JPS62101832A - Exhaust turbosupercharger device - Google Patents

Exhaust turbosupercharger device

Info

Publication number
JPS62101832A
JPS62101832A JP24238385A JP24238385A JPS62101832A JP S62101832 A JPS62101832 A JP S62101832A JP 24238385 A JP24238385 A JP 24238385A JP 24238385 A JP24238385 A JP 24238385A JP S62101832 A JPS62101832 A JP S62101832A
Authority
JP
Japan
Prior art keywords
valve
exhaust
bypass
turbine
opened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24238385A
Other languages
Japanese (ja)
Other versions
JPH0726551B2 (en
Inventor
Toshimasu Tanaka
田中 稔益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60242383A priority Critical patent/JPH0726551B2/en
Publication of JPS62101832A publication Critical patent/JPS62101832A/en
Publication of JPH0726551B2 publication Critical patent/JPH0726551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce variation in supercharging pressure by providing a connecting hole between two exhaust passages, providing a connecting valve in said connecting hole, and controlling said valve in accordance with load, in a device in which exhaust gas is introduced into the turbine of a turbosupercharger independently from two systems of exhaust passages. CONSTITUTION:A partition wall 10 is provided in a part in which passages connected to exhaust ports 9 are collected, in the exhaust manifold 8 of a four- cylinder engine 1, to form two systems of exhaust passages 12, 13 which independently introduce exhaust gas to the turbine 4 of a turbosupercharger 3. Also, a connecting hole 21 which is opened and closed by means of a connecting valve 22 is provided on the partition wall 10, and the connecting valve 22 is controlled by a valve opening adjusting means including an actuator 23. And, the connecting valve 22 is controlled by an ECU 27 in such a way that its opening is reduced on the low-rotation and low-load side, while increased on the high-rotation and high-load side, of an operating area under the opening condition of a bypass valve 16 in a bypass 15 which connects the exhaust passage 12 to an exhaust passage 14 on the lower course of the turbine 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、独立した2系統の排気通路からそれぞれ排気
ガスをタービンに導くようにした排気ターボ過給装置の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an exhaust turbocharger in which exhaust gas is guided to a turbine through two independent exhaust passages.

(従来技術) 従来から、例えば実開昭56−171630号公報に示
されるように、エンジンの各気筒とターボ過給機のター
ビンとの間の、排気マニホールドからタービン周囲のス
クロール室にわたる範囲の排気系を、互いに独立してそ
れぞれ半数ずつの気筒からの排気ガスを独立にタービン
に導く2系統の排気通路に分けることにより、排気脈動
を有効に利用して低速域でのターボ過給機の駆動効率を
高め、トルク向上を図るようにしたものが知られている
。なお、このように独立した2系統の排気通路を構成す
る場合に、上記公報の装置では排気行程が連続しない気
筒の排気ガスが同一系統の排気通路に導かれるようにし
ているが、排気行程が連続する気筒の排気ガスが同一系
統の排気通路に導かれるようにしても、排気脈動が高め
られて右効にタービンに作用し、駆動効率を高めること
ができる。
(Prior Art) Conventionally, as shown in, for example, Japanese Utility Model Application Publication No. 56-171630, exhaust gas in the range from the exhaust manifold to the scroll chamber around the turbine between each cylinder of the engine and the turbine of the turbocharger has been developed. By dividing the system into two exhaust passages that independently guide exhaust gas from half of each cylinder to the turbine, the exhaust pulsation can be used effectively to drive the turbocharger in the low speed range. Some are known that are designed to increase efficiency and improve torque. In addition, when configuring two independent exhaust passages in this way, the device in the above publication allows the exhaust gas from cylinders whose exhaust strokes are not consecutive to be guided to the exhaust passages of the same system. Even if the exhaust gases of consecutive cylinders are guided to the exhaust passage of the same system, the exhaust pulsation is increased and exerts a positive effect on the turbine, thereby increasing drive efficiency.

