JPS6210247B2 - - Google Patents

Info

Publication number
JPS6210247B2
JPS6210247B2 JP53154303A JP15430378A JPS6210247B2 JP S6210247 B2 JPS6210247 B2 JP S6210247B2 JP 53154303 A JP53154303 A JP 53154303A JP 15430378 A JP15430378 A JP 15430378A JP S6210247 B2 JPS6210247 B2 JP S6210247B2
Authority
JP
Japan
Prior art keywords
plastic
temperature
glass microbeads
manufacturing
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53154303A
Other languages
Japanese (ja)
Other versions
JPS5490356A (en
Inventor
Penekamupu Gyuntaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pennekamp & Huesker KG
Original Assignee
Pennekamp & Huesker KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pennekamp & Huesker KG filed Critical Pennekamp & Huesker KG
Publication of JPS5490356A publication Critical patent/JPS5490356A/en
Publication of JPS6210247B2 publication Critical patent/JPS6210247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】 本発明は高分子または超高分子低圧ポリエチレ
ンをカドミウム塩および2酸化チタンと混合して
熱間圧縮する、高耐摩耗性プラスチツク部材、と
くにコンベア装置および抄紙機の脱水要素のよう
な機械の摩耗部材を製造するための成形コンパウ
ンドの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to highly abrasion resistant plastic components, particularly conveyor equipment and dewatering elements of paper machines, in which polymeric or ultra-high molecular weight low pressure polyethylene is mixed with cadmium salts and titanium dioxide and hot pressed. The present invention relates to a method for producing a molding compound for producing wear parts for machines such as machines.

この種の公知法(西独特許第1925408号明細書
参照)によれば、高分子低圧ポリエチレンの分級
したカ粒を添加剤と混合して成形体に圧縮する。
これは比較的低い圧力の融解圧縮法で行われる。
冷却後この成形体を摩砕し、純低圧ポリエチレン
カ粒10〜40%と混合する。一部老化した再生材料
および一部純出発材料からなるこの混合物を次に
新たに熱間圧縮する。可塑化および冷却後プラス
チツク半製品が得られ、この半製品は硬く、した
がつて摩擦応力に対して耐摩耗性であるだけでな
く、親水性であり、したがつて水が作用する際こ
のプラスチツクの表面に永続的水膜が保持され
る。親水性は添加したカドミウム塩によつて、硬
さは添加した2酸化チタンによつて得られる。こ
のようなプラスチツク半製品はとくに水を連行す
る抄網が高速で動く抄紙機の抄網テーブルの高負
荷プラスチツク部材を製造するためとくに適当で
ある。とくにカドミウム塩の添加により、高分子
低圧ポリエチレンからなるこの種のプラスチツク
部材の滑り性質は著しく改善されるけれど、これ
らの部材の摩耗はいまだにきわめて大きい。
According to a known method of this type (see German Patent No. 1925408), classified granules of high-molecular low-pressure polyethylene are mixed with additives and compressed into a molded body.
This is done using melt compression methods at relatively low pressures.
After cooling, the compact is ground and mixed with 10-40% pure low-pressure polyethylene powder. This mixture, consisting partly of aged recycled material and partly of pure starting material, is then hot pressed again. After plasticization and cooling, a plastic semi-finished product is obtained, which is not only hard and therefore wear-resistant to frictional stresses, but also hydrophilic and therefore when water acts on this plastic. A permanent water film is maintained on the surface of the Hydrophilicity is obtained by the added cadmium salt, and hardness is obtained by the added titanium dioxide. Such plastic semi-finished products are particularly suitable for producing high-load plastic parts for the screen tables of paper machines in which the water-carrying screen moves at high speeds. Although the sliding properties of such plastic parts made of high-molecular, low-pressure polyethylene are significantly improved, especially by the addition of cadmium salts, the wear of these parts is still very high.

