JPH06267912A - Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device - Google Patents

Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device

Info

Publication number
JPH06267912A
JPH06267912A JP5054187A JP5418793A JPH06267912A JP H06267912 A JPH06267912 A JP H06267912A JP 5054187 A JP5054187 A JP 5054187A JP 5418793 A JP5418793 A JP 5418793A JP H06267912 A JPH06267912 A JP H06267912A
Authority
JP
Japan
Prior art keywords
thin film
electrode
insulating film
processing
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054187A
Other languages
Japanese (ja)
Inventor
Mamoru Furuta
守 古田
Tetsuya Kawamura
哲也 川村
Tatsuo Yoshioka
達男 吉岡
Hiroshi Sano
浩 佐野
Yutaka Miyata
豊 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5054187A priority Critical patent/JPH06267912A/en
Publication of JPH06267912A publication Critical patent/JPH06267912A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form fine recessions and projections in an on the surface of a non-single crystal silicon thin film with good reproducibility. CONSTITUTION:A semiconductor layer consisting of a polycrystalline silicon thin film 32 is provided on a substrate 31, the semiconductor layer is covered with a gate insulating film 33 and after a gate electrode 34 is formed, the introduction of impurities for forming source and drain regions is performed and an interlayer insulating film 35 is formed. After a photoresist 36 for opening a contact hole is formed, an insulating film removing treatment is performed in plasma. At the time of the treatment, fine recessions and projections are formed in and on the surface of the base polycrystalline silicon thin film in a self alignment manner. After that, a source electrode 37 and a pixel electrode 38 are formed, whereby the recessions and projections on the surface of the base polycrystalline silicon thin film are transferred on the pixel electrode part 38, fine recessions and projections are formed on the electrode 38, the junction area of the source electrode part 37 is increased, the contact resistance of the electrode part 37 is reduced and an increase in the performance of a thin film transistor is contrived. The improvement of the characteristics of the electrode of a capacitor element of a semiconductor memory and the pixel electrode of a reflection type liquid crystal display or the improvement of the characteristics of a semiconductor-metal junction part can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体メモリー素子の
スタックキャパシターや反射型液晶表示装置の絵素電極
等に応用可能な技術であって、非単結晶シリコン薄膜表
面に微細な凹凸を形成する薄膜の加工方法等に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to a stack capacitor of a semiconductor memory device, a pixel electrode of a reflection type liquid crystal display device, etc., and forms fine irregularities on the surface of a non-single crystal silicon thin film. The present invention relates to a thin film processing method and the like.

【0002】[0002]

【従来の技術】図4に従来の容量素子の断面構成図の一
例を示し従来の製造方法を説明する。
2. Description of the Related Art FIG. 4 shows an example of a cross-sectional configuration diagram of a conventional capacitive element to explain a conventional manufacturing method.

【0003】基板41上にまず多結晶シリコン薄膜を堆
積し第一の電極42の形状に加工する。次に前記第一の
電極42を被覆するように絶縁膜43(酸化シリコン薄
膜)を形成する。前記絶縁膜43上に多結晶シリコン薄
膜からなる第二の電極44を形成し容量素子を完成す
る。上記容量素子の容量Cは以下の(数1)で規定され
る。
First, a polycrystalline silicon thin film is deposited on the substrate 41 and processed into the shape of the first electrode 42. Next, an insulating film 43 (silicon oxide thin film) is formed so as to cover the first electrode 42. A second electrode 44 made of a polycrystalline silicon thin film is formed on the insulating film 43 to complete the capacitive element. The capacitance C of the capacitive element is defined by the following (Equation 1).

【0004】[0004]

【数1】C=S・Ei/d 数1中のSは容量素子の電極面積、Eiは絶縁膜の誘電
率、dは絶縁膜の膜厚である。誘電率Eiの値は絶縁膜
固有の値であり、容量Cを増加させるためには電極面積
Sを増大させるか、絶縁膜の膜厚dを減少させるかの選
択となる。半導体メモリー素子に使用される容量素子に
関しては、集積化が進むことにより容量素子のサイズが
縮小され、必要な容量を維持するための電極面積Sの確
保が困難となる。従って、誘電率Eiの大きな絶縁膜材
料を用いたり絶縁膜の膜厚dを減少させることにより容
量素子のサイズを縮小しつつ容量Cの増大を図る方法が
提案されている。ところが絶縁膜の膜厚を減少させた場
合には、リーク電流の増大や信頼性の低下といった問題
が発生する。そこで、他の方法として容量素子の電極表
面を凹凸状に加工することにより電極表面積を増大させ
実効的な容量を増大させる方法も提案されている。この
方法は、例えば、エクステンテ゛ィト゛ アフ゛ストラクトオフ゛ サ゛ 21st コンフ
ァレンス オン ソリット゛ ステート テ゛ハ゛イシス アント゛ マテリアルス゛ 1989[Ex
tended Abstract of the 21st Conference on Solid S
tate Devices andMaterials, Tokyo, 1989, pp.137-14
0]に開示されている。
## EQU1 ## C = S.Ei / d In Equation 1, S is the electrode area of the capacitive element, Ei is the dielectric constant of the insulating film, and d is the film thickness of the insulating film. The value of the dielectric constant Ei is a value specific to the insulating film, and in order to increase the capacitance C, the electrode area S is increased or the film thickness d of the insulating film is decreased. With respect to the capacitive element used for the semiconductor memory element, the size of the capacitive element is reduced due to the progress of integration, and it is difficult to secure the electrode area S for maintaining the required capacitance. Therefore, there has been proposed a method of increasing the capacitance C while reducing the size of the capacitive element by using an insulating film material having a large dielectric constant Ei or reducing the film thickness d of the insulating film. However, when the film thickness of the insulating film is reduced, problems such as an increase in leak current and a decrease in reliability occur. Therefore, as another method, a method of increasing the effective capacitance by processing the electrode surface of the capacitor element in an uneven shape to increase the electrode surface area has been proposed. This method is described in, for example, Extended Absolute Off-Surface 21st Conference on Solid State Debasis and Material's 1989 [Ex.
tended Abstract of the 21st Conference on Solid S
tate Devices and Materials, Tokyo, 1989, pp.137-14
0].