ところで、上記従来装置では、簡単な描造で最高過給圧
を制御するため、2系統のうちの一方の排気通路とター
ビン下流側との間に、設定過給圧で開作動するバイパス
弁を備えたバイパス通路を設けているが、このようにし
た場合、設定過給圧に達して上記バイパス弁が開作動さ
れたとき、一方の排気通路のみから排気ガスがバイパス
通路に逃がされるため、両排気通路にお4ノる背圧に差
が生じ、その15で気筒によってトルク等にばらつぎが
生じるという問題がある。
By the way, in the above conventional device, in order to control the maximum boost pressure with a simple drawing, a bypass valve that opens at the set boost pressure is installed between the exhaust passage of one of the two systems and the downstream side of the turbine. However, in this case, when the set supercharging pressure is reached and the bypass valve is opened, exhaust gas is released from only one exhaust passage to the bypass passage, so both exhaust gases are There are 4 differences in back pressure in the exhaust passage, and 15 differences in torque etc. occur between cylinders.

そこでこのような問題を解消するため、上記排気通路間
に弁で開閉される連通孔を設【プておき、上記バイパス
弁が聞かれたとぎに上記連通孔を聞いて両排気通路間で
排気ガスを流通ざけるようにすることが考えられる。し
かしこの場合、バイパス通路への排気ガス逃がしQlが
多いときにも両排気通路に圧力差が生じることを避ける
には一ヒ記連通孔を比較的大径に形成する必要があるの
で、単にこの連通孔をバイパス弁の開作動時に全開させ
るだ()では、このどきに排気脈動にJ:る効果が失わ
れて過給圧が急激に低ドする。従って過給圧が設定過給
圧に達した直後の運転域では、上記のようなバイパス弁
および連通孔の弁の開作動による過給圧の低下と、これ
に応じてバイパス弁および連通孔の弁が閉じられること
による過給圧の上昇とが繰返されて、過給圧が大幅に変
動するハンチングを生じ、運転状態が不安定になるとい
う問題が生じる。
Therefore, in order to solve this problem, a communication hole that is opened and closed by a valve is installed between the exhaust passages, and when the bypass valve is activated, the communication hole is opened and the exhaust air is opened between both exhaust passages. One possibility is to prevent gas from flowing. However, in this case, in order to avoid a pressure difference between the two exhaust passages even when there is a large amount of exhaust gas released to the bypass passage Ql, it is necessary to form the communication hole with a relatively large diameter. If the communication hole is fully opened when the bypass valve is opened, the effect on exhaust pulsation will be lost and the boost pressure will drop rapidly. Therefore, in the operating range immediately after the boost pressure reaches the set boost pressure, the boost pressure decreases due to the opening of the bypass valve and the communication hole as described above, and the bypass valve and communication hole open accordingly. The increase in supercharging pressure due to valve closing is repeated, causing hunting in which the supercharging pressure fluctuates significantly, resulting in a problem that the operating state becomes unstable.

(発明の目的) 本発明はこのような事情に鑑み、2系統の独立した排気
通路により低速域での過給機駆動効率を高めるとともに
、一方の排気通路に接続したバイパス通路のバイパス弁
で過給圧を制御しつつ、両排気通路間に圧力差が生じる
ことを防1Fシ、しかも過給圧が設定過給圧に達した運
転域付近でハンチングを防いで過給圧を適正に制御する
ことのできるIF気ターボ過給装置を提供するものであ
る。
(Objective of the Invention) In view of the above circumstances, the present invention improves the turbocharger drive efficiency in the low speed range by using two independent exhaust passages, and also increases the turbocharger drive efficiency in the low speed range by using the bypass valve in the bypass passage connected to one exhaust passage. While controlling the boost pressure, it prevents a pressure difference between both exhaust passages, and also prevents hunting near the operating range where the boost pressure reaches the set boost pressure to properly control the boost pressure. The present invention provides an IF air turbocharging device that can perform the following steps.