この種のプラスチツク部材の摩耗をプラスチツ
ク材料へガラスのマイクロビードを埋蔵すること
によつて低下することは公知である。ポリエチレ
ン半製品を製造するこの種の公知法(フランス特
許第2319662号明細書参照)の場合、出発材料の
高分子ポリエチレン79.3重量%にガラスマイクロ
ビード16.7重量%が添加され、この混合物にさら
に帯電防止剤のアセチレンブラツク4.0重量%が
添加される。アセチレンブラツクの添加は滑り性
質の改善を目的とするけれど、同時にガラスマイ
クロビードの硬度によりプラスチツク部材の耐摩
耗性を上昇しなければならない。それゆえガラス
マイクロビードの割合は16.7重量%と比較的高
い。しかし実際の結果はこのように調製した低圧
ポリエチレンによつて所望の耐摩耗性は種々の理
由から達成されないことを示した。一つにはプラ
スチツク内のガラスマイクロビードの統計的に均
一な分布が達成されないので、プラスチツク中に
埋蔵したガラスマイクロビードの密度の異なるゾ
ーンが発生し、したがつてこれらのゾーンの摩耗
性質に差が生ずる。このためおよびプラスチツク
分子鎖の低い架橋度のため、それぞれのプラスチ
ツク部材が摩耗応力にさらされる際、ガラスマイ
イクロビードがプラスチツクから離れる。さらに
一部すでに摩耗したプラスチツクから突出するガ
ラスビードによつて、たとえば抄紙機の抄網のよ
うなプラスチツクガイドの上を滑る部材はきわめ
て大きい応力にさらされる。
It is known to reduce the wear of plastic parts of this type by embedding glass microbeads in the plastic material. In a known method of this type for producing polyethylene semi-finished products (see French Patent No. 2 319 662), 16.7% by weight of glass microbeads are added to the starting material 79.3% by weight of polymeric polyethylene, and this mixture is further enriched with antistatic properties. 4.0% by weight of acetylene black is added. The purpose of adding acetylene black is to improve the sliding properties, but at the same time the hardness of the glass microbeads must increase the wear resistance of the plastic component. Therefore, the proportion of glass microbeads is relatively high at 16.7% by weight. However, practical results have shown that the desired abrasion resistance is not achieved with the low pressure polyethylene thus prepared for various reasons. On the one hand, a statistically uniform distribution of glass microbeads within the plastic is not achieved, resulting in zones with different densities of glass microbeads embedded within the plastic, and thus differences in the wear properties of these zones. occurs. Because of this and because of the low degree of crosslinking of the plastic molecular chains, the glass microbeads detach from the plastic when the respective plastic part is exposed to abrasion stresses. Moreover, glass beads protruding from partially worn plastics expose components that slide over plastic guides, such as paper machine screens, to extremely high stresses.

それゆえ本発明の目的は埋蔵されたガラスマイ
クロビードの安定性および硬度と支持プラスチツ
クの滑り性質との調和した関係を得、その際ガラ
スマイクロビードが架橋したプラスチツク分子内
に固定され、かつガラスマイクロビードの統計的
に均一な分布が十分保証されるプラスチツク半製
品の製法を提案することである。
It is therefore an object of the present invention to obtain a harmonious relationship between the stability and hardness of the buried glass microbeads and the sliding properties of the supporting plastic, in which the glass microbeads are fixed within cross-linked plastic molecules and the glass microbeads are The object of the present invention is to propose a method for producing plastic semi-finished products that fully guarantees a statistically uniform distribution of beads.

この目的は微細なカ粒または粉末の形の低圧ポ
リエチレンをまず硫化カドミウムおよび2酸化チ
タンと混合し、この混合物を個々のプラスチツク
粒子の表面に可塑化が開始する温度に急速にもた
らし、次にガラスマイクロビードを添加し、この
混合物を圧力下に可塑化温度まで加熱し、再び冷
却することを特徴とする首記の方法によつて解決
される。
The purpose was to first mix low-pressure polyethylene in the form of fine granules or powder with cadmium sulphide and titanium dioxide, bring this mixture rapidly to the temperature at which plasticization begins on the surface of the individual plastic particles, and then The problem is solved by the method described above, which is characterized in that microbeads are added, the mixture is heated under pressure to the plasticizing temperature and cooled again.

