JPS62103418A - Turbosupercharger - Google Patents

Turbosupercharger

Info

Publication number
JPS62103418A
JPS62103418A JP60245197A JP24519785A JPS62103418A JP S62103418 A JPS62103418 A JP S62103418A JP 60245197 A JP60245197 A JP 60245197A JP 24519785 A JP24519785 A JP 24519785A JP S62103418 A JPS62103418 A JP S62103418A
Authority
JP
Japan
Prior art keywords
exhaust
passage
bypass
turbine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60245197A
Other languages
Japanese (ja)
Inventor
Toshimasu Tanaka
田中 稔益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60245197A priority Critical patent/JPS62103418A/en
Publication of JPS62103418A publication Critical patent/JPS62103418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a diameter of an exhaust passage leading to a turbine and improve supercharging efficiency at a low speed range as well as to prevent exhaust interference between cylinders from occurring, by dividing a flow of exhaust gas, which has the turbine bypassed at the time of high speed, in and around an exhaust port. CONSTITUTION:Exhaust gas is fed to a turbosupercharger 6 from each exhaust port 3 of plural cylinders 2a-2d via exhaust passages 13 and 14. In addition there is provided with a by-cylinder bypass passage 16 being opened to the exhaust passage in and around each exhaust port 3 of these cylinders, whereby passages themselves corresponding to such cylinders that an exhaust stroke is uncontinued are converged respectively, and a bypass valve 17 is installed in this converging part. With this constitution, an exhaust passage system ranging from the vicinity of the exhaust port to a turbine is able to be smaller as far as a portion for corresponding to an exhaust gas bypassing quantity at a high speed range, thus supercharging efficiency at a low speed range is improvable. In addition, such a possibility that exhaust interference occurs between cylinders whose exhaust strokes are continued is preventable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排気ターボ過給装置に関し、特に過給効率向上
のためターボ過給機のタービンに対する排気系の@造を
改良した@胃に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an exhaust turbocharging device, and more particularly to a gastrointestinal system in which the structure of the exhaust system for the turbine of a turbocharger is improved in order to improve turbocharging efficiency. It is.

(従来技術) 従来の一般的な排気ターボ過給装置は、複数気筒からの
排気ガスを集合させてターボ過給機のタービンに導く排
気通路を備えるとともに、高速域でエンジンへの過給圧
が上貸し過ぎることを防止するため、」−記タービンを
バイパスするバイパス通路と、このバイパス通路を開閉
づ−るバイパス弁とを備え、過給圧が設定値に達したと
ぎバイパス弁が間かれて排気ガスの一部をバイパス通路
に逃がすようにしている。そして上記バイパス弁は、通
常、タービンハウジングに一体的に形成され、上流端が
タービンの直上流のタービンハウジング内に開口してい
る。
(Prior art) Conventional general exhaust turbocharging devices are equipped with an exhaust passage that collects exhaust gas from multiple cylinders and guides it to the turbine of the turbocharger. In order to prevent overcharging, the system is equipped with a bypass passage that bypasses the turbine and a bypass valve that opens and closes this bypass passage, and when the boost pressure reaches a set value, the bypass valve is closed. A portion of the exhaust gas is allowed to escape into the bypass passage. The bypass valve is usually formed integrally with the turbine housing, and its upstream end opens into the turbine housing immediately upstream of the turbine.

なお、実開昭56−6F3028号公報に示されるよう
に、排気系を2系統の排気通路に分け、半数ずつの気筒
からの排気ガスを各々集合させて独立にタービンに導く
ことにより、排気の動圧を利用して過給機駆動効率の向
上を図るようにしたものもあるが、この装置においても
、バイパス通路の上流端は、タービンの直十流の2分割
されたりI気導入路に開口している。
In addition, as shown in Japanese Utility Model Application Publication No. 56-6F3028, the exhaust system is divided into two exhaust passages, and the exhaust gases from half the cylinders are collected and guided independently to the turbine, thereby reducing the exhaust gas. Some devices use dynamic pressure to improve turbocharger drive efficiency, but even in this device, the upstream end of the bypass passage is divided into two parts for the turbine's direct flow, or is connected to the I air introduction passage. It's open.