(発明の構成) 本発明は、複数気筒の+Jl気系を2群に分(プて各々
独立に排気ガスをターボ過給機のタービンに導く2系統
のil+l通気を構成し、その一方の排気通路と上記タ
ービン下流との間にバイパス通路を設(〕、このバイパ
ス通路に設定過給圧で開作動するバイパス弁を設けた排
気ターボ過給装置において、十記両す1気通路の間に、
上記バイパス弁の開作動時に開作動して両排気通路を連
通させる連通弁を設けるとともに、この連通弁の開度を
可変にするバルブ開度調節手段と、バイパス弁が開状態
となる運転領域のうらで低回転低負荷側では上記連通弁
の開度を小さくし、高回転高負荷側ひは上記連通弁の開
度を大きり1Jるようにト記パル1開度調節手段を制御
する制御手段とを設けたものである。
(Structure of the Invention) The present invention divides the +Jl air system of multiple cylinders into two groups (i.e., separates the +Jl air system into two groups, and configures two systems of IL+l ventilation, each of which independently guides the exhaust gas to the turbine of the turbocharger. In an exhaust turbo supercharging device in which a bypass passage is provided between the passage and the downstream side of the turbine, and a bypass valve that opens at a set boost pressure is provided in this bypass passage, a ,
A communication valve is provided that opens when the bypass valve is opened to communicate the two exhaust passages, and a valve opening adjustment means that varies the opening degree of the communication valve, and a valve opening adjustment means that changes the operating range in which the bypass valve is in the open state. On the other hand, on the low rotation, low load side, the opening degree of the communication valve is reduced, and on the high rotation, high load side, the opening degree of the communication valve is increased by 1 J. The means are provided.

この構成により、バイパス弁が閉じられている運転域で
は上記連通弁も閉じられて排気脈動による作用で過給^
駆動効率が高められ、またバイパス47が間かれると−
に2連通弁も開かれて両υ[気道路間にIt力差が生じ
ることが防止され、しかもバイパス通路からの排気ガス
逃しトdが少へい運転域では連通弁の開度が小さくされ
て排気脈動の減衰が抑1−1され、急激4〒過給)Fの
低下が防止されることとなる。
With this configuration, in the operating range where the bypass valve is closed, the communication valve is also closed and supercharging occurs due to the action of exhaust pulsation.
If the drive efficiency is increased and the bypass 47 is removed, -
The two communication valves are also opened to prevent a force difference between the two airways, and the opening degree of the communication valve is reduced in the operating range where the amount of exhaust gas released from the bypass passage is small. Attenuation of the exhaust pulsation is suppressed by 1-1, and a sudden drop in 4〒supercharging)F is prevented.

(実施例) 第1図は本発明の一実施例を示し、この図では本発明装
置を4気筒エンジンに適用しており、1はエンジン、2
a〜2dはエンジン1の各気筒である。また、3はター
ボ過給機であって、排気系に組込まれたタービン4と、
このタービン4に帖5を介して連結されて吸気系に組込
まれたコンプレッサ6とを備え、排気ガス流によりター
ビン4が駆動され、これに伴って]ンブレツサ6が回転
することにより、エンジン1に吸気を過給するようにな
っている。F記タービン4を収容りるタービンハウジン
グ7の排気導入口部分は、排気マニホールド8の1ぐ流
端部に連結されている。
(Embodiment) FIG. 1 shows an embodiment of the present invention, in which the device of the present invention is applied to a four-cylinder engine, and 1 is an engine, and 2
a to 2d are each cylinder of the engine 1. Further, 3 is a turbo supercharger, which includes a turbine 4 incorporated in the exhaust system,
The turbine 4 is equipped with a compressor 6 connected to the turbine 4 via a pipe 5 and incorporated into the intake system. It is designed to supercharge the intake air. The exhaust gas inlet portion of the turbine housing 7 that accommodates the F turbine 4 is connected to the first downstream end of the exhaust manifold 8 .