【0005】次に、図5に非晶質シリコン薄膜トランジ
スタを用いた反射型液晶表示装置の構成断面図の一例を
示し、従来の製造方法を説明する。
Next, FIG. 5 shows an example of a sectional view of a structure of a reflective liquid crystal display device using an amorphous silicon thin film transistor, and a conventional manufacturing method will be described.

【0006】基板51上にゲート電極52を形成し,ゲ
ート電極52を被覆するようにゲート絶縁膜53(窒化
シリコン薄膜)及び非晶質シリコン薄膜54及びチャネ
ル保護膜55(窒化シリコン薄膜)をプラズマ気相成長
法により連続形成する。チャネル保護膜55のパターン
化を行った後、薄膜トランジスタのソース及びドレイン
領域を形成する。前記薄膜トランジスタを覆う様に保護
絶縁膜56を形成する。保護絶縁膜56の所定の位置を
エッチング除去し、アルミニウムからなるソース電極5
7及びドレイン電極58(反射型絵素電極)を形成す
る。
A gate electrode 52 is formed on a substrate 51, and a gate insulating film 53 (silicon nitride thin film), an amorphous silicon thin film 54, and a channel protective film 55 (silicon nitride thin film) are plasma-coated so as to cover the gate electrode 52. It is continuously formed by a vapor phase growth method. After patterning the channel protective film 55, the source and drain regions of the thin film transistor are formed. A protective insulating film 56 is formed to cover the thin film transistor. A predetermined position of the protective insulating film 56 is removed by etching to remove the source electrode 5 made of aluminum.
7 and the drain electrode 58 (reflection type pixel electrode) are formed.

【0007】本構成では、Alからなる反射型絵素電極
57、58を有するが、光の散乱特性を向上させ表示品
位を向上させる手法として、Al絵素電極の表面を化学
的エッチング法を用いて荒し表面凹凸を形成する方法が
提案されている。この方法は、例えばエス アイテ゛ィー 92 タ゛イ
シ゛ェスト[SID92 Digest pp.437-440]に開示されている。
In this structure, the reflective pixel electrodes 57 and 58 made of Al are provided. As a method for improving the light scattering property and the display quality, the surface of the Al pixel electrode is chemically etched. There has been proposed a method of forming a roughened surface unevenness. This method is disclosed in, for example, SDI 92 digest [SID92 Digest pp.437-440].

【0008】[0008]

【発明が解決しようとする課題】すなわち、半導体メモ
リー素子(DRAM等)の高集積化に伴いメモリー素子
(セル)のサイズも縮小する必要がある。ところが、セ
ルサイズの縮小は容量素子の電極面積を低下させ容量低
下を引き起こし必要時間のデーター保持に支障をきた
す。このためメモリーセルのサイズを縮小しつつ容量素
子の容量を維持あるいは増大するため、上述のように、
容量素子の電極表面を凹凸状に加工することにより電極
表面積を増大させ実効的な容量を増大する方法が知られ
ている。また図5に示した反射型液晶表示装置において
は反射電極としてアルミニウムを用いる方法が一般的で
あり、反射電極の入射光に対する散乱特性を向上し表示
品質を向上させるためアルミニウム反射電極の表面を荒
し凹凸を形成する方法が提案されている。
That is, it is necessary to reduce the size of the memory device (cell) as the semiconductor memory device (DRAM or the like) is highly integrated. However, the reduction of the cell size reduces the electrode area of the capacitive element and causes a reduction in capacitance, which hinders data retention for a required time. Therefore, in order to maintain or increase the capacity of the capacitive element while reducing the size of the memory cell, as described above,
A method is known in which the surface area of the electrode is increased by processing the surface of the electrode of the capacitor element in an uneven shape to increase the effective capacity. In the reflective liquid crystal display device shown in FIG. 5, aluminum is generally used as the reflective electrode, and the surface of the aluminum reflective electrode is roughened in order to improve the scattering property of the reflective electrode with respect to incident light and improve the display quality. A method of forming irregularities has been proposed.

【0009】しかしながら、従来の電極の表面に凹凸を
形成する方法では、微細な凹凸を再現性良く形成するこ
とは困難であるという課題がある。
However, the conventional method for forming irregularities on the surface of the electrode has a problem that it is difficult to form fine irregularities with good reproducibility.

