine (Cl 2 ) was added at 75 sccm.
Etching was performed at a reaction pressure of 50 mTorr and an RF power of 300 W for 10 minutes while flowing sccm, oxygen (O 2 ) at 10 sccm, and sulfur hexafluoride (SF 6 ) at 70 sccm to form a rough surface. As a result, uniform unevenness was obtained without unevenness.

【0034】[0034]

【発明の効果】以上のように、請求項1に係る半導体基
板の粗面化法によれば、半導体基板の一主面側に酸化膜
を形成した後、反応性イオンエッチング法で粗面状にす
ることから、凹凸をシリコンウェハの表面側の全面にわ
たってムラなく均一に形成できる。もって、基板表面で
の反射率が低減して特性を向上させることができると共
に、美観も向上させることができる。
As described above, according to the method for roughening a semiconductor substrate according to the first aspect, after an oxide film is formed on one main surface side of the semiconductor substrate, the surface is roughened by a reactive ion etching method. Therefore, unevenness can be uniformly formed over the entire surface of the silicon wafer without unevenness. Thus, the reflectance on the substrate surface is reduced, the characteristics can be improved, and the aesthetic appearance can be improved.

【0035】また、請求項3に係る半導体基板の粗面化
法によれば、半導体基板の表面領域を反応性イオンエッ
チング法で除去した後に、この半導体基板の表面を反応
性イオンエッチング法で粗面状にすることから、凹凸を
シリコンウェハの表面側の全面にわたってムラなく均一
に形成できる。もって、基板表面での反射率が低減して
特性を向上させることができると共に、美観も向上させ
ることができる。
According to a third aspect of the present invention, after the surface region of the semiconductor substrate is removed by the reactive ion etching method, the surface of the semiconductor substrate is roughened by the reactive ion etching method. Because of the planar shape, the unevenness can be uniformly formed over the entire surface of the silicon wafer without unevenness. Thus, the reflectance on the substrate surface is reduced, the characteristics can be improved, and the aesthetic appearance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係る半導体基板の粗面化法の工程を
示す図である。
FIG. 1 is a view showing a step of a method for roughening a semiconductor substrate according to claim 1;

【図2】請求項1に係る半導体基板の粗面化法を示す断
面図である。
FIG. 2 is a cross-sectional view showing a method for roughening a semiconductor substrate according to claim 1;

【図3】請求項3に係る半導体基板の粗面化法の工程を
示す図である。
FIG. 3 is a view showing a step of a semiconductor substrate roughening method according to claim 3;

【符号の説明】[Explanation of symbols]

1‥‥‥半導体基板、2‥‥‥反射防止膜、3‥‥‥表
面電極、4‥‥‥裏面電極
1 semiconductor substrate, 2 antireflection film, 3 front electrode, 4 back electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面を反応性イオンエッチ
ング法で粗面状にする半導体基板の粗面化法において、
前記半導体基板の表面に酸化膜を形成した後、反応性イ
オンエッチング法で粗面状にすることを特徴とする半導
体基板の粗面化法。
In a method of roughening a semiconductor substrate, the surface of the semiconductor substrate is roughened by a reactive ion etching method.
After forming an oxide film on the surface of the semiconductor substrate, the surface is roughened by a reactive ion etching method.
【請求項2】 前記半導体基板を酸化性水溶液中に浸漬
して前記酸化膜を形成することを特徴とする請求項1に
記載の半導体基板の粗面化法。
2. The method according to claim 1, wherein the oxide film is formed by immersing the semiconductor substrate in an oxidizing aqueous solution.
【請求項3】 半導体基板の表面を反応性イオンエッチ
ング法で粗面状にする半導体基板の粗面化法において、
前記半導体基板の表面領域を反応性イオンエッチング法
で除去した後に、この半導体基板の表面を反応性イオン
エッチング法で粗面状にすることを特徴とする半導体基
板の粗面化法。
3. A semiconductor substrate roughening method in which a surface of the semiconductor substrate is roughened by a reactive ion etching method.
After the surface area of the semiconductor substrate is removed by a reactive ion etching method, the surface of the semiconductor substrate is roughened by a reactive ion etching method.
【請求項4】 前記半導体基板の表面領域をフッ素化合
物ガスを用いて除去すると共に、前記半導体基板の表面
をフッ素化合物ガス、塩素ガス、および酸素ガスを用い
て粗面状にすることを特徴とする請求項3に記載の半導
体基板の粗面化法。
4. The method according to claim 1, wherein the surface region of the semiconductor substrate is removed using a fluorine compound gas, and the surface of the semiconductor substrate is roughened using a fluorine compound gas, a chlorine gas and an oxygen gas. The method for roughening a semiconductor substrate according to claim 3.
【請求項5】 前記半導体基板が多結晶シリコン基板で
あることを特徴とする請求項1、請求項2、請求項3、
または請求項4に記載の半導体基板の粗面化法。
5. The semiconductor device according to claim 1, wherein said semiconductor substrate is a polycrystalline silicon substrate.
A method for roughening a semiconductor substrate according to claim 4.
JP10117579A 1998-04-27 1998-04-27 Surface-roughening method of semiconductor substrate Withdrawn JPH11312665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117579A JPH11312665A (en) 1998-04-27 1998-04-27 Surface-roughening method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117579A JPH11312665A (en) 1998-04-27 1998-04-27 Surface-roughening method of semiconductor substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006163323A Division JP4587988B2 (en) 2006-06-13 2006-06-13 Method for manufacturing solar cell element