上記排気マニホールド8には、各気筒2a〜2dの排気
ボー1−9に連通づる通路が集結する部分に排気系を2
1!¥に分ける仕切壁10が設(すられている。またタ
ービンハウジング7内にも、上記什切v10に対応した
仕切壁11が設けられている1こうして上記仕切壁10
.11により、各気筒2a〜2dの排気系が2群に分け
られ、各々独立に排気ガスをタービン4に導く2系統の
排気通路12.13が構成されており、図示の実施例で
は、第1.第2気筒2a、 2bに連通する排気通路1
2と、第3.第4気筒2C,2dに連通ずる排気通路1
3とに分割されている。
In the exhaust manifold 8, an exhaust system is installed at a portion where the passages communicating with the exhaust bows 1-9 of each cylinder 2a to 2d converge.
1! A partition wall 10 is provided to divide the partitions into 10 parts. Also, within the turbine housing 7, a partition wall 11 corresponding to the above-mentioned partition v10 is provided.
.. 11, the exhaust system of each cylinder 2a to 2d is divided into two groups, and two systems of exhaust passages 12, 13 for independently guiding exhaust gas to the turbine 4 are configured. .. Exhaust passage 1 communicating with second cylinders 2a and 2b
2 and 3. Exhaust passage 1 communicating with fourth cylinders 2C and 2d
It is divided into 3.

上記2系統のうちの一方の排気通路12とタービン4の
下流側の排気通路14との間には、タービン4をバイパ
スづるバイパス通路15が設けられ、このバイパス通路
15は例えばタービンハウジング7に一体に形成されて
いる。このバイパス通路15にはバイパス弁16が設け
られ、このバイパス弁16は、コンプレツサ6の下流の
吸気通路18内の過給圧を通路19を介して圧力室17
aに導くようにしたアクチュエ〜り17により、設定過
給圧で開かれるようになっている。
A bypass passage 15 that bypasses the turbine 4 is provided between the exhaust passage 12 of one of the two systems and the exhaust passage 14 on the downstream side of the turbine 4, and this bypass passage 15 is integrated into the turbine housing 7, for example. is formed. A bypass valve 16 is provided in the bypass passage 15, and the bypass valve 16 supplies the supercharging pressure in the intake passage 18 downstream of the compressor 6 to the pressure chamber 17 through a passage 19.
It is opened at a set supercharging pressure by an actuator 17 that leads to a.

また、上記両排気通路12.13間の仕切壁10には連
通孔21が形成され、この連通孔21に、 連通弁22
が設()られている。上記連通弁22はアクチュエータ
23によってバイパス弁16の開作動時に開作動され、
このアクチュエータ23は2段階にバルブ開疾を変える
ことができるバルブ調節手段を兼ねている。ずなわち上
記アクチュエータ23は、連通弁22に連結された第1
ダイヤプラム23aと、その片側に形成された第1圧力
室23bと、先端が第1ダイヤフラム23aに近接する
一部スト0−りだけ移動可能なOラド23Cを取付けた
第2ダイヤフラム23dと、その片側に形成された第2
圧力室23eとを備え、第2圧力室23eに通路24を
介して過給圧が導入されるとともに、第1圧力室23b
に通路25および三方電磁弁26を介して大気圧もしく
は過給圧が選択的に導入されるようにしている。そして
、第2圧力室23eに導入される過給圧が上記設定過給
圧となったときに連通弁22を所定開度だけ開き、さら
に第1圧力室23bに過給圧が導入されたときは連通弁
22を全開するようになっている。
Further, a communication hole 21 is formed in the partition wall 10 between the two exhaust passages 12 and 13, and a communication valve 22 is provided in the communication hole 21.
is established (). The communication valve 22 is opened by the actuator 23 when the bypass valve 16 is opened,
This actuator 23 also serves as a valve adjusting means that can change the valve opening speed in two stages. That is, the actuator 23 is connected to the first
A diaphragm 23a, a first pressure chamber 23b formed on one side of the diaphragm 23a, a second diaphragm 23d having an O-rad 23C attached thereto, the tip of which is movable by a partial stroke near the first diaphragm 23a, and the second diaphragm 23d. The second formed on one side
The boost pressure is introduced into the second pressure chamber 23e through the passage 24, and the first pressure chamber 23b is provided with a pressure chamber 23e.
Atmospheric pressure or supercharging pressure is selectively introduced through the passage 25 and the three-way solenoid valve 26. When the supercharging pressure introduced into the second pressure chamber 23e reaches the set supercharging pressure, the communication valve 22 is opened by a predetermined opening degree, and when the supercharging pressure is further introduced into the first pressure chamber 23b. The communication valve 22 is fully opened.