【0010】本発明は、このような従来の方法の課題を
考慮し、微細な凹凸を再現性良く形成することのできる
薄膜の加工方法等を提供することを目的とするものであ
る。
An object of the present invention is to provide a thin film processing method and the like capable of forming fine irregularities with good reproducibility in consideration of the problems of the conventional method.

【0011】[0011]

【課題を解決するための手段】本発明は、非単結晶シリ
コン薄膜上に絶縁膜を形成し、その絶縁膜をプラズマ中
でエッチング除去し非単結晶シリコン薄膜表面に微細な
凹凸を形成する点にポイントがある。
According to the present invention, an insulating film is formed on a non-single crystal silicon thin film, and the insulating film is removed by etching in plasma to form fine irregularities on the surface of the non-single crystal silicon thin film. There is a point.

【0012】また、基板上に形成した第一の電極を前記
加工方法で加工することにより表面凹凸を形成し、その
第一の電極上に絶縁膜及び第二の電極を形成することに
より容量素子が形成可能である。
Further, the first electrode formed on the substrate is processed by the above-described processing method to form surface irregularities, and the insulating film and the second electrode are formed on the first electrode to form a capacitive element. Can be formed.

【0013】また、基板上に薄膜トランジスタの活性層
となる非単結晶シリコン薄膜を形成し、前記非単結晶シ
リコン薄膜を被覆するように絶縁膜を形成し、薄膜トラ
ンジスタのソース領域あるいはドレイン領域の少なくと
も一部分の絶縁膜を前記加工方法で除去し半導体層表面
に凹凸を形成したのち、金属薄膜を形成することによ
り、例えば、反射型液晶表示装置の絵素電極が形成可能
である。
Further, a non-single-crystal silicon thin film which becomes an active layer of a thin film transistor is formed on a substrate, an insulating film is formed so as to cover the non-single-crystal silicon thin film, and at least a part of a source region or a drain region of the thin film transistor is formed. After the insulating film is removed by the above processing method to form irregularities on the surface of the semiconductor layer, a metal thin film is formed, whereby a pixel electrode of a reflective liquid crystal display device can be formed, for example.

【0014】[0014]

【作用】本発明では、非単結晶シリコン薄膜上に絶縁膜
である酸化シリコン薄膜を形成する。このとき非単結晶
シリコン薄膜の結晶粒界部で優先的に酸化反応が起こり
結晶粒界部の酸化が進行する。その後、前記酸化シリコ
ン薄膜をプラズマ中でエッチング除去することにより絶
縁膜が除去されると同時に非単結晶シリコン薄膜の結晶
粒界部の酸化された領域がエッチングされ粒界部に凹が
形成され表面凹凸が増大する。
In the present invention, a silicon oxide thin film which is an insulating film is formed on a non-single crystal silicon thin film. At this time, the oxidation reaction preferentially occurs at the crystal grain boundary portion of the non-single crystal silicon thin film, and the oxidation of the crystal grain boundary portion proceeds. After that, the insulating film is removed by etching away the silicon oxide thin film in plasma, and at the same time, the oxidized region of the crystal grain boundary part of the non-single-crystal silicon thin film is etched to form a recess in the grain boundary part and the surface is formed. The unevenness increases.

【0015】本発明の加工方法を用いて作成した表面凹
凸は多結晶シリコン薄膜の結晶粒径程度の周期であり、
周期は数十nm程度から数μm程度まで多結晶シリコン
薄膜の形成条件を変化させることにより容易に制御可能
である。従って本発明を用いることにより、従来のフォ
トリソグラフィー等を用いて形成可能な周期の、十分の
一から百分の一の周期で再現性よく表面凹凸を形成する
ことが可能となる。
The surface irregularities formed by the processing method of the present invention have a period of about the crystal grain size of the polycrystalline silicon thin film,
The period can be easily controlled by changing the forming conditions of the polycrystalline silicon thin film from about several tens nm to several μm. Therefore, by using the present invention, it becomes possible to form the surface irregularities with good reproducibility in a period of 1/10 to 1/100 of the period that can be formed by using conventional photolithography or the like.

【0016】また、本発明の加工方法を容量素子の電極
の製造に応用することにより絶縁膜と接触する電極表面
に微細な凹凸を形成でき、実効的な電極表面積が増大し
単位面積当たりの容量を増大することが可能となる。
Further, by applying the processing method of the present invention to the production of the electrode of the capacitive element, fine irregularities can be formed on the electrode surface in contact with the insulating film, and the effective electrode surface area is increased to increase the capacitance per unit area. Can be increased.

【0017】また、本容量素子を半導体メモリーに応用
することにより集積度を向上させつつ微細化を図ること
が可能となる。
Further, by applying the present capacitive element to a semiconductor memory, it is possible to improve the degree of integration and achieve miniaturization.

【0018】また、上記加工方法を反射型液晶表示装置
の絵素電極に用いることにより化学的エッチング法を用
いる事なく再現性よく反射電極の表面に凹凸が形成でき
散乱特性を向上させることが可能となる。
Further, by using the above processing method for the picture element electrode of the reflection type liquid crystal display device, unevenness can be formed on the surface of the reflection electrode with good reproducibility without using a chemical etching method, so that the scattering characteristic can be improved. Becomes

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は請求項1に記載の薄膜の加工方法の
一実施例である。
FIG. 1 shows an embodiment of a method of processing a thin film according to claim 1.

