JP4587988B2 - Method for manufacturing solar cell element - Google Patents

Method for manufacturing solar cell element Download PDF

Info

Publication number
JP4587988B2
JP4587988B2 JP2006163323A JP2006163323A JP4587988B2 JP 4587988 B2 JP4587988 B2 JP 4587988B2 JP 2006163323 A JP2006163323 A JP 2006163323A JP 2006163323 A JP2006163323 A JP 2006163323A JP 4587988 B2 JP4587988 B2 JP 4587988B2
Authority
JP
Japan
Prior art keywords
silicon substrate
substrate
solar cell
cell element
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006163323A
Other languages
Japanese (ja)
Other versions
JP2006253726A (en
Inventor
洋介 猪股
健次 福井
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006163323A priority Critical patent/JP4587988B2/en
Publication of JP2006253726A publication Critical patent/JP2006253726A/en
Application granted granted Critical
Publication of JP4587988B2 publication Critical patent/JP4587988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は半導体基板の粗面化法に関し、特に半導体基板の表面を反応性イオンエッチング法で粗面化する半導体基板の粗面化法に関する。   The present invention relates to a method for roughening a semiconductor substrate, and more particularly to a method for roughening a semiconductor substrate in which a surface of the semiconductor substrate is roughened by a reactive ion etching method.

シリコン基板を用いて太陽電池素子を形成する場合に、基板表面を水酸化ナトリウムなどのアルカリ水溶液でエッチングすると、表面に微細な凹凸が形成され、基板表面での反射をある程度低減させることができる。   When a solar cell element is formed using a silicon substrate, if the substrate surface is etched with an alkaline aqueous solution such as sodium hydroxide, fine irregularities are formed on the surface, and reflection on the substrate surface can be reduced to some extent.

面方位が(100)面の単結晶シリコン基板を用いた場合は、このような方法でテクスチャー構造と呼ばれるピラミッド構造を基板表面に均一に形成することができるものの、多結晶シリコン基板で太陽電池素子を形成する場合、アルカリ水溶液によるエッチングは結晶の面方位に依存することから、ピラミッド構造を均一には形成できず、そのため全体の反射率も効果的には低減できないという問題がある。   When a single crystal silicon substrate having a (100) plane orientation is used, a pyramid structure called a texture structure can be uniformly formed on the substrate surface by such a method, but a solar cell element using a polycrystalline silicon substrate. In the case of forming the film, the etching with the alkaline aqueous solution depends on the crystal plane orientation, so that the pyramid structure cannot be formed uniformly, and the overall reflectance cannot be effectively reduced.

このような問題を解決するために、太陽電池素子を多結晶シリコン基板で形成する場合に、基板表面に微細な突起を反応性イオンエッチング(Reactive Ion Etching : RIE)法で形成することが提案されている(例えば特公昭60−27195号、特開平5−75152号、特開平9−102625号公報参照)。   In order to solve such problems, it has been proposed that when a solar cell element is formed of a polycrystalline silicon substrate, a fine protrusion is formed on the surface of the substrate by a reactive ion etching (RIE) method. (See, for example, Japanese Patent Publication No. 60-27195, Japanese Patent Laid-Open No. 5-75152, and Japanese Patent Laid-Open No. 9-102625).

この方法によると、多結晶シリコンにおける不規則な結晶の面方位に左右されることなく、微細な突起を均一に形成することができ、特に多結晶シリコンを用いた太陽電池素子においては、反射率をより効果的に低減することができるようになる。   According to this method, fine protrusions can be formed uniformly without being influenced by the plane orientation of the irregular crystal in the polycrystalline silicon. Especially in the solar cell element using polycrystalline silicon, the reflectance Can be reduced more effectively.