また、27はバルブ開度調節手段を制御する制御手段と
してのコントロールユニット(ECLJ)であって、エ
ンジン回転数検出信号28を入力し、上記三方電磁弁2
6に制御信号を出力している。
Reference numeral 27 denotes a control unit (ECLJ) as a control means for controlling the valve opening adjustment means, which inputs an engine rotation speed detection signal 28 and controls the three-way solenoid valve 2.
A control signal is output to 6.

このコントロールユニット27は、バイパス弁16が開
かれてからち比較的低回転低負荷側では上記アクチュエ
ータ23の第1圧力”l 23 bを大気に開放し、つ
まり第2圧力室23eにのみ過給圧を導入さ−せて連通
弁22を所定開度だけ聞いた状態どし、高回転高負荷側
では上記第1圧力室23bに過給圧を導入させて連通弁
22を全開ざぜるように三方電磁弁26を切替制rJI
I L、ており、例えば後)ホJる所定回転数Nyで三
方電磁弁26を切苔えるようにしている。
After the bypass valve 16 is opened, the control unit 27 releases the first pressure "l 23b" of the actuator 23 to the atmosphere at a relatively low rotation speed and low load side, that is, supercharges only the second pressure chamber 23e. Pressure is introduced and the communication valve 22 is opened only to a predetermined degree, and at high rotation and high load side, supercharging pressure is introduced into the first pressure chamber 23b and the communication valve 22 is fully opened. Three-way solenoid valve 26 switching system rJI
For example, the three-way solenoid valve 26 can be turned off at a predetermined rotational speed Ny.

このターボ過給装置の動作を第2図および第3図によっ
て説明する。
The operation of this turbocharger will be explained with reference to FIGS. 2 and 3.

第2図はエンジン回転数と過給圧との関係を示し、この
図において、実線△は本発明装置による場合の過給圧変
動特性、破線Bは排気系を2系統に分けていない場合(
以下「スタンダード排気系」と呼ぶ)の低速域での過給
圧変動特性をそれぞれ示している。このように、排気系
を2系統の独立した排気通路12.13によって構成し
た場合、υ1気脈vJにより過給機駆動効率が高められ
るため、低回転域での過給圧が高められる。従ってこの
場合に過給圧が設定過給圧po+、:達する点Xは、ス
タート排気系による場合に過給圧が設定過給圧POに達
する点Yよりも低回転側となる。
Figure 2 shows the relationship between engine speed and boost pressure. In this figure, the solid line △ indicates the boost pressure fluctuation characteristic when using the device of the present invention, and the broken line B indicates the case where the exhaust system is not divided into two systems (
The graphs show the boost pressure fluctuation characteristics in the low speed range of the ``standard exhaust system'' (hereinafter referred to as the ``standard exhaust system''). In this way, when the exhaust system is constituted by two independent exhaust passages 12, 13, the supercharger drive efficiency is increased by the υ1 air pulse vJ, so the supercharging pressure in the low rotation range is increased. Therefore, in this case, the point X where the boost pressure reaches the set boost pressure po+ is on the lower rotation side than the point Y where the boost pressure reaches the set boost pressure PO when using the start exhaust system.

そして、過給圧が設定過給圧poに達したとぎにバイパ
ス弁16が開作動されて、このときの回転数Nxより高
回転側では排気ガスの一部がバイパス通路15に逃がさ
れることにより、設定過給圧Po以上に過給圧が上昇す
ることが防止される。
Then, as soon as the supercharging pressure reaches the set supercharging pressure po, the bypass valve 16 is opened, and a part of the exhaust gas is released into the bypass passage 15 at the rotation speed higher than the current rotation speed Nx. , the boost pressure is prevented from increasing beyond the set boost pressure Po.