本発明の方法の特殊な利点はプラスチツクカ粒
または粉末をプラスチツク粒子の可塑化がその表
面で開始するまで予熱することによつて、後に添
加するガラスマイクロビードの非常に追好な付着
が達成されることにある。プラスチツク粉末の急
速加熱は近似的に球とみなしうる個々のプラスチ
ツク粒子の温度勾配がほとんど半径方向内側に向
くので有利である。個々のプラスチツク粒子はガ
ラスマイクロビード添加前に一定の深さにわたつ
てでなくその表面範囲だけが軟化され、付着容易
にされ、いわゆる表面可塑化されなければならな
い。この場合プラスチツク粒子の凝集はまだまつ
たくまたはごく少ししか開始してはならない。こ
のように加熱したプラスチツク粉末へプラスチツ
ク粒子より著しく小さい直径のガラスマイクロビ
ードを添加すると、ガラスマイクロビードはプラ
スチツク粒子の表面に付着し、このプラスチツク
粒子は単位表面積当り発生する接着力に応じて一
定数のガラスマイクロ粒子しか吸着しない。プラ
スチツク粉末の粒度が一定であることを前提にで
きるので、個々のプラスチツク粒子の表面にはガ
ラスマイクロビードが均一に付着する。プラスチ
ツク粉末とガラスマイクロビードの量比の微細調
整によりプラスチツク粉末にガラスマイクロビー
ドが統計的に十分均一に分布することが達成され
る。もう一つの重要な利点はプラスチツク粒子の
接着力によつてガラスマイクロビードがミクサ内
で下へ沈積できないことにあり、プラスチツクカ
粒または粉末は比重がはるかに大きいガラスマイ
クロビードの上に浮遊する状態にならない。この
事実もガラスマイクロビードのプラスチツクカ粒
中の均一な分布に有利である。本発明により分散
剤のような公知の添加物を添加する必要なく粉末
混合物が得られる。
A particular advantage of the method of the invention is that by preheating the plastic particles or powder until plasticization of the plastic particles begins at their surface, a very favorable adhesion of the glass microbeads added subsequently is achieved. There are many things. Rapid heating of the plastic powder is advantageous because the temperature gradient of the individual plastic particles, which can be approximately considered as spheres, is directed mostly radially inward. Before the addition of the glass microbeads, the individual plastic particles must be softened not over a certain depth but only in their surface area to facilitate adhesion, so-called surface plasticization. In this case, agglomeration of the plastic particles should only begin to form or only slightly. When glass microbeads with a diameter significantly smaller than the plastic particles are added to the heated plastic powder in this way, the glass microbeads adhere to the surface of the plastic particles, and the number of these plastic particles increases depending on the adhesive force generated per unit surface area. It only adsorbs glass microparticles. Since it can be assumed that the particle size of the plastic powder is constant, glass microbeads are uniformly attached to the surface of each plastic particle. By finely adjusting the quantity ratio of plastic powder to glass microbeads, a statistically sufficiently homogeneous distribution of the glass microbeads in the plastic powder is achieved. Another important advantage is that the adhesive strength of the plastic particles prevents the glass microbeads from settling down in the mixer; the plastic particles or powder float on top of the glass microbeads, which have a much higher specific gravity. do not become. This fact also favors a uniform distribution of glass microbeads in the plastic grains. The invention allows powder mixtures to be obtained without the need to add known additives such as dispersants.

プラスチツク粉末をガラスマイクロビードをそ
の中に混合する前に別の加熱過程で加熱する必要
がないように、粉末を高速ミクサ内で摩擦熱によ
つて加熱するのが有利である。この加熱は1つに
は非常に急速に行われ、第2プラスチツク粒子の
可塑化温度が所望どおり達成された後、ミクサ速
度の減少によつてただちにそれ以上の温度上昇が
抑制される。そのつどの所望温度は経験的に求め
られる。次に遅滞なく高速ミクサへただちにガラ
スマイクロビードを添加することができる。
It is advantageous to heat the powder by frictional heat in the high speed mixer so that the plastic powder does not have to be heated in a separate heating step before mixing the glass microbeads therein. On the one hand, this heating takes place very rapidly, and once the desired plasticization temperature of the second plastic particles has been achieved, further temperature increases are immediately inhibited by reducing the mixer speed. The respective desired temperature is determined empirically. The glass microbeads can then be added immediately to the high speed mixer without delay.