また、結晶系のシリコン太陽電池は通常インゴットをスライスしたウェハを用いて形成される。このときウェハの表面にはスライスによるダメージがあるため、表面接合(不純物拡散領域)を形成する前に、このダメージ層を除去する必要がある。この深さは通常10〜15μm程度であるが、RIE法で粗面状にするとしても、その凹凸の深さは高々数μmであり、ダメージ層除去のためには足りない。そのため、RIE法で粗面状にする前にほとんどのダメージ層を除去しておく必要がある。このようなダメージ層除去のために、通常はフッ硝酸や水酸化ナトリウム水溶液を用いる。   A crystalline silicon solar cell is usually formed using a wafer obtained by slicing an ingot. At this time, since the surface of the wafer is damaged by slicing, it is necessary to remove the damaged layer before forming the surface junction (impurity diffusion region). This depth is usually about 10 to 15 μm, but even if the surface is roughened by the RIE method, the depth of the unevenness is at most several μm, which is insufficient for removing the damaged layer. Therefore, it is necessary to remove most of the damaged layer before making the surface rough by the RIE method. In order to remove such a damaged layer, hydrofluoric acid or sodium hydroxide aqueous solution is usually used.

ところが、これらの液を用いて、水洗・乾燥してその後にRIE法で粗面状にすると、凹凸の形成時にムラができるという問題があった。特に、ムラの部分は凹凸の間に隙間が多く、充分な凹凸が形成できていないため、太陽電池の表面反射率の増加につながり、太陽電池特性を低下させる要因となる。   However, when these liquids are used for washing and drying and then roughening by RIE, there is a problem that unevenness is formed when the irregularities are formed. In particular, in the uneven portion, there are many gaps between the irregularities, and sufficient irregularities cannot be formed, leading to an increase in the surface reflectance of the solar cell, which causes a decrease in solar cell characteristics.

また、凹凸をウェハ全面に形成すると、表面全体が暗くなることから、ムラが目立ちやすく、製品にしたときの美観を著しく損ねる。   Further, when unevenness is formed on the entire surface of the wafer, the entire surface becomes dark, so that unevenness is easily noticeable, and the aesthetic appearance when made into a product is significantly impaired.

このムラはRIEの面内均一性に起因するものではなく、RIE前の洗浄ムラおよび乾燥ムラに起因している。つまり、洗浄ムラや乾燥ムラで基板表面にわずかな酸化膜などが部分的に存在すると、RIEによる凹凸形成に影響し、結果的に全体からみてムラとなるのである。   This unevenness is not caused by RIE in-plane uniformity, but is caused by cleaning unevenness and drying unevenness before RIE. That is, if a slight oxide film or the like is partially present on the substrate surface due to uneven cleaning or dry unevenness, it affects the formation of irregularities by RIE, resulting in unevenness as a whole.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、半導体基板の一主面側にRIE工程でムラができるという従来方法の問題点を解消した半導体基板の粗面化法を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and has a roughened semiconductor substrate that solves the problem of the conventional method that the RIE process can cause unevenness on one main surface side of the semiconductor substrate. The purpose is to provide the law.

上記目的を達成するために、本発明の太陽電池素子の製造法では、結晶シリコン基板の表面を粗面状にする工程を含む太陽電池素子の製造方法において、前記結晶シリコン基板の表面の酸化層を、フッ素化合物ガスを用いて反応性イオンエッチング法で除去した後に、前記結晶シリコン基板の表面をフッ素化合物ガス、塩素ガス、および酸素ガスを用いて反応性イオンエッチング法で粗面状にする。 To achieve the above object, the manufacturing method of the solar cell element of the present invention, in the manufacturing method of the solar battery cell including the step of the surface of the crystalline silicon substrate on rough surface, the oxide layer on the surface of the crystalline silicon substrate Is removed by a reactive ion etching method using a fluorine compound gas, and then the surface of the crystalline silicon substrate is roughened by a reactive ion etching method using a fluorine compound gas, a chlorine gas, and an oxygen gas .

本発明の太陽電池素子の製造方法によれば、結晶シリコン基板の表面の酸化層を、フッ素化合物ガスを用いて反応性イオンエッチング法で除去した後に、前記結晶シリコン基板の表面をフッ素化合物ガス、塩素ガス、および酸素ガスを用いて反応性イオンエッチング法で粗面状にすることから、凹凸をシリコンウェハの表面側の全面にわたってムラなく均一に形成できる。もって、基板表面での反射率が低減して特性を向上させることができると共に、美観も向上させることができる。 According to the method for producing a solar cell element of the present invention, after removing the oxide layer on the surface of the crystalline silicon substrate by a reactive ion etching method using a fluorine compound gas, the surface of the crystalline silicon substrate is subjected to a fluorine compound gas, Since the surface is roughened by a reactive ion etching method using chlorine gas and oxygen gas, the unevenness can be uniformly formed over the entire surface of the silicon wafer. Accordingly, the reflectance on the substrate surface can be reduced to improve the characteristics, and the aesthetics can be improved.