このような装置においては、排気ボー1〜からタービン
近傍までの排気通路が、活気ガス量が多い高速時にも各
気筒からの11気ガスの全量を充分に流通させ得るよう
に比較的大径に形成されており、タービンの直前である
程度通路を絞って排気流速を高めるようにしている。し
かしこのような構造によると、排気ガス量が少ない低速
域では、排気ガスが排気通路内で膨張して排気エネルギ
ーが低下し、タービン直前で通路を絞ってもエネルギー
ロスが生じる。このため、低速域での過給効率を高める
には排気通路径を小さくすることが望まれるが、上記の
ように従来までは高速時に排気ガスの全量を流通させる
必要があることから、+Jl気通路径を小さくすること
が内勤であっ1〔。
In such a device, the exhaust passage from exhaust bow 1 to the vicinity of the turbine has a relatively large diameter so that the entire amount of gas from each cylinder can sufficiently flow even at high speeds with a large amount of active gas. The exhaust gas flow rate is increased by narrowing the passage to some extent just before the turbine. However, with this structure, in a low speed range where the amount of exhaust gas is small, the exhaust gas expands in the exhaust passage, reducing exhaust energy, and even if the passage is narrowed just before the turbine, energy loss occurs. For this reason, it is desirable to reduce the diameter of the exhaust passage in order to increase supercharging efficiency in the low speed range, but as mentioned above, until now it was necessary to circulate the entire amount of exhaust gas at high speeds, so it was necessary to My job is to reduce the diameter of the passageway.

(発明の目的) 本発明はこのような事情に鑑み、高速時にタービンをバ
イパスさせる排気ガスをIJI気ボー1−近傍で分流さ
せることにより、拮気ガスをタービンに導く排気通路の
径を小さクシ術で低速域での過給効率を高めることがで
き、しかもこのようにする場合に、気筒間で排気干渉が
生じることを防止することのできる排気ターボ過給装置
を提供するものである。
(Objective of the Invention) In view of the above circumstances, the present invention reduces the diameter of the exhaust passage that guides the antagonist gas to the turbine by diverting the exhaust gas that bypasses the turbine at high speed near the IJI air bow 1. An object of the present invention is to provide an exhaust turbo supercharging device that can increase supercharging efficiency in a low speed range by a technique, and can prevent exhaust interference between cylinders when doing so.

(発明の構成) 本発明は、複数の気筒の排気ポートから排気ガスをター
ボ過給機のタービンに導く排気通路と、上記タービンを
バイパスして排気ガスを導くバイパス通路と、このバイ
パス通路を開閉してエンジンへの過給圧を制御l′?l
−るバイパス弁とを備えた排気ターボ過給装置において
、上記バイパス通路に、上流端が各気筒の排気ポート近
傍の排気通路にそれぞれ開口する気筒別バイパス通路を
形成するとともに、これら気筒別バイパス通路のうちの
排気行程が連続しない気筒に対応する通路同士を各々集
合させ、これらの集合部にバイパス弁を設けたものであ
る。
(Structure of the Invention) The present invention provides an exhaust passage for guiding exhaust gas from exhaust ports of a plurality of cylinders to a turbine of a turbocharger, a bypass passage for guiding exhaust gas by bypassing the turbine, and opening/closing of this bypass passage. to control the boost pressure to the engine l'? l
- In the exhaust turbo supercharging device equipped with a bypass valve, the bypass passage is formed with a cylinder-specific bypass passage whose upstream end opens into the exhaust passage near the exhaust port of each cylinder, and the cylinder-specific bypass passage The passages corresponding to the cylinders whose exhaust strokes are not consecutive are gathered together, and bypass valves are provided at these gathering parts.

つまり、排気ガスを排気ポート近傍でバイパスさせるこ
とにより、排気ポート近傍からタービンまでの排気通路
径を高速時の排気ガスバイパス量に見合う分だけ小さく
J−ることができるようにし、また排気行程が連続しな
い気筒に対応する気筒別バイパス通路同士を集合させて
ここにバイパス弁を設けることにより、排気行程が連続
づる気筒間でバイパス通路を介して排気干渉が生じるこ
とを避けるようにしたものである。
In other words, by bypassing the exhaust gas near the exhaust port, the diameter of the exhaust passage from the vicinity of the exhaust port to the turbine can be reduced by an amount commensurate with the amount of exhaust gas bypass at high speeds, and the exhaust stroke can be reduced. By combining cylinder-specific bypass passages corresponding to non-consecutive cylinders and providing a bypass valve there, it is possible to avoid exhaust interference between cylinders whose exhaust strokes are continuous via the bypass passage. .