また、上記バイパス弁16が開いている運転域では両排
気通路12.13間の連通弁22も開かれる。ただし、
コントロール1ニツト27によって三方電磁弁26を介
して一ヒ記アクヂコエータ23が制御されることにより
、第3図に示すように、上記の点Yにほぼ対応する所定
回転数Nyまでは連通弁22が所定開度だけ開かれ、上
記所定[!11転数NY以上で連通弁22が全開される
。この場合、両排気通路12.13に圧力差が生じない
ようにするには、上記連通弁22において、バイパス通
路15への排気逃がし最の1/2の排気ガス流通量を確
保し得ることが要求されるが、上記所定回転数NVまで
の運転域では排気ガス逃がし垣が少ないため、それに対
応させてこの運転域での連通弁22の開度は小さく設定
され、また連通弁22の金lit時の開口けはす1気ガ
ス逃がし準が最大となったときにも上記要求を満足する
ように充分太き(設定さ°れている。
Furthermore, in the operating range where the bypass valve 16 is open, the communication valve 22 between both exhaust passages 12, 13 is also opened. however,
By controlling the actuator 23 described above via the three-way solenoid valve 26 by the control 1 unit 27, the communication valve 22 is turned off until the predetermined rotation speed Ny approximately corresponds to the above point Y, as shown in FIG. It is opened by a predetermined opening degree, and the above predetermined [! The communication valve 22 is fully opened when the number of rotations is 11 or higher. In this case, in order to prevent a pressure difference from occurring between the two exhaust passages 12 and 13, it is necessary to ensure that the communication valve 22 can secure a flow rate of exhaust gas that is the maximum of 1/2 of the exhaust gas released to the bypass passage 15. However, in the operating range up to the predetermined rotational speed NV, there are few exhaust gas escape barriers, so the opening degree of the communicating valve 22 in this operating range is set small correspondingly, and the gold lit of the communicating valve 22 is set small. The opening is sufficiently wide (set) to satisfy the above requirements even when the gas release standard is at its maximum.

こうして、バイパス弁16が聞かれて排気ガスがバイパ
ス通路15に逃がされているとぎ、上記連通弁22を通
して両排気通路12.13間で排気ガスが流通すること
により圧力差が生じることが防止され、しかも、ハンチ
ングを生じることなく適正に過給圧が制御される。つま
り、もし上記X点でバイパス弁16の開作動と同時に連
通弁22が全開すると、排気脈動による効果が失われて
第2図に2点A線矢印で示すように過給圧がスタンダー
ド排気系の過給圧ラインI3まで急激に低1:し、過給
圧低F (uはバイパス弁16および連通弁22が閉じ
られて過給圧が上界するという動作が繰返されてハンチ
ングを生じる。これに対し、上記点Xから点Yまでの範
囲で連通弁22の開度を小さくすれば、排気脈動ににる
効果があまり損われず過給圧の低下が抑制されるため、
上記ハンチングが防止されることとなる。また、L配所
定回転数Ny以上では、連通弁22が全開されることに
よつ℃排気脈動による効果が失われても設定過給圧を維
持し得るため、ハンチングを生じることはない。
In this way, when the bypass valve 16 is closed and the exhaust gas is released to the bypass passage 15, a pressure difference is prevented from occurring due to the exhaust gas flowing between the two exhaust passages 12 and 13 through the communication valve 22. Moreover, the supercharging pressure can be appropriately controlled without causing hunting. In other words, if the communication valve 22 is fully opened at the same time as the bypass valve 16 is opened at the above point The supercharging pressure line I3 suddenly drops to 1:, and the supercharging pressure low F (u) repeats the operation in which the bypass valve 16 and the communication valve 22 are closed and the supercharging pressure reaches its upper limit, causing hunting. On the other hand, if the opening degree of the communication valve 22 is reduced in the range from point
The hunting mentioned above will be prevented. Further, at the L distribution predetermined rotational speed Ny or higher, even if the effect of the °C exhaust pulsation is lost due to the communication valve 22 being fully opened, the set supercharging pressure can be maintained, so hunting does not occur.