本発明の方法のもう1つの利点はプラスチツ
ク、添加剤およびガラスマイクロビードの混合物
を中間に冷却期を挾んで2回熱間圧縮することに
よりプラスチツク内へガラスマイクロビードをと
くに固く埋蔵する場合に得られる。閉鎖組織のガ
ラスマイクロビードによる中断にもかかわれず、
プラスチツクは完全に均一である。そのためたと
えば酸およびアルカリのような侵食性媒体は材料
表面から侵入して材料を破壊する拠点を見いだし
得ない。もつぱらプラスチツクの親水性を改善す
るためのアセチレンブラツクの公知使用法と異な
り、使用添加剤すなわち硫化カドミウムおよび2
酸化チタンはプラスチツク全組織の安定化および
材料表面の摩擦係数の低下に作用する。それによ
つてガラスマイクロビードの強化効果が有利に高
分子低圧ポリエチレンのその他の添加剤によつて
生ずる性質と組合わされる。
Another advantage of the method of the invention is that glass microbeads can be particularly hard embedded into plastics by hot pressing the mixture of plastic, additives and glass microbeads twice with a cooling period in between. It will be done. Despite interruptions by glass microbeads in the closed tissue,
Plastic is completely homogeneous. Therefore, aggressive media, such as acids and alkalis, cannot find a place to penetrate through the surface of the material and destroy it. Unlike the known use of acetylene black to improve the hydrophilicity of plastics, the additives used are cadmium sulfide and
Titanium oxide acts to stabilize the entire structure of the plastic and to lower the coefficient of friction of the material surface. The reinforcing effect of the glass microbeads is thereby advantageously combined with the properties produced by other additives of the polymeric low-pressure polyethylene.

プラスチツク成形コンパウンドの性質の改善は
ポリエチレンカ粒に対する他の添加剤として硫酸
バリウムおよびフタロシアニンの添加によつて達
成することもできる。この方法で耐摩耗性の所望
の性質を低下することなく、プラスチツク半製品
の着色を調節することもできる。
Improvements in the properties of plastic molding compounds can also be achieved by adding barium sulfate and phthalocyanine as other additives to the polyethylene particles. In this way it is also possible to adjust the coloration of the plastic semi-finished product without reducing the desired properties of abrasion resistance.

粉末混合物中のガラスマイクロビードのできる
だけ統計的に均一な分布の点で、ガラスマイクロ
ビードの直径は50μm以下が適当であることが明
らかになつた。さらにガラスマイクロビードのこ
の程度の直径は熱間圧縮過程の際および後の高分
子低圧ポリエチレンの二重架橋結合のために有利
である。
In order to achieve as statistically uniform a distribution of the glass microbeads as possible in the powder mixture, it has been found that a diameter of the glass microbeads of 50 μm or less is suitable. Moreover, such a diameter of the glass microbeads is advantageous for double crosslinking of the high molecular weight low-pressure polyethylene during and after the hot pressing process.

さらに低圧ポリエチレン93.33重量%、添加剤
1.91重量%およびガラスマイクロビード4.76重量
%の混合比はガラスマイクロビードが統計的に均
一に分布する場合、プラスチツク成形コンパウド
の表面になお十分なプラスチツク分を保証し、そ
れによつてプラスチツク製品部材上を流れる液体
による摩耗促進に作用するガラスマイクロビード
が部材の表面から突出しなくなるので有利であ
る。抄紙機抄網の摩耗部材を本発明の方法により
プラスチツク半製品から製造する場合、紙を脱水
する抄網が摩耗から程護される。
Plus low pressure polyethylene 93.33% by weight, additives
The mixing ratio of 1.91% by weight of glass microbeads and 4.76% by weight of glass microbeads ensures that there is still sufficient plastic content on the surface of the plastic molding compound when the glass microbeads are distributed statistically uniformly, thereby allowing the plastic product parts to be easily coated. Advantageously, no glass microbeads protrude from the surface of the component, which can promote wear due to the flowing liquid. If the wear parts of the paper machine screen are manufactured from plastic semi-finished products by the method of the invention, the screen for dewatering the paper is protected from wear.