【0021】まず、基板11上に多結晶シリコン薄膜1
2を、減圧気相成長法により形成する。多結晶シリコン
薄膜12上に硅素の水素化合物であるシラン(SiH4)と酸
素を原料ガスとする常圧気相成長法により酸化シリコン
薄膜13を形成する。薄膜13上にフォトレジスト14
を用いて第一の電極の反転パターンを形成する。次い
で、リアクティブ・イオン・エッチング装置を用いてプ
ラズマ中で前記酸化シリコン薄膜13のエッチング処理
を行う。エッチングガスとしてはCF4とCHF3を1:
1の比率にて混合したガスを用い、真空度300mTo
rr(39.9Pa)、高周波電力300Wで処理を行
った。フォトレジスト開口部の酸化シリコン薄膜13の
エッチングが終了した時点でエッチングを停止しフォト
レジスト14を除去する。上記エッチング処理により酸
化シリコン薄膜13のエッチングと同時にフォトレジス
ト(酸化シリコン開口部15)開口部の多結晶シリコン
薄膜12に周期数十nmの微細な凹凸が形成される。上
記に示したように本実施例の加工方法を用いることによ
りフォトリソグラフィー等の手法を用いることなく、微
細な凹凸を再現性よく形成することが可能となった。な
お、凹凸の周期はほぼ多結晶シリコン薄膜12の結晶粒
径に対応しており、多結晶シリコン薄膜12の結晶粒径
を制御することにより、形成したい凹凸の周期を任意に
制御可能になった。
First, the polycrystalline silicon thin film 1 is formed on the substrate 11.
2 is formed by the reduced pressure vapor deposition method. A silicon oxide thin film 13 is formed on the polycrystalline silicon thin film 12 by atmospheric pressure vapor deposition using silane (SiH 4 ) which is a hydrogen compound of silicon and oxygen as source gases. Photoresist 14 on thin film 13
Is used to form an inverted pattern of the first electrode. Then, the silicon oxide thin film 13 is etched in plasma using a reactive ion etching apparatus. As the etching gas, CF 4 and CHF 3 are 1:
Using a gas mixed at a ratio of 1, the degree of vacuum is 300 mTo
The treatment was performed with rr (39.9 Pa) and high-frequency power of 300 W. When the etching of the silicon oxide thin film 13 in the photoresist opening is completed, the etching is stopped and the photoresist 14 is removed. By the above etching process, at the same time when the silicon oxide thin film 13 is etched, fine irregularities having a period of several tens nm are formed in the polycrystalline silicon thin film 12 in the photoresist (silicon oxide opening 15) opening. As described above, by using the processing method of this embodiment, it becomes possible to form fine unevenness with good reproducibility without using a method such as photolithography. It should be noted that the period of the irregularities substantially corresponds to the crystal grain size of the polycrystalline silicon thin film 12, and by controlling the crystal grain size of the polycrystalline silicon thin film 12, it becomes possible to arbitrarily control the period of the irregularities to be formed. .

【0022】図2は本発明の請求項7に記載した容量素
子の製造方法の一実施例である。
FIG. 2 shows an embodiment of a method of manufacturing a capacitive element according to claim 7 of the present invention.

【0023】まず、基板21上に第一の電極となる多結
晶シリコン薄膜22を形成する。前記多結晶シリコン薄
膜22上にシラン(SiH4)と酸素を原料ガスとして用いる
常圧気相成長法により酸化シリコン薄膜23を形成す
る。ついで第一の電極部を開口するためフォトレジスト
24を所定の形状に加工する。図1に説明したリアクテ
ィブ・イオン・エッチング法で酸化シリコン薄膜23を
エッチング除去すると同時に第一の電極となる多結晶シ
リコン薄膜22の表面に微細な凹凸を形成する。ついで
前記第一の電極を被覆するように減圧気相成長法(LP
CVD法)により酸化シリコン薄膜25を形成する。こ
の絶縁膜25上に多結晶シリコンからなる第二の電極2
6を形成し、容量素子が完成する。本容量素子は第一の
電極に形成した表面凹凸により実効的に電極表面積が増
大しており第一の電極に表面凹凸を形成しない容量素子
に比べて単位面積当りの容量が増大した。また本容量素
子を半導体記憶装置(メモリー素子)に用いることにより
素子サイズを低減でき集積度の向上を図ることが可能と
なった。
First, a polycrystalline silicon thin film 22 to be a first electrode is formed on the substrate 21. A silicon oxide thin film 23 is formed on the polycrystalline silicon thin film 22 by atmospheric pressure vapor deposition using silane (SiH 4 ) and oxygen as source gases. Then, the photoresist 24 is processed into a predetermined shape in order to open the first electrode portion. The silicon oxide thin film 23 is removed by etching by the reactive ion etching method described with reference to FIG. 1, and at the same time, fine irregularities are formed on the surface of the polycrystalline silicon thin film 22 to be the first electrode. Then, a low pressure vapor phase epitaxy method (LP
A silicon oxide thin film 25 is formed by the CVD method. The second electrode 2 made of polycrystalline silicon is formed on the insulating film 25.
6 is formed, and the capacitive element is completed. In this capacitive element, the electrode surface area was effectively increased by the surface irregularities formed on the first electrode, and the capacitance per unit area was increased as compared with the capacitive element in which the surface irregularities were not formed on the first electrode. Further, by using the present capacitive element in a semiconductor memory device (memory element), the element size can be reduced and the degree of integration can be improved.