以下、本発明の実施形態を添付図面に基づき詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、太陽電池素子の形成方法を例にした半導体基板の粗面化法を示す工程図、図2は断面図であり、1は半導体基板、2は反射防止膜、3は表面電極、4は裏面電極である。   FIG. 1 is a process diagram showing a method of roughening a semiconductor substrate, taking a method for forming a solar cell element as an example, FIG. 2 is a sectional view, 1 is a semiconductor substrate, 2 is an antireflection film, 3 is a surface electrode, 4 is a back electrode.

まず、一導電型半導体不純物を含有するシリコンなどから成る半導体基板1を用意する。   First, a semiconductor substrate 1 made of silicon containing one conductivity type semiconductor impurity is prepared.

このシリコンなどから成る半導体基板1は、インゴットから所定寸法に切り出されたものである(図2(a)参照)。このシリコン基板1は、単結晶シリコン基板又は多結晶シリコン基板などから成る。このシリコン基板1は、一導電型半導体不純物を1×1016atoms/cm3 程度含有し、比抵抗1.5Ωcm程度の基板である。このシリコン基板1は、p型、n型のいずれでもよい。単結晶シリコンの場合は引き上げ法などによって形成され、多結晶シリコンの場合は鋳造法などによって形成される。多結晶シリコンは、大量生産が可能で製造コスト面で単結晶シリコンよりも極めて有利である。引き上げ法や鋳造法によって形成されたインゴットを300μm程度の厚みにスライスして、10cm×10cmもしくは15cm×15cm程度の大きさに切断してシリコン基板となる。 The semiconductor substrate 1 made of silicon or the like is cut out to a predetermined size from an ingot (see FIG. 2A). The silicon substrate 1 is made of a single crystal silicon substrate or a polycrystalline silicon substrate. This silicon substrate 1 is a substrate containing about 1 × 10 16 atoms / cm 3 of one conductivity type semiconductor impurity and having a specific resistance of about 1.5 Ωcm. The silicon substrate 1 may be either p-type or n-type. In the case of monocrystalline silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is extremely advantageous over single-crystal silicon in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced to a thickness of about 300 μm and cut into a size of about 10 cm × 10 cm or 15 cm × 15 cm to form a silicon substrate.

次に、このシリコン基板1の表面部のスライスダメージを除去するために、フッ硝酸や水酸化ナトリウム水溶液に浸漬して、15μm程度エッチングする。フッ硝酸としては、HNO3 :HF=7:1の水溶液を用いることができ、水酸化ナトリウムとしては15%程度の水溶液を用いることができる。 Next, in order to remove the slice damage on the surface portion of the silicon substrate 1, the silicon substrate 1 is immersed in hydrofluoric acid or a sodium hydroxide aqueous solution and etched by about 15 μm. An aqueous solution of HNO 3 : HF = 7: 1 can be used as hydrofluoric acid, and an aqueous solution of about 15% can be used as sodium hydroxide.

次に、水洗し、10%程度のHF水溶液に数秒浸し、表面の酸化膜を除去し、水洗後、さらに0.3wt%NaOH水溶液中に数秒浸し、ステン膜(シリコンのアモルファス膜)を除去してもよい。HF処理で付着することがあるためである。このHF、NaOHの工程を表面が水を完全にはじくようになるまで数回繰り返す。   Next, it is washed with water and immersed in a 10% HF aqueous solution for several seconds to remove the oxide film on the surface. After washing with water, it is further immersed in a 0.3 wt% NaOH aqueous solution for several seconds to remove the stainless film (silicon amorphous film). May be. It is because it may adhere by HF processing. This HF and NaOH process is repeated several times until the surface completely repels water.