添加剤すなわち硫化カドミウムおよび2酸化チ
タンのみ、または硫化カドミウム、2酸化チタン
およびフタロシアニンは有利に同じ割合で添加さ
れるので、これらはそれぞれ全添加剤のほぼ1/2
〜1/4になる。
The additives ie cadmium sulfide and titanium dioxide alone or cadmium sulfide, titanium dioxide and phthalocyanine are preferably added in the same proportions, so that they each represent approximately 1/2 of the total additives.
It becomes ~1/4.

二つの熱間圧縮過程の可塑化温度はそのつど適
用する圧縮法のみならず、たとえば圧縮する出発
材料の流動抵抗に関係するので、つねに特殊な適
合が必要であり、一般に中間冷却は約80℃への温
度降下によつて確立することができる。中間冷却
は先行する熱間圧縮過程と同様圧力下に行うのが
有利である。混合物の最初の加熱、中間冷却およ
び第2加熱は有利に一定圧力で行われる。
The plasticizing temperature of the two hot-pressing processes is dependent not only on the compression method applied in each case, but also on, for example, the flow resistance of the starting material to be compacted, and therefore always requires special adaptation; as a rule, intercooling is approximately 80 °C. can be established by lowering the temperature to . The intercooling, like the preceding hot compression process, is advantageously carried out under pressure. The first heating, intermediate cooling and second heating of the mixture are preferably carried out at constant pressure.

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

高速ミクサのチヤージは低圧ポリエチレン
93.33重量%、添加剤1.91重量%およびガラスマ
イクロビード4.76重量%からなる。添加剤1.91重
量%は等量の硫化カドミウム、2酸化チタン、硫
酸バリウムおよびフタロシアニンからなる。
The high-speed mixer charge is made of low-pressure polyethylene.
93.33% by weight, 1.91% by weight of additives and 4.76% by weight of glass microbeads. The 1.91% by weight additive consists of equal amounts of cadmium sulfide, titanium dioxide, barium sulfate and phthalocyanine.

最初プラスチツク粉末と添加剤だけを高速ミク
サに添加する。高速ミクサの回転数は短時間たと
えば21/2分で粉末へ作用する摩擦熱によつて
個々のプラスチツク粒子の表面に可塑化が開始す
るように調節される。個々のプラスチツク粒子の
必要な表面温度は高分子低圧ポリエチレンでは
120℃程度であり、この温度は個々のプラスチツ
ク粒子の心部までの完全加熱が行われず、したが
つてプラスチツク粒子の表面から内部へ連続的に
熱伝達が行われている限り、短時間もう少し高い
温度であつてもよい。この温度はプラスチツクの
種類によつて経験的に求められ、高分子低圧ポリ
エチレンの場合105〜118℃である。
Initially only the plastic powder and additives are added to the high speed mixer. The rotational speed of the high speed mixer is adjusted such that, within a short time, for example 21/2 minutes, plasticization begins on the surface of the individual plastic particles due to the frictional heat acting on the powder. The required surface temperature of individual plastic particles is
It is around 120°C, and this temperature can be slightly higher for a short time as long as the core of each plastic particle is not completely heated and therefore there is continuous heat transfer from the surface of the plastic particle to the inside. It may also be temperature. This temperature is determined empirically depending on the type of plastic and is 105 DEG -118 DEG C. for high molecular weight low pressure polyethylene.