Publications (1)

Publication Number Publication Date
JPH11312665A true JPH11312665A (en) 1999-11-09

Family

ID=14715323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117579A Withdrawn JPH11312665A (en) 1998-04-27 1998-04-27 Surface-roughening method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH11312665A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120631A2 (en) * 2008-03-25 2009-10-01 Applied Materials, Inc. Surface cleaning and texturing process for crystalline solar cells
JP2010504651A (en) * 2006-09-25 2010-02-12 イーシーエヌ・エネルギーオンデルゾエク・セントルム・ネーデルランド Method for manufacturing crystalline silicon solar cell with improved surface passivation
CN102097526A (en) * 2010-10-08 2011-06-15 常州天合光能有限公司 Surface damage layer cleaning process for crystal silicon RIE texturing
JP2013519217A (en) * 2010-02-01 2013-05-23 ラム リサーチ コーポレーション Method for reducing pattern collapse in high aspect ratio nanostructures
JP2013544028A (en) * 2010-11-01 2013-12-09 インテヴァック インコーポレイテッド This application claims the benefit of US Provisional Patent Application No. 61 / 409,064 filed Nov. 1, 2010, entitled “DRYETCHINGMETHODFURRFACETEXFORMATIONIONSILICONWAFER”, which is entitled: The entire contents of which are hereby incorporated by reference.
JP2014082430A (en) * 2012-09-28 2014-05-08 Kyocera Corp Method of manufacturing solar cell element
JP2019072886A (en) * 2017-10-13 2019-05-16 株式会社エンプラス Production method of molding tool by dry etching method
CN114901458A (en) * 2019-12-27 2022-08-12 Dic株式会社 Composite structure and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504651A (en) * 2006-09-25 2010-02-12 イーシーエヌ・エネルギーオンデルゾエク・セントルム・ネーデルランド Method for manufacturing crystalline silicon solar cell with improved surface passivation
US8709853B2 (en) 2006-09-25 2014-04-29 Ecn Energieonderzoek Centrum Nederland Method of manufacturing crystalline silicon solar cells with improved surface passivation
WO2009120631A2 (en) * 2008-03-25 2009-10-01 Applied Materials, Inc. Surface cleaning and texturing process for crystalline solar cells
WO2009120631A3 (en) * 2008-03-25 2010-01-07 Applied Materials, Inc. Surface cleaning and texturing process for crystalline solar cells
CN102017176A (en) * 2008-03-25 2011-04-13 应用材料股份有限公司 Surface cleaning and texturing process for crystalline solar cells
US8129212B2 (en) 2008-03-25 2012-03-06 Applied Materials, Inc. Surface cleaning and texturing process for crystalline solar cells
JP2013519217A (en) * 2010-02-01 2013-05-23 ラム リサーチ コーポレーション Method for reducing pattern collapse in high aspect ratio nanostructures
CN102097526A (en) * 2010-10-08 2011-06-15 常州天合光能有限公司 Surface damage layer cleaning process for crystal silicon RIE texturing
JP2013544028A (en) * 2010-11-01 2013-12-09 インテヴァック インコーポレイテッド This application claims the benefit of US Provisional Patent Application No. 61 / 409,064 filed Nov. 1, 2010, entitled “DRYETCHINGMETHODFURRFACETEXFORMATIONIONSILICONWAFER”, which is entitled: The entire contents of which are hereby incorporated by reference.
JP2014082430A (en) * 2012-09-28 2014-05-08 Kyocera Corp Method of manufacturing solar cell element
JP2019072886A (en) * 2017-10-13 2019-05-16 株式会社エンプラス Production method of molding tool by dry etching method
CN114901458A (en) * 2019-12-27 2022-08-12 Dic株式会社 Composite structure and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6162658A (en) Metallization of buried contact solar cells
JP4610669B2 (en) Manufacturing method of solar cell
KR101241617B1 (en) Solar cell and method of manufacturing the same
WO2012150627A1 (en) Method for cleaning silicon substrate, and method for producing solar cell
US20050074917A1 (en) Process for manufacturing a solar cell
KR20110101141A (en) Method for manufacturing a solar cell with a two-stage doping
TWI492390B (en) Silicon solar cell
US20090038682A1 (en) Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
WO2016052635A1 (en) Method for making crystalline silicon-based solar cell, and method for making solar cell module
JP4974756B2 (en) Method for manufacturing solar cell element
JP3377931B2 (en) Solar cell element
JPH11312665A (en) Surface-roughening method of semiconductor substrate
JP4587988B2 (en) Method for manufacturing solar cell element
JP2004172271A (en) Solar cell and method for manufacturing same
CN104659156B (en) Etching method of single crystalline silicon solar cell
RU2139601C1 (en) METHOD FOR MANUFACTURING n+-p-p+ STRUCTURE SOLAR CELL
JP2010245568A (en) Method of manufacturing solar cell
JPH07326784A (en) Manufacture of solar battery element
JPH11307792A (en) Solar cell element
JP3602323B2 (en) Solar cell manufacturing method
EP0958597A1 (en) Metallization of buried contact solar cells
JP2003298080A (en) Method for manufacturing solar cell
JP2005311060A (en) Solar cell and manufacturing method therefor
JPH05267701A (en) Transparent, conductive tin oxide film pattering method
WO2017187623A1 (en) Method for manufacturing solar cell, and solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040922

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041015

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060626