次に、水洗後、硝酸、硫酸などの酸化力のある液に数分入れ、基板表面に一様に酸化膜を形成する。この酸化膜は、RIE工程でムラなく凹凸を形成すためには、数nm以下が好ましい。このように、基板表面に酸化膜を形成してRIEを行うと、酸化膜が均一にエッチングされて凹凸形成が全面にわたって同時に開始されるため、ムラなく凹凸を形成できる。   Next, after washing with water, it is put into a liquid having oxidizing power such as nitric acid and sulfuric acid for several minutes to form an oxide film uniformly on the substrate surface. This oxide film is preferably several nm or less in order to form unevenness in the RIE process without unevenness. In this way, when an oxide film is formed on the surface of the substrate and RIE is performed, the oxide film is uniformly etched and formation of unevenness is started simultaneously over the entire surface, so that unevenness can be formed without unevenness.

次に、RIE法で微細な突起1cを多数形成する。すなわち、チャンバー内に何らかの方法でプラズマを作り、平板状の基板ホルダの上にウェハを乗せ、これに高周波あるいは直流電圧を印加する。プラズマ中に発生したイオンは、電界により基板に入射しエッチングをラジカルとともに行うものである。本発明では、例えば三フッ化メタン(CHF3 )を5〜20sccm程度、塩素(Cl2 )を50〜100sccm程度、酸素(O2 )を5〜15sccm程度、および六フッ化硫黄(SF6 )を50〜80sccm程度流しながら、反応圧力50mTorr程度、プラズマをかけるRFパワー300〜500W程度で、10秒〜15分間程度行う。すると、幅と高さがそれぞれ2μm以下の微細な突起1cが多数形成される。この突起1cの幅と高さが2μm以上になると、エッチングの処理時間が長くなる。この微細な突起1cをシリコン基板1の表面側の全面にわたって均一且つ正確に制御性をもたせて形成するために、1μm以下が好適である。また、この微細な突起は極めて微小なものでも反射低減の効果はあるが、面内に均一かつ正確に形成するためには、製造工程上1nm以上であることが望まれる。 Next, many fine protrusions 1c are formed by the RIE method. That is, plasma is generated in the chamber by some method, a wafer is placed on a flat substrate holder, and a high frequency or DC voltage is applied thereto. Ions generated in the plasma enter the substrate by an electric field and perform etching together with radicals. In the present invention, for example, about 5 to 20 sccm of trifluoromethane (CHF 3 ), about 50 to 100 sccm of chlorine (Cl 2 ), about 5 to 15 sccm of oxygen (O 2 ), and sulfur hexafluoride (SF 6 ) For about 10 seconds to 15 minutes at a reaction pressure of about 50 mTorr and an RF power of about 300 to 500 W for applying plasma. As a result, a large number of fine protrusions 1c each having a width and a height of 2 μm or less are formed. When the width and height of the protrusion 1c are 2 μm or more, the etching processing time becomes long. In order to form the fine protrusions 1c uniformly and accurately over the entire surface on the surface side of the silicon substrate 1, 1 μm or less is preferable. In addition, even though these minute protrusions are extremely small, they have an effect of reducing reflection. However, in order to form the projections uniformly and accurately in the plane, it is desirable that the thickness be 1 nm or more in the manufacturing process.

次に、シリコン基板1の表面部に逆導電型半導体不純物を気相拡散法、塗布拡散法、或いはイオン打ち込み法などで拡散して逆導電型半導体不純物を含有する層1aを形成すると共に、この層1aが基板1の表面側のみに残るように、他の部分をエッチングする(同図(c)参照)。   Next, a layer 1a containing the reverse conductivity type semiconductor impurity is formed on the surface portion of the silicon substrate 1 by diffusing the reverse conductivity type semiconductor impurity by a vapor phase diffusion method, a coating diffusion method, or an ion implantation method. The other part is etched so that the layer 1a remains only on the surface side of the substrate 1 (see FIG. 4C).

シリコン基板1の表面側には、逆導電型半導体不純物が拡散された層1aが形成されている。この逆導電型半導体不純物が拡散された層1aは、シリコン基板1内に半導体接合部を形成するために設けるものであり、例えばn型の不純物を拡散させる場合、POCl3 を用いた気相拡散法、P2 5 用いた塗布拡散法、およびP+ イオンを直接拡散させるイオン打ち込み法などによって形成される。この逆導電型半導体不純物を含有する層は、0.1〜0.5μm程度の深さに形成される。 On the surface side of the silicon substrate 1, a layer 1a in which a reverse conductivity type semiconductor impurity is diffused is formed. The layer 1a in which the reverse conductivity type semiconductor impurity is diffused is provided to form a semiconductor junction in the silicon substrate 1. For example, when n-type impurity is diffused, vapor phase diffusion using POCl 3 is performed. And a coating diffusion method using P 2 O 5 and an ion implantation method for directly diffusing P + ions. The layer containing the reverse conductivity type semiconductor impurity is formed to a depth of about 0.1 to 0.5 μm.