この温度に達した後に初めてまつたくまたはご
く少ししか凝集していないガラスマイクロビード
がプラスチツク粉末に添加される。この過程で高
速ミクサの回転数は過剰の熱供給を避けるため低
下される。表面が可塑化したプラスチツク粒子の
接着作用のため、ガラスマイクロビードはすべて
のプラスチツク粒子の可塑化した表面へ均一に付
着する。それによつてプラスチツク粒子は互いに
乾き、すでに凝集が始まつている場合でも個々の
粒子は再び分離される。これは全混合物の連続的
循環によつてガラスマイクロビードがプラスチツ
ク粒子を摩擦する機械的作用に基く。この場合一
般に室温で高速ミクサへ添加されるガラスマイク
ロビードと加熱されたプラスチツク粉末の間の温
度差によりプラスチツク粒子の過熱および完全軟
化を避け、またはこの粒子の冷却を行うこともで
きる。全体的にこの手段によつて、ガラスマイク
ロビードがプラスチツクにできるだけ均一に分布
し、プラスチツクがその小さい比重のためガラス
ビード上に浮遊しないことが保証される。
Only after this temperature has been reached are the glass microbeads, which are only slightly agglomerated, added to the plastic powder. During this process, the speed of the high speed mixer is reduced to avoid excessive heat supply. Due to the adhesive action of the plastic particles with plasticized surfaces, the glass microbeads adhere uniformly to the plasticized surfaces of all plastic particles. As a result, the plastic particles dry together and the individual particles are separated again, even if agglomeration has already begun. This is based on the mechanical action of the glass microbeads rubbing against the plastic particles by continuous circulation of the entire mixture. In this case, the temperature difference between the glass microbeads and the heated plastic powder, which are generally added to the high-speed mixer at room temperature, avoids overheating and complete softening of the plastic particles, or also makes it possible to cool the particles. Overall, this measure ensures that the glass microbeads are distributed as evenly as possible on the plastic and that the plastic does not float on the glass beads due to its low specific gravity.

ガラスマイクロビードの粒度はもちろんその直
径による。高分子ガラスマイクロビードの直径は
約50μmであり、したがつてガラスマイクロビー
ドは全体的に同様粉末の性質を有する。
The particle size of the glass microbeads of course depends on their diameter. The diameter of the polymeric glass microbeads is about 50 μm, so the glass microbeads have a similar overall powdery nature.

プラスチツク粒子、添加剤およびガラス粉末の
粉末混合物はフリースの厚板の形で焼結プレスに
送られる。粉末はそこで段階的に100Kg/cm2の圧
力まで圧縮される。次に圧縮されたフリースはプ
ラスチツクの可塑化温度を超える約180℃まで加
熱され、この温度は詳細には板厚の選択によつて
著しく異なる。圧縮したフリースの加熱は可塑化
が内側から外側へ進行するように、中央から外側
へ向つて行うのが適当である。可塑化温度がほぼ
140℃である高分子低圧ポリエチレンの使用が有
利である。
The powder mixture of plastic particles, additives and glass powder is sent to a sintering press in the form of fleece planks. The powder is then compressed in stages to a pressure of 100 Kg/cm 2 . The compressed fleece is then heated to approximately 180 DEG C., above the plasticizing temperature of the plastic, and this temperature varies significantly depending on the choice of plate thickness. The compressed fleece is suitably heated from the center to the outside so that plasticization proceeds from the inside to the outside. The plasticizing temperature is approximately
Preference is given to using high molecular weight low pressure polyethylene at 140°C.

プラスチツク分子鎖の所望の架橋に応じて可塑
化したコンパウンドは室温まで冷却することがで
きる。最初の熱間圧縮過程後の約80℃までのいわ
ゆる中間冷却は100Kg/cm2の圧力下に行い、次に
製品をもう1度可塑化温度まで加熱し、その際
100Kg/cm2の圧力を保持し、またはあらかじめ圧
力降下後もう1度個々の圧力段を通過させるのが
有利である。30℃まで冷却した後、板として存在
するプラスチツク半製品を型さら取出すこともで
きる。
Depending on the desired crosslinking of the plastic molecular chains, the plasticized compound can be cooled to room temperature. A so-called intercooling to approximately 80 °C after the first hot-pressing process is carried out under a pressure of 100 Kg/cm 2 and then the product is heated once more to the plasticizing temperature, during which
It is advantageous to maintain a pressure of 100 kg/cm 2 or to pass through the individual pressure stages one more time after the pressure has previously dropped. After cooling to 30°C, the plastic semi-finished product, which is present as a plate, can be removed from the mold.