【0024】図3は本発明の請求項8に記載した反射型
液晶表示装置の製造方法の一実施例である。まず、基板
31上に多結晶シリコン薄膜32を減圧気相成長法によ
り形成し、フォトリソグラフィー法を用いて島状に加工
する。ついでゲート絶縁膜となる酸化シリコン薄膜33
をシラン(SiH4)と酸素を原料ガスとする常圧気相成長法
を用いて多結晶シリコン薄膜32上に形成する。前記ゲ
ート絶縁膜33上に多結晶シリコンからなるゲート電極
34を形成する。ゲート電極34を形成後、イオン注入
法を用いてソース・ドレイン領域の不純物導入を行う。
導入した不純物の活性化処理を行った後、層間絶縁膜3
5となる酸化シリコン薄膜を形成する。コンタクトホー
ルを開口するためのレジストパターン36を形成し、ソ
ース領域とドレイン領域(絵素領域)の層間絶縁膜35
とゲート絶縁膜33を除去しコンタクトホールを開口す
る。コンタクトホールの開口にはリアクティブ・イオン
・エッチング法を用い、CF4及びCHF3ガスを1:1
の比率で混合したガス用いて真空度300mTorr、
高周波電力300Wの条件にてエッチングを行う。前記
条件にてコンタクトホールを開口すること同時に下地の
多結晶シリコン薄膜32の表面に周期数十nm程度の微
細な凹凸が形成できる。前記コンタクトホールを開口し
たのちAl薄膜を堆積する。Al薄膜を堆積後、それを
ソース配線37及び絵素電極38の形状に加工し薄膜ト
ランジスタが完成する。
FIG. 3 shows an embodiment of a method of manufacturing a reflection type liquid crystal display device according to claim 8 of the present invention. First, the polycrystalline silicon thin film 32 is formed on the substrate 31 by the low pressure vapor phase epitaxy method, and is processed into an island shape by the photolithography method. Then, a silicon oxide thin film 33 to be a gate insulating film
Is formed on the polycrystalline silicon thin film 32 by atmospheric pressure vapor deposition using silane (SiH4) and oxygen as source gases. A gate electrode 34 made of polycrystalline silicon is formed on the gate insulating film 33. After forming the gate electrode 34, impurities are introduced into the source / drain regions by using an ion implantation method.
After activating the introduced impurities, the interlayer insulating film 3
A silicon oxide thin film to be No. 5 is formed. A resist pattern 36 for opening a contact hole is formed, and an interlayer insulating film 35 in the source region and the drain region (pixel region) is formed.
Then, the gate insulating film 33 is removed and a contact hole is opened. Reactive ion etching is used for opening the contact holes, and CF 4 and CHF 3 gases are 1: 1.
The degree of vacuum is 300 mTorr using the gas mixed in the ratio of
Etching is performed under the condition of high frequency power of 300 W. At the same time when the contact hole is opened under the above conditions, fine irregularities having a period of several tens nm can be formed on the surface of the underlying polycrystalline silicon thin film 32. After opening the contact hole, an Al thin film is deposited. After depositing the Al thin film, it is processed into the shapes of the source wiring 37 and the pixel electrode 38 to complete the thin film transistor.

【0025】本実施例の製造方法を用いることにより、
絵素領域に形成したAl薄膜は反射電極として作用する
が本Al薄膜の下地の多結晶シリコン薄膜32には表面
に微細な凹凸が形成されているため前記凹凸が上層のA
l薄膜37、38にも転写されている。これにより反射
型液晶表示装置の絵素電極として用いた場合に、入射光
の散乱特性が向上し表示品位が向上した。またソース配
線及びドレイン配線と多結晶シリコン薄膜との接触部
(コンタクト部)には自己整合的に多結晶シリコン表面
に凹凸が形成されるため、金属と半導体接合部において
は接合面積が増大し接触抵抗が低減することにより半導
体素子の高性能化が図れた。なお、本発明の実施例では
薄膜トランジスタに関して説明したが他の半導体装置等
に用いても同様の結果を得ることが可能である。
By using the manufacturing method of this embodiment,
The Al thin film formed in the pixel region functions as a reflective electrode, but since the polycrystalline silicon thin film 32 underlying the present Al thin film has fine irregularities formed on the surface thereof, the irregularity is the upper layer A.
It is also transferred to the thin films 37 and 38. As a result, when used as a pixel electrode of a reflective liquid crystal display device, the scattering property of incident light was improved and the display quality was improved. In addition, since unevenness is formed on the surface of the polycrystalline silicon in a self-aligned manner at the contact portion (contact portion) between the source wiring and the drain wiring and the polycrystalline silicon thin film, the bonding area is increased at the metal-semiconductor bonding portion and the contact is increased. By reducing the resistance, the performance of the semiconductor device has been improved. Although the thin film transistor has been described in the embodiment of the present invention, the same result can be obtained by using the thin film transistor in another semiconductor device or the like.