次に、シリコン基板1の裏面側に例えばアルミニウム(Al)などを主成分とする金属ペーストを塗布して焼き付けることにより、シリコン基板1の裏面側に一導電型半導体不純物を多量に拡散させた層1bを形成する(同図(d)参照)。   Next, a layer in which one conductivity type semiconductor impurity is diffused in a large amount on the back surface side of the silicon substrate 1 by applying and baking a metal paste mainly composed of aluminum (Al) or the like on the back surface side of the silicon substrate 1. 1b is formed (see FIG. 4D).

シリコン基板1の裏面側には、一導電型半導体不純物が高濃度に拡散された層1bを形成することが望ましい。この一導電型半導体不純物が高濃度に拡散された層1bは、シリコン基板1の裏面近くでキャリアの再結合による効率の低下を防ぐために、シリコン基板1の裏面側に内部電界を形成するものである。つまり、シリコン基板の裏面近くで発生したキャリアがこの電界によって加速される結果、電力が有効に取り出されることとなり、特に長波長の光感度が増大すると共に、高温における太陽電池特性の低下を軽減できる。このように、一導電型半導体不純物が高濃度に拡散された層1bが形成されたシリコン基板1の裏面側のシート抵抗は、15Ω/□程度になる。   On the back side of the silicon substrate 1, it is desirable to form a layer 1b in which one conductivity type semiconductor impurity is diffused at a high concentration. The layer 1b in which the one-conductivity-type semiconductor impurity is diffused at a high concentration forms an internal electric field on the back surface side of the silicon substrate 1 in order to prevent a decrease in efficiency due to carrier recombination near the back surface of the silicon substrate 1. is there. In other words, as a result of the carriers generated near the back surface of the silicon substrate being accelerated by this electric field, the electric power is effectively extracted, and particularly the long wavelength photosensitivity increases and the deterioration of the solar cell characteristics at high temperatures can be reduced. . As described above, the sheet resistance on the back surface side of the silicon substrate 1 on which the layer 1b in which one conductivity type semiconductor impurity is diffused at a high concentration is formed is about 15Ω / □.

次に、シリコン基板1の表面側に例えば窒化シリコン膜などから成る反射防止膜2をプラズマCVD法などで厚み500〜2000Å程度の厚みに形成する(同図(e)参照)。   Next, an antireflection film 2 made of, for example, a silicon nitride film or the like is formed on the surface side of the silicon substrate 1 by a plasma CVD method or the like to a thickness of about 500 to 2000 mm (see FIG. 4E).

この反射防止膜2は、シリコン基板1の表面で光が反射するのを防止して、シリコン基板1内に光を有効に取り込むために設ける。この反射防止膜は、シリコン基板1との屈折率差などを考慮して、屈折率が2程度の材料で構成され、厚み500〜2000Å程度の窒化シリコン(SiNx )膜や酸化シリコン(SiO2 )膜などで構成される。 The antireflection film 2 is provided in order to prevent light from being reflected from the surface of the silicon substrate 1 and to effectively incorporate light into the silicon substrate 1. This antireflection film is made of a material having a refractive index of about 2 in consideration of the refractive index difference from the silicon substrate 1, and is a silicon nitride (SiN x ) film or silicon oxide (SiO 2 ) having a thickness of about 500 to 2000 mm. ) Consists of a film or the like.

最後に、シリコン基板1の表裏両面に銀(Ag)を焼き付けたりスパッタリングして、銅(Cu)をメッキし、フィンガー電極3とバスバー電極4を形成して完成する(同図(f)参照)。   Finally, silver (Ag) is baked or sputtered on both the front and back surfaces of the silicon substrate 1, and copper (Cu) is plated to complete the finger electrode 3 and the bus bar electrode 4 (see FIG. 8F). .