なお、上記実施例では連通弁22の開度を2段に切替え
るようにしているが、連通弁22のアクチュエータに比
例ソレノイド等を用いることにより、連通弁22の開数
を高回転高負荷側はど大きくするように無段階に変えて
もよい。また、連通弁22の開度の制御はエンジン回転
数と負荷とに応じて行なうようにしてもよい。
In the above embodiment, the opening degree of the communication valve 22 is switched in two stages, but by using a proportional solenoid or the like as the actuator of the communication valve 22, the opening degree of the communication valve 22 can be changed at high speeds and high loads. It may be changed steplessly to increase the size. Further, the opening degree of the communication valve 22 may be controlled depending on the engine speed and the load.

(発明の効果) 以Fのように本発明は、2系統の排気通路の一方とター
ビン下流との間にバイパス弁を備えたバイパス通路を設
けたターボ過給装置において、両排気通路間にバイパス
弁の開作動時に開作動する連通弁を設けるとともに、こ
の連通弁の開度を開作動直後の運転域では小さくし、高
回転高負荷側で大きくするようにしているため、上記バ
イパス弁が開かれているときにも両排気通路に圧力差が
生じることを防止して各気筒のトルクを均一にすること
ができ、しかもハンチングを生じることなく適正に過給
圧を制御づることができるものである。
(Effects of the Invention) As described in F below, the present invention provides a turbocharger in which a bypass passage equipped with a bypass valve is provided between one of the two exhaust passages and the downstream side of the turbine. In addition to providing a communication valve that opens when the valve is opened, the opening of this communication valve is made small in the operating range immediately after the opening operation, and is made large in the high rotation and high load side, so that the above-mentioned bypass valve opens. Even when the cylinder is closed, it is possible to prevent pressure differences from occurring in both exhaust passages and make the torque of each cylinder uniform, and it is also possible to properly control the boost pressure without causing hunting. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略断面図、第2図は
エンジン回転数と過給圧との関係を示ず説四図、第3図
はエンジン回転数と連通弁の開度との関係を示す説明図
である。 1・・・エンジン、2a〜2d・・・気筒、3・・・タ
ーボ過給機、4・・・タービン、12.13・・・2系
統の排気通路、15・・・バイパス通路、16・・・バ
イパス弁、22・・・連通弁、23・・・アクチュエー
タ、27・・・コントロール:Lニット。 特許出願人     マ ツ ダ 株式会社代 理 人
     弁理士  小谷 悦司同        弁
理士  長1) 正向        弁理士  根谷
 康夫@@ヤ冴剣
Fig. 1 is a schematic sectional view showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between engine speed and boost pressure, and Fig. 3 is a diagram showing the relationship between engine speed and the opening of the communication valve. FIG. DESCRIPTION OF SYMBOLS 1... Engine, 2a-2d... Cylinder, 3... Turbo supercharger, 4... Turbine, 12.13... Exhaust passage of 2 systems, 15... Bypass passage, 16... ...Bypass valve, 22...Communication valve, 23...Actuator, 27...Control: L unit. Patent Applicant Mazda Co., Ltd. Representative Patent Attorney Etsushi Kotani Patent Attorney Chief 1) Masamukai Patent Attorney Yasuo Neya @@ Yasaken

Claims (1)