【0026】以上説明したように、本発明の加工方法を
用いて形成された表面凹凸はその周期が数十nm程度で
あり、従来のフォトリソグラフィー等を用いて形成可能
な周期の十分の一から百分の一の周期で再現性よく表面
凹凸を形成することが可能となった。また本発明の加工
方法では絶縁膜のエッチング時に自己整合的に下地薄膜
表面に凹凸が形成されるため、工程が低減できると同時
に各種半導体装置応用が可能となった。本加工方法を容
量素子の電極の製造に応用することにより、電極表面に
微細な凹凸を形成することが可能となり、実質的な電極
面積が増大し同一面積上に形成した従来の容量素子に比
べ容量を増大することが可能となった。また、本容量素
子を半導体メモリーに応用することにより集積度を向上
させつつ容量を確保することが可能となった。また本発
明の加工方法を用いて反射型液晶表示装置を作成したと
ころ、非単結晶シリコン薄膜の表面に微細な凹凸を形成
し前記凹凸を反射電極に転写することにより絵素電極の
散乱特性が向上でき高画質の液晶表示装置を得ることが
可能となった。また、他の半導体装置の製造過程におい
ても、多結晶シリコン薄膜上の絶縁膜をエッチング除去
してから金属薄膜を形成する部分では本加工法を用いる
ことにより絶縁膜の除去部の多結晶シリコン薄膜の表面
に自己整合的に表面凹凸が形成でき、金属と半導体接合
の接合面積を増大でき特性向上が図れた。
As described above, the surface unevenness formed by the processing method of the present invention has a period of about several tens nm, which is one tenth of the period that can be formed by the conventional photolithography or the like. It became possible to form surface irregularities with good reproducibility in a cycle of one hundredth. Further, according to the processing method of the present invention, since the unevenness is formed on the surface of the underlying thin film in a self-aligning manner during the etching of the insulating film, the number of steps can be reduced and various semiconductor devices can be applied. By applying this processing method to the production of the electrode of the capacitive element, it becomes possible to form fine irregularities on the electrode surface, and the substantial electrode area increases, compared to the conventional capacitive element formed on the same area. It has become possible to increase the capacity. Moreover, by applying this capacitive element to a semiconductor memory, it has become possible to secure the capacity while improving the degree of integration. Further, when a reflective liquid crystal display device was created by using the processing method of the present invention, fine scattering was formed on the surface of the non-single-crystal silicon thin film, and the scattering was performed on the pixel electrode by transferring the unevenness to the reflecting electrode. It has become possible to obtain a liquid crystal display device with improved quality. Also, in the process of manufacturing other semiconductor devices, this processing method is used in the portion where the insulating film on the polycrystalline silicon thin film is removed by etching and then the metal thin film is formed. Surface irregularities can be formed in a self-aligning manner on the surface of, and the bonding area between the metal and the semiconductor can be increased to improve the characteristics.

【0027】[0027]

【発明の効果】以上述べたところから明らかなように、
本発明の薄膜の加工方法を用いることにより、薄膜表面
に微細な凹凸を再現性良く形成することができる。
As is apparent from the above description,
By using the thin film processing method of the present invention, it is possible to form fine irregularities on the thin film surface with good reproducibility.

【0028】また、その加工方法を利用して、サイズが
小さくかつ容量の大きな容量素子を製造する事が出来
る。
By using the processing method, it is possible to manufacture a capacitive element having a small size and a large capacitance.

【0029】また、その加工方法を利用して、半導体装
置、例えば液晶表示装置の絵素電極の散乱特性が向上で
き高画質の液晶表示装置を得ることが出来る。
Further, by utilizing the processing method, it is possible to obtain a high quality liquid crystal display device in which the scattering characteristics of the pixel electrodes of a semiconductor device, for example, a liquid crystal display device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜加工方法を示す工程図
である。
FIG. 1 is a process chart showing a thin film processing method according to an embodiment of the present invention.

【図2】本発明の一実施例の容量素子の製造方法を示す
工程図である。
FIG. 2 is a process drawing showing the method of manufacturing the capacitor according to the embodiment of the present invention.

【図3】本発明の一実施例の反射型液晶表示装置の製造
方法を示す工程図である。
FIG. 3 is a process drawing showing the manufacturing method of the reflective liquid crystal display device of one embodiment of the present invention.

【図4】従来の容量素子の断面図である。FIG. 4 is a cross-sectional view of a conventional capacitive element.

【図5】従来の反射型液晶表示素子の断面図である。FIG. 5 is a cross-sectional view of a conventional reflective liquid crystal display element.

【符号の説明】[Explanation of symbols]