Claims (1)

【特許請求の範囲】 1 高分子または超高分子低圧ポリエチレンを添
加剤としてのカドミウム塩および2酸化チタンと
混合して熱間圧縮する、高耐摩耗性プラスチツク
部材、とくにコンベア装置および抄紙機の脱水要
素のような機械の摩耗部材を製造するためのプラ
スチツク半製品の製法において、微細なカ粒また
は粉末の低圧ポリエチレンをまず硫化カドミウム
および2酸化チタンと混合し、この混合物を個々
のプラスチツク粒子の表面に可塑化が開始する温
度に急速にもたらし、次にガラスのマイクロビー
ドを添加し、混合物を圧力下に可塑化温度まで加
熱し、再び冷却することを特徴とするプラスチツ
ク半製品の製法。 2 低圧ポリエチレンカ粒または粉末を高速ミク
サ内で摩擦熱により、プラスチツク粒子の表面可
塑化が開始する温度にもたらす特許請求の範囲第
1項記載の製法。 3 高速ミクサ内で調節した低圧ポリエチレン粉
末またはカ粒の温度が105〜118℃である特許請求
の範囲第2項記載の製法。 4 プラスチツク、添加剤およびガラスマイクロ
ビードよりなる混合物を可塑化温度への最初の加
熱および冷却の後、続いて新たに可塑化温度にも
たらし、冷却する特許請求の範囲第2項または第
3項に記載の製法。 5 低圧ポリエチレン、硫化カドミウム、2酸化
チタンおよびガラスマイクロビードの混合物にさ
らに硫酸バリウムおよびフタロシアニンを添加剤
として混合する特許請求の範囲第1項〜第4項の
1つに記載の製法。 6 ガラスのマイクロビードの直径が50μm以下
である特許請求の範囲第1項〜第5項の1つに記
載の製法。 7 混合比が低圧ポリエチレン93.33重量%、添
加剤1.91重量%およびガラスマイクロビード4.76
重量%である特許請求の範囲第5項または第6項
記載の製法。 8 添加剤が同じ割合で添加される特許請求の範
囲第7項記載の製法。 9 約80℃の温度に中間冷却する特許請求の範囲
第4項〜第8項の1つに記載の製法。 10 圧力下に中間冷却する特許請求の範囲第9
項記載の製法。 11 粉末混合物の第1加熱、中間冷却および中
間加熱を一定圧力下に行う特許請求の範囲第10
項記載の製法。
[Claims] 1. Dewatering of highly wear-resistant plastic parts, especially conveyor equipment and paper machines, by hot-pressing a mixture of high-molecular or ultra-high-molecular low-pressure polyethylene with cadmium salts and titanium dioxide as additives. In the production of plastic semi-finished products for the production of machine wear parts such as elements, low-pressure polyethylene in the form of fine particles or powder is first mixed with cadmium sulphide and titanium dioxide, and this mixture is applied to the surface of the individual plastic particles. A process for the production of plastic semi-finished products, characterized in that the temperature at which plasticization begins is brought rapidly to the temperature at which plasticization begins, then glass microbeads are added, the mixture is heated under pressure to the plasticization temperature and cooled again. 2. The method according to claim 1, wherein the low-pressure polyethylene particles or powder are brought to a temperature at which surface plasticization of the plastic particles begins by means of frictional heat in a high-speed mixer. 3. The manufacturing method according to claim 2, wherein the temperature of the low-pressure polyethylene powder or granules adjusted in a high-speed mixer is 105 to 118°C. 4. According to claim 2 or 3, the mixture of plastic, additives and glass microbeads, after initial heating and cooling to the plasticizing temperature, is subsequently brought again to the plasticizing temperature and cooled. Manufacturing method described. 5. The production method according to claim 1, wherein barium sulfate and phthalocyanine are further mixed as additives into the mixture of low-pressure polyethylene, cadmium sulfide, titanium dioxide and glass microbeads. 6. The manufacturing method according to any one of claims 1 to 5, wherein the glass microbeads have a diameter of 50 μm or less. 7 Mixing ratio: 93.33% by weight of low pressure polyethylene, 1.91% by weight of additives and 4.76% by weight of glass microbeads
The manufacturing method according to claim 5 or 6, wherein the amount is % by weight. 8. The manufacturing method according to claim 7, wherein the additives are added in the same proportions. 9. Process according to one of claims 4 to 8, with intercooling to a temperature of about 80°C. 10 Claim 9: Intermediate cooling under pressure
Manufacturing method described in section. 11 Claim 10 in which the first heating, intermediate cooling, and intermediate heating of the powder mixture are performed under constant pressure.
Manufacturing method described in section.
JP15430378A 1977-12-17 1978-12-15 Method of making semiiproduct of plastics Granted JPS5490356A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2756359A DE2756359C3 (en) 1977-12-17 1977-12-17 Process for the production of molding compounds for the production of semi-finished plastic materials