【特許請求の範囲】[Claims] 1、複数気筒の排気系を2群に分けて各々独立に排気ガ
スをターボ過給機のタービンに導く2系統の排気通路を
構成し、その一方の排気通路と上記タービン下流との間
にバイパス通路を設け、このバイパス通路に設定過給圧
で開作動するバイパス弁を設けた排気ターボ過給装置に
おいて、上記両排気通路の間に、上記バイパス弁の開作
動時に開作動して両排気通路を連通させる連通弁を設け
るとともに、この連通弁の開度を可変にするバルブ開度
調節手段と、バイパス弁が開状態となる運転領域のうち
で低回転低負荷側では上記連通弁の開度を小さくし、高
回転高負荷側では上記連通弁の開度を大きくするように
上記バルブ開度調節手段を制御する制御手段とを設けた
ことを特徴とする排気ターボ過給装置。
1. Divide the exhaust system of multiple cylinders into two groups and configure two exhaust passages each independently guiding exhaust gas to the turbine of the turbocharger, and install a bypass between one of the exhaust passages and the downstream of the turbine. In an exhaust turbo supercharging device, which is provided with a passage and a bypass valve which is opened at a set boost pressure in the bypass passage, the exhaust passage is provided between the two exhaust passages and which is opened when the bypass valve is opened. A communication valve is provided, and a valve opening adjustment means is provided to vary the opening degree of the communication valve, and the opening degree of the communication valve is adjusted in the low rotation and low load side of the operating range where the bypass valve is open. and a control means for controlling the valve opening degree adjusting means so as to make the opening degree of the communication valve small and to increase the opening degree of the communication valve on the high rotation and high load side.
JP60242383A 1985-10-28 1985-10-28 Exhaust turbocharger Expired - Lifetime JPH0726551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242383A JPH0726551B2 (en) 1985-10-28 1985-10-28 Exhaust turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242383A JPH0726551B2 (en) 1985-10-28 1985-10-28 Exhaust turbocharger

Publications (2)

Publication Number Publication Date
JPS62101832A true JPS62101832A (en) 1987-05-12
JPH0726551B2 JPH0726551B2 (en) 1995-03-29

Family

ID=17088347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242383A Expired - Lifetime JPH0726551B2 (en) 1985-10-28 1985-10-28 Exhaust turbocharger

Country Status (1)

Country Link
JP (1) JPH0726551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060831A1 (en) * 2005-11-24 2007-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust passage changeover valve
JP2008038657A (en) * 2006-08-02 2008-02-21 Yanmar Co Ltd Exhaust emission control method for internal combustion engine with supercharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148427U (en) * 1983-03-25 1984-10-04 日産ディーゼル工業株式会社 Exhaust manifold device for turbocharged engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148427U (en) * 1983-03-25 1984-10-04 日産ディーゼル工業株式会社 Exhaust manifold device for turbocharged engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060831A1 (en) * 2005-11-24 2007-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust passage changeover valve
JP2008038657A (en) * 2006-08-02 2008-02-21 Yanmar Co Ltd Exhaust emission control method for internal combustion engine with supercharger

Also Published As

Publication number Publication date
JPH0726551B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS5982526A (en) Supercharger for internal-combustion engine
JPH02112619A (en) Twin-turbo internal combustion engine
JPH0768910B2 (en) Exhaust valve pause mechanism engine with supercharger
JPS6161920A (en) Supercharge pressure controller for supercharged engine
JPS62101832A (en) Exhaust turbosupercharger device
JPS61182421A (en) Engine equipped with a plurality of turbosupercharger
JPS62103418A (en) Turbosupercharger
JPS62101831A (en) Exhaust turbosupercharger device
JPS58190519A (en) Supercharger for internal-combustion engine
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPS62103420A (en) Turbosupercharger
JP2710951B2 (en) Exhaust system structure of turbocharged engine
JPH0536993Y2 (en)
JPH01300017A (en) Engine exhaust turbo-supercharging device
JPS5920851B2 (en) Internal combustion engine with supercharger
JPS63129120A (en) Multiple supercharging structure
JPS61164040A (en) Internal-combustion engine with turbo charger
JPS62103419A (en) Turbosupercharged engine
JPH03194122A (en) Composite-type supercharging device for vehicular internal combustion engine
JPH02191816A (en) Control device for engine with supercharger
JPS60252123A (en) Control device of waste gate
JPS61250342A (en) Turbosupercharger for internal combustion engine
JPS61218720A (en) Intake device of engine with supercharger
JPH07109173B2 (en) Supercharging pressure controller for engine with supercharger
JPS61138827A (en) Turbosupercharger unit for engine