11 基板 12 多結晶シリコン 13 酸化シリコン 14 フォトレジスト 15 酸化シリコン開口部 21 基板 22 第一の電極(多結晶シリコン) 23 酸化シリコン 24 フォトレジスト 25 絶縁膜(酸化シリコン) 26 第二の電極(多結晶シリコン) 31 基板 32 多結晶シリコン 33 ゲート絶縁膜(酸化シリコン) 34 ゲート電極(多結晶シリコン) 35 層間絶縁膜(酸化シリコン) 36 フォトレジスト 37 ソース電極 38 ドレイン電極(絵素電極) 11 Substrate 12 Polycrystalline Silicon 13 Silicon Oxide 14 Photoresist 15 Silicon Oxide Opening 21 Substrate 22 First Electrode (Polycrystalline Silicon) 23 Silicon Oxide 24 Photoresist 25 Insulating Film (Silicon Oxide) 26 Second Electrode (Polycrystalline) Silicon) 31 Substrate 32 Polycrystalline Silicon 33 Gate Insulating Film (Silicon Oxide) 34 Gate Electrode (Polycrystalline Silicon) 35 Interlayer Insulating Film (Silicon Oxide) 36 Photoresist 37 Source Electrode 38 Drain Electrode (Pixel Electrode)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/28 301 A 7376−4M 27/04 C 8427−4M 27/108 21/336 29/784 (72)発明者 佐野 浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宮田 豊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01L 21/28 301 A 7376-4M 27/04 C 8427-4M 27/108 21/336 29/784 (72) Inventor Hiroshi Sano 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Yutaka Miyata 1006 Kadoma, Kadoma City Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】非単結晶シリコン薄膜上に絶縁膜を形成す
る工程と、前記絶縁膜をプラズマ中でエッチング除去す
ることにより、前記非単結晶シリコン薄膜表面に凹凸を
形成する工程とを備えたことを特徴とする薄膜の加工方
法。
1. A step of forming an insulating film on a non-single-crystal silicon thin film, and a step of forming unevenness on the surface of the non-single-crystal silicon thin film by etching away the insulating film in plasma. A method of processing a thin film, which is characterized in that
【請求項2】絶縁膜として、酸化シリコン薄膜を用いる
ことを特徴とする請求項1記載の薄膜の加工方法。
2. The thin film processing method according to claim 1, wherein a silicon oxide thin film is used as the insulating film.
【請求項3】絶縁膜として、硅素の水素化合物あるいは
硅素の有機化合物を原料ガスとして少なくとも有する気
相成長法で形成した酸化シリコン薄膜を用いることを特
徴とする請求項1記載の薄膜の加工方法。
3. The method of processing a thin film according to claim 1, wherein a silicon oxide thin film formed by a vapor phase growth method having at least a hydrogen compound of silicon or an organic compound of silicon as a source gas is used as the insulating film. .
【請求項4】プラズマ生成時の雰囲気として、四弗化炭
素(CF4)を少なくとも有することを特徴とする請求
項1記載の薄膜の加工方法。
4. The method for processing a thin film according to claim 1, wherein the atmosphere at the time of plasma generation contains at least carbon tetrafluoride (CF 4 ).
【請求項5】プラズマ生成時の雰囲気として、CHF3
を少なくとも有することを特徴とする請求項1記載の薄
膜の加工方法。
5. CHF 3 as an atmosphere during plasma generation
The method for processing a thin film according to claim 1, further comprising:
【請求項6】プラズマ生成時の圧力として、真空度が5
00mTorr以下であることを特徴とする請求項1記
載の薄膜の加工方法。
6. The degree of vacuum is 5 as the pressure during plasma generation.
The method for processing a thin film according to claim 1, wherein the thickness is not more than 00 mTorr.
【請求項7】基板上に非単結晶シリコン薄膜からなる第
一の電極を形成する工程と、前記第一の電極を被覆する
ように第一絶縁膜を形成する工程と、前記絶縁膜を請求
項1記載の加工方法で除去し前記第一の電極表面に凹凸
を形成する工程と、前記第一の電極上に第二絶縁膜を形
成する工程と、前記第二絶縁膜上に第二の電極を形成す
る工程とを少なくとも備えたことを特徴とする容量素子
の製造方法。
7. A method of forming a first electrode made of a non-single-crystal silicon thin film on a substrate, a step of forming a first insulating film so as to cover the first electrode, and the insulating film. Item 2 is removed by the processing method according to Item 1 to form irregularities on the surface of the first electrode, a step of forming a second insulating film on the first electrode, and a step of forming a second insulating film on the second insulating film. A method of manufacturing a capacitive element, comprising at least a step of forming an electrode.
【請求項8】非単結晶シリコン薄膜上に絶縁膜を形成す
る工程と、前記絶縁膜の少なくとも一部を請求項1記載
の加工方法により選択的に除去する工程と、前記絶縁膜
を除去した後、金属薄膜を堆積する工程とを少なくとも
備えたことを特徴とする半導体装置の製造方法。
8. A step of forming an insulating film on a non-single crystal silicon thin film, a step of selectively removing at least a part of the insulating film by the processing method according to claim 1, and a step of removing the insulating film. And at least a step of depositing a metal thin film thereafter.
JP5054187A 1993-03-15 1993-03-15 Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device Pending JPH06267912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054187A JPH06267912A (en) 1993-03-15 1993-03-15 Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054187A JPH06267912A (en) 1993-03-15 1993-03-15 Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06267912A true JPH06267912A (en) 1994-09-22