シリコン基板1の表面側に、表面電極3が形成されている。この表面電極3は、銀(Ag)と銅(Cu)の二層構造のものなどから成る。この表面電極3は、例えば幅80μm程度に、またピッチ1.6mm程度に形成される多数のフィンガー電極と、この多数のフィンガー電極を相互に接続する2本のバスバー電極で構成される。この表面電極3の表面部には、複数の太陽電池素子同志をリード線で接続するための半田層などが被着形成される。   A surface electrode 3 is formed on the surface side of the silicon substrate 1. The surface electrode 3 is made of a two-layer structure of silver (Ag) and copper (Cu). The surface electrode 3 is composed of, for example, a large number of finger electrodes formed with a width of about 80 μm and a pitch of about 1.6 mm, and two bus bar electrodes that connect the large number of finger electrodes to each other. A solder layer or the like for connecting a plurality of solar cell elements with lead wires is deposited on the surface portion of the surface electrode 3.

シリコン基板1の裏面側には、裏面電極4が形成されている。この裏面電極4も、銀(Ag)と銅(Cu)の二層構造のものなどから成り、さらに半田層が被着形成される。   A back electrode 4 is formed on the back side of the silicon substrate 1. The back electrode 4 is also made of a two-layer structure of silver (Ag) and copper (Cu), and a solder layer is formed thereon.

次に、請求項に係る太陽電池素子の製造方法の実施形態を図3に基づいて説明する。 It will now be described with reference to embodiments of a method for manufacturing a solar cell element according to claim 1 in FIG.

この半導体基板の粗面化法では、半導体基板の表面領域を反応性イオンエッチング法で除去した後に、この半導体基板の表面を反応性イオンエッチング法で粗面状にする。この場合、半導体基板の表面領域をSF6 、CF4 などフッ素化合物ガスを用いて除去した後、フッ化メタンガスとフッ化硫黄ガスなどのフッ素化合物ガス、塩素ガス、および酸素ガスを用いて粗面状にする。 In this method of roughening a semiconductor substrate, the surface region of the semiconductor substrate is removed by a reactive ion etching method, and then the surface of the semiconductor substrate is roughened by a reactive ion etching method. In this case, after removing the surface region of the semiconductor substrate using a fluorine compound gas such as SF 6 or CF 4 , a rough surface using a fluorine compound gas such as fluorinated methane gas and sulfur fluoride gas, chlorine gas, and oxygen gas is used. Shape.

つまり、RIE処理前のスライスダメージをエッチングで除去し、水洗、乾燥した後、RIEのチャンバ内で粗面状にする前に、同じチャンバ内で半導体基板の表面領域をフッ素化合物ガスを用いて除去する。   In other words, the slice damage before the RIE process is removed by etching, washed and dried, and then the surface area of the semiconductor substrate is removed using a fluorine compound gas in the same chamber before the surface is roughened in the RIE chamber. To do.

15cm×15cm角多結晶シリコン基板のスライスダメージを除去するために混酸(HNO3 :HF=7:1、30℃)中で片面15μm程度エッチングした。水洗後、10%HF水溶液中に数秒浸し、表面の酸化膜を除去した。水洗、乾燥した後、真空チャンバ内に入れ、RIE法により表面層をエッチングした。このときの条件はSF6 =60sccm、反応圧力50mTorr、RFパワー300W、1分である。次に、三フッ化メタン(CHF3 )を10sccm、塩素(Cl2 )を75sccm、酸素(O2 )を10sccm、および六フッ化硫黄(SF6 )を70sccm流しながら、反応圧力50mTorr、RFパワー300Wで、10分間エッチングを行って粗面状にした。その結果、ムラがなく均一な凹凸ができた。 In order to remove the slice damage of the 15 cm × 15 cm square polycrystalline silicon substrate, etching was performed on a single side of about 15 μm in a mixed acid (HNO 3 : HF = 7: 1, 30 ° C.). After washing with water, it was immersed in a 10% HF aqueous solution for several seconds to remove the oxide film on the surface. After washing with water and drying, it was placed in a vacuum chamber and the surface layer was etched by RIE. The conditions at this time are SF 6 = 60 sccm, reaction pressure 50 mTorr, RF power 300 W, and 1 minute. Next, a reaction pressure of 50 mTorr and an RF power are applied while flowing 10 sccm of trifluoromethane (CHF 3 ), 75 sccm of chlorine (Cl 2 ), 10 sccm of oxygen (O 2 ), and 70 sccm of sulfur hexafluoride (SF 6 ). Etching was performed at 300 W for 10 minutes to form a rough surface. As a result, there was no unevenness and uniform irregularities were formed.