Publications (2)

Publication Number Publication Date
JPS5490356A JPS5490356A (en) 1979-07-18
JPS6210247B2 true JPS6210247B2 (en) 1987-03-05

Family

ID=6026421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15430378A Granted JPS5490356A (en) 1977-12-17 1978-12-15 Method of making semiiproduct of plastics

Country Status (2)

Country Link
JP (1) JPS5490356A (en)
DE (1) DE2756359C3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080215B (en) * 2022-12-09 2023-10-20 广东班特斯膜材科技有限公司 Preparation method and application of co-extrusion type glitter film

Also Published As

Publication number Publication date
DE2756359B2 (en) 1979-10-18
DE2756359C3 (en) 1980-07-10
JPS5490356A (en) 1979-07-18
DE2756359A1 (en) 1979-06-21

Similar Documents

Publication Publication Date Title
US5525284A (en) Process for manufacturing plastic parts
US4959396A (en) Composition for microporous separators and method for its preparation
CN101638509B (en) Method for preparing toughened calcium carbonate filling polylactic acid
JP2001506195A (en) Polymer treatment method and tablet forming apparatus
US4302413A (en) Process for preparing extrudable polyimide granules
JP2001511085A (en) Method of using recycled glass as filler in molded plastic
JPH03183510A (en) Manufacture of thermoplastic resin containing ceramic powder as filling agent
US4112036A (en) Preparing mica-reinforced composites
JP2009012453A (en) Process for producing artificial marble
FI61020C (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT FORMBART MATERIAL GENOM MALNING AV ETT ORGANISM MINERALMATERIAL I EN KULKVARN TILLSAMMANS MED ETT FORMBINDEMEDEL OCH EVENTUELLA ANDRA BESTAONDSDELAR
US2761176A (en) Method and composition for the production of speckled plastic ware
JPS6210247B2 (en)
US5360587A (en) Preparation of friction elements and compositions therefor
US2624514A (en) Grinding of thermosetting aminoplastic granular molding compositions
JPH07290447A (en) Fiber-containing granulated material and production thereof
KR100867984B1 (en) Laser sintering powders using nylon 6, Manufacturing method thereof and molded product obtained from the same powder
CA1091420A (en) Method for producing a molding compound
CN104119496B (en) Banburying calendering type TPU method for producing elastomers
US5714525A (en) Preparation of friction elements and compositions therefor
JPS58129029A (en) Phosphorescent molded article
JPH09141656A (en) Synthetic wood powder made of raw material of waste polyester fiber and manufacture thereof, and synthetic wood molding using the powder and manufacture thereof
US3058967A (en) Method of converting powdered polymers to granular form
US3101243A (en) Pre-heat process for molding cork blocks
JPH07276386A (en) Paving composite material, its production and device therefor
JPS5935927A (en) Injection molding method for polyimide base resin compound