Family

ID=12963550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054187A Pending JPH06267912A (en) 1993-03-15 1993-03-15 Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06267912A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600534B1 (en) 1997-12-24 2003-07-29 Sharp Kabushiki Kaisha Reflective liquid crystal display device
KR100386003B1 (en) * 1998-12-15 2003-10-17 엘지.필립스 엘시디 주식회사 Reflective Liquid Crystal Display and Manufacturing Method thereof
JP2004341539A (en) * 2003-05-15 2004-12-02 Samsung Electronics Co Ltd Liquid crystal display device
JP2006253726A (en) * 2006-06-13 2006-09-21 Kyocera Corp Surface roughening method for semiconductor substrate
JP2007116164A (en) * 2005-10-18 2007-05-10 Samsung Electronics Co Ltd Thin film transistor substrate and method for manufacturing the same, and liquid crystal display panel having the same and method for manufacturing the same
KR100752600B1 (en) * 2001-04-26 2007-08-29 삼성전자주식회사 Polycrystalline thin film transistor for liquid crystal device LCD and Method of manufacturing the same
KR100806887B1 (en) * 2001-06-12 2008-02-22 삼성전자주식회사 A method for manufacturing a thin film transistor substrate for a liquid crystal display of reflection type
US7557373B2 (en) 2004-03-30 2009-07-07 Toshiba Matsushita Display Technology Co., Ltd. Thin-film transistor substrate including pixel regions where gate electrode lines are arrayed on an insulating substrate, and display therewith
JP2011155098A (en) * 2010-01-27 2011-08-11 Hitachi Ltd Circuit device having graphene film and metal electrode electrically jointed therein
US20150214254A1 (en) * 2013-07-01 2015-07-30 Boe Technology Group Co., Ltd Thin film transistor, method for fabricating the same, array substrate and display device
JP2015144176A (en) * 2014-01-31 2015-08-06 国立研究開発法人物質・材料研究機構 Thin-film transistor and manufacturing method thereof, and semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600534B1 (en) 1997-12-24 2003-07-29 Sharp Kabushiki Kaisha Reflective liquid crystal display device
KR100386003B1 (en) * 1998-12-15 2003-10-17 엘지.필립스 엘시디 주식회사 Reflective Liquid Crystal Display and Manufacturing Method thereof
KR100752600B1 (en) * 2001-04-26 2007-08-29 삼성전자주식회사 Polycrystalline thin film transistor for liquid crystal device LCD and Method of manufacturing the same
KR100806887B1 (en) * 2001-06-12 2008-02-22 삼성전자주식회사 A method for manufacturing a thin film transistor substrate for a liquid crystal display of reflection type
JP2004341539A (en) * 2003-05-15 2004-12-02 Samsung Electronics Co Ltd Liquid crystal display device
US7557373B2 (en) 2004-03-30 2009-07-07 Toshiba Matsushita Display Technology Co., Ltd. Thin-film transistor substrate including pixel regions where gate electrode lines are arrayed on an insulating substrate, and display therewith
JP2007116164A (en) * 2005-10-18 2007-05-10 Samsung Electronics Co Ltd Thin film transistor substrate and method for manufacturing the same, and liquid crystal display panel having the same and method for manufacturing the same
JP2006253726A (en) * 2006-06-13 2006-09-21 Kyocera Corp Surface roughening method for semiconductor substrate
JP4587988B2 (en) * 2006-06-13 2010-11-24 京セラ株式会社 Method for manufacturing solar cell element
JP2011155098A (en) * 2010-01-27 2011-08-11 Hitachi Ltd Circuit device having graphene film and metal electrode electrically jointed therein
US20150214254A1 (en) * 2013-07-01 2015-07-30 Boe Technology Group Co., Ltd Thin film transistor, method for fabricating the same, array substrate and display device
US10043911B2 (en) * 2013-07-01 2018-08-07 Boe Technology Group Co., Ltd. Thin film transistor, method for fabricating the same, array substrate and display device
JP2015144176A (en) * 2014-01-31 2015-08-06 国立研究開発法人物質・材料研究機構 Thin-film transistor and manufacturing method thereof, and semiconductor device

Similar Documents

Publication Publication Date Title
US6078093A (en) Capacitor structure of semiconductor device for high dielectric constant
JP3064241B2 (en) Etching of tapered dielectric layers in semiconductor devices
US6703672B1 (en) Polysilicon/amorphous silicon composite gate electrode
JPH0629465A (en) Capacitor and its manufacture
US5132745A (en) Thin film transistor having an improved gate structure and gate coverage by the gate dielectric
JPH08321623A (en) Method of manufacturing thin film transistor
US5240558A (en) Method for forming a semiconductor device
US5114869A (en) Method for producing reverse staggered type silicon thin film transistor
US5508223A (en) Method for manufacturing DRAM cell with fork-shaped capacitor
JPH06267912A (en) Processing of thin film, manufacture of capacitor element and manufacture of semiconductor device
US5700699A (en) Method for fabricating a polycrystal silicon thin film transistor
US6831319B2 (en) Cell nitride nucleation on insulative layers and reduced corner leakage of container capacitors
US5322806A (en) Method of producing a semiconductor device using electron cyclotron resonance plasma CVD and substrate biasing
JPH10294468A (en) Gate insulation layer containing similar diamond film, method and apparatus for forming thin-film transistor and gate insulation layer
US5273936A (en) Process for forming contacts
JPH07249690A (en) Manufacture of semiconductor device
JP3058057B2 (en) Method for forming uneven silicon film and semiconductor memory device
JP3382130B2 (en) Method for manufacturing thin film transistor
KR100244411B1 (en) Method for manufacturing semiconductor device
KR100268776B1 (en) A manufacturing method of semiconductor device
JPH04209570A (en) Manufacture of semiconductor element
JPH08321621A (en) Thin film transistor
KR100268124B1 (en) Method for manufacturing charge storage electrode of semiconductor device
KR100413755B1 (en) Method for fabricating capacitor of semiconductor device and capacitor fabricated thereby
KR940009621B1 (en) Manufacturing method of capacitor