15cm×15cm角多結晶シリコン基板のスライスダメージを除去するために15%NaOH水溶液、85℃中で片面15μm程度エッチングした。水洗後、10%HF水溶液中に数秒浸し、表面の酸化膜を除去した。水洗、乾燥した後、真空チャンバ内に入れ、RIE法により表面層をエッチングした。このときの条件はSF6 =60sccm、反応圧力50mTorr、RFパワー300W、1分である。次に、三フッ化メタン(CHF3 )を10sccm、塩素(Cl2)を75sccm、酸素(O2 )を10sccm、および六フッ化硫黄(SF6)を70sccm流しながら、反応圧力50mTorr、RFパワー300Wで、10分間エッチングを行って粗面状にした。その結果、ムラがなく均一な凹凸ができた。 In order to remove the slice damage of the 15 cm × 15 cm square polycrystalline silicon substrate, etching was performed at about 15 μm on one side in a 15% NaOH aqueous solution at 85 ° C. After washing with water, it was immersed in a 10% HF aqueous solution for several seconds to remove the oxide film on the surface. After washing with water and drying, it was placed in a vacuum chamber and the surface layer was etched by RIE. The conditions at this time are SF 6 = 60 sccm, reaction pressure 50 mTorr, RF power 300 W, and 1 minute. Next, a reaction pressure of 50 mTorr and an RF power are applied while flowing 10 sccm of trifluoromethane (CHF 3 ), 75 sccm of chlorine (Cl 2 ), 10 sccm of oxygen (O 2 ), and 70 sccm of sulfur hexafluoride (SF 6 ). Etching was performed at 300 W for 10 minutes to form a rough surface. As a result, there was no unevenness and uniform irregularities were formed.

導体基板の粗面化法の工程を示す図である。It is a diagram showing a roughening process of the semi-conductor substrate process. 導体基板の粗面化法を示す断面図である。Roughening method semiconductors substrate is a sectional view showing a. 請求項1に係る結晶シリコン基板の粗面化法の工程を示す図である。It is a figure which shows the process of the roughening method of the crystalline silicon substrate which concerns on Claim 1.

符号の説明Explanation of symbols

1‥‥‥半導体基板、2‥‥‥反射防止膜、3‥‥‥表面電極、4‥‥‥裏面電極 1 ... Semiconductor substrate, 2 ... Antireflection film, 3 ... Front electrode, 4 ... Back electrode

Claims (1)

結晶シリコン基板の表面を粗面状にする工程を含む太陽電池素子の製造方法において、
前記結晶シリコン基板の表面の酸化層を、フッ素化合物ガスを用いて反応性イオンエッチング法で除去した後に、前記結晶シリコン基板の表面をフッ素化合物ガス、塩素ガス、および酸素ガスを用いて反応性イオンエッチング法で粗面状にすることを特徴とする太陽電池素子の製造方法。
The method of manufacturing a solar cell element comprising the step of the surface of the crystalline silicon substrate to rough surface,
The oxide layer on the surface of the crystalline silicon substrate, after removing by reactive ion etching using a fluorine compound gas, the surface of the fluorine compound gas of the crystalline silicon substrate, chlorine gas, and reactive ion with oxygen gas A method for producing a solar cell element, wherein the surface is roughened by an etching method.
JP2006163323A 2006-06-13 2006-06-13 Method for manufacturing solar cell element Expired - Lifetime JP4587988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163323A JP4587988B2 (en) 2006-06-13 2006-06-13 Method for manufacturing solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163323A JP4587988B2 (en) 2006-06-13 2006-06-13 Method for manufacturing solar cell element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10117579A Division JPH11312665A (en) 1998-04-27 1998-04-27 Surface-roughening method of semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2006253726A JP2006253726A (en) 2006-09-21
JP4587988B2 true JP4587988B2 (en) 2010-11-24

Family

ID=37093788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163323A Expired - Lifetime JP4587988B2 (en) 2006-06-13 2006-06-13 Method for manufacturing solar cell element

Country Status (1)

Country Link
JP (1) JP4587988B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660561B2 (en) 2007-03-19 2011-03-30 三洋電機株式会社 Photovoltaic device
FR2949276B1 (en) * 2009-08-24 2012-04-06 Ecole Polytech METHOD FOR TEXTURING THE SURFACE OF A SILICON SUBSTRATE AND SILICON TEXTURE SUBSTRATE FOR A SOLAR CELL
JP2011146678A (en) * 2009-12-16 2011-07-28 Kyocera Corp Method of manufacturing solar cell device
JP6162188B2 (en) * 2010-07-29 2017-07-12 小林 光 Solar cell manufacturing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105382A (en) * 1979-02-05 1980-08-12 Ibm Method of roughening surface of silicon substrate
JPH05304122A (en) * 1992-04-28 1993-11-16 Matsushita Electric Ind Co Ltd Dry etching method and dry etching system
JPH06125053A (en) * 1992-10-09 1994-05-06 Nippon Steel Corp Manufacture of semiconductor memory
JPH06267912A (en) * 1993-03-15 1994-09-22 Matsushita Electric Ind Co Ltd Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device
JPH07244848A (en) * 1994-03-04 1995-09-19 Shin Etsu Chem Co Ltd Magnetic recording medium and method for roughening surface of magnetic recording medium substrate
JPH09167850A (en) * 1995-11-13 1997-06-24 Photowatt Internatl Sa Solar cell containing polycrystalline silicon and method of systematization of surface of p-type polycrystal silicon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105382A (en) * 1979-02-05 1980-08-12 Ibm Method of roughening surface of silicon substrate
JPH05304122A (en) * 1992-04-28 1993-11-16 Matsushita Electric Ind Co Ltd Dry etching method and dry etching system
JPH06125053A (en) * 1992-10-09 1994-05-06 Nippon Steel Corp Manufacture of semiconductor memory
JPH06267912A (en) * 1993-03-15 1994-09-22 Matsushita Electric Ind Co Ltd Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device
JPH07244848A (en) * 1994-03-04 1995-09-19 Shin Etsu Chem Co Ltd Magnetic recording medium and method for roughening surface of magnetic recording medium substrate
JPH09167850A (en) * 1995-11-13 1997-06-24 Photowatt Internatl Sa Solar cell containing polycrystalline silicon and method of systematization of surface of p-type polycrystal silicon

Also Published As

Publication number Publication date
JP2006253726A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US9871161B2 (en) Method for making crystalline silicon-based solar cell, and method for making solar cell module
JP2006310368A (en) Solar cell manufacturing method and solar cell
CN102959717B (en) Solar battery cell and manufacture method thereof
JP6692797B2 (en) Solar cell and manufacturing method thereof
KR101630802B1 (en) Method for manufacturing solar cell, and solar cell manufactured by the same method
JP6091458B2 (en) Photoelectric conversion device and manufacturing method thereof
EP2605287A2 (en) Photovoltaic device
JP2012238853A (en) Photoelectric conversion device, and manufacturing method thereof
US8865510B2 (en) Method of manufacturing solar cell
JP3377931B2 (en) Solar cell element
JP4340031B2 (en) Surface roughening method for solar cell substrate
JP4587988B2 (en) Method for manufacturing solar cell element
US20130102107A1 (en) Method for processing silicon substrate
JP5408022B2 (en) Solar cell and manufacturing method thereof
JP2004172271A (en) Solar cell and method for manufacturing same
JP4339990B2 (en) Surface roughening method of silicon substrate
JPH11312665A (en) Surface-roughening method of semiconductor substrate
JP5858889B2 (en) Solar cell substrate, method for manufacturing the same, solar cell and method for manufacturing the same
JPH11307792A (en) Solar cell element
JP3602323B2 (en) Solar cell manufacturing method
JP2003298080A (en) Method for manufacturing solar cell
JP2007266649A (en) Method of manufacturing solar cell element
JPH0766437A (en) Manufacture of substrate for photoelectric transducer
EP0958597A1 (en) Metallization of buried contact solar cells
WO2017187623A1 (en) Method for manufacturing solar cell, and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

EXPY Cancellation because of completion of term