(実施例) 第1図は本発明装詔を4気筒エンジンに適用した実施例
を示し、1はエンジン、28〜2dはエンジン1の各気
筒、3は各気筒2a〜2dの排気ポートであり、各気筒
2a〜2dの排気ポート3に連通する気筒別排気通路4
は排気マニホールド5において集合されている。この排
気マニホールド5の下流に、ターボ過給機6のタービン
7がタービンハウジング8内に収容された状態で装備さ
れている。上記ターボ過給1fi6は周知のように、タ
ービン7が排気ガスににって駆動されることにより、こ
のタービン7に軸9を介して連動するコンプレッサ10
が回転して吸気をエンジン1に過給するようになってい
る。
(Embodiment) Fig. 1 shows an embodiment in which the present invention is applied to a four-cylinder engine, where 1 is the engine, 28 to 2d are each cylinder of the engine 1, and 3 is an exhaust port of each cylinder 2a to 2d. , a cylinder-specific exhaust passage 4 communicating with the exhaust port 3 of each cylinder 2a to 2d.
are collected in the exhaust manifold 5. A turbine 7 of a turbocharger 6 is installed downstream of the exhaust manifold 5 and housed in a turbine housing 8 . As is well known, in the turbocharging 1fi6, a turbine 7 is driven by exhaust gas, and a compressor 10 is connected to the turbine 7 via a shaft 9.
rotates to supercharge engine 1 with intake air.

また、当実施例では、排気の動圧を利用して過給機駆動
効率を高めるため、排気マニホールド5における排気通
路集合部からタービンハウジング8内にわたって仕切壁
11.12が設【づられることにより、半数ずつの気筒
からの排気ガスをそれぞれ集合させて独立にタービン7
に導く2系統の排気通路13.14が構成されている。
In addition, in this embodiment, in order to increase the supercharger drive efficiency by utilizing the dynamic pressure of the exhaust, partition walls 11 and 12 are provided extending from the exhaust passage collection part in the exhaust manifold 5 to the inside of the turbine housing 8. , the exhaust gas from each half of the cylinders is collected and independently connected to the turbine 7.
Two systems of exhaust passages 13 and 14 are configured.

このように2系統の排気通路13.14を構成する場合
に、排気行程が連続しない第1.第4気筒2a、2dの
各気筒別排気通路4および第2.第3気筒2b。
When configuring two exhaust passages 13, 14 in this way, the first and second exhaust passages have non-continuous exhaust strokes. Exhaust passages 4 for each cylinder of the fourth cylinders 2a, 2d and the second. Third cylinder 2b.

2Gの各気筒別排気通路4をそれぞれ集合させるように
してもよいが、図示のように、排気行程が連続する第1
.第2気筒2a、 2bの各気筒別排気通路4および第
3.第4気筒2C,2dの各気筒別排気通路4をそれぞ
れ集合させてもよい。この図示の排気系によると、排気
行程が連続する気筒の一方からの排気の残留圧により他
方からの排気の動圧が高められ、この動圧がタービン7
に作用して駆動効率が高められる。
The exhaust passages 4 for each cylinder of 2G may be grouped together, but as shown in the figure, the
.. The exhaust passages 4 for each cylinder of the second cylinders 2a and 2b and the third cylinder. The cylinder-specific exhaust passages 4 of the fourth cylinders 2C and 2d may be assembled together. According to the illustrated exhaust system, the residual pressure of the exhaust from one of the cylinders in which exhaust strokes are continuous increases the dynamic pressure of the exhaust from the other cylinder, and this dynamic pressure is applied to the turbine 7.
This increases drive efficiency.

15は上記タービン7をバイパスさせてυ1気ガスを導
くバイパス通路であり、このバイパス通路15は、上流
端が各1気ポー1−3の近傍の各気筒別排気通路4に開
口した気筒別バイパス通路16を備えている。これら気
筒別バイパス通路16は、排気行程が連続しない気筒に
対応Jるもの同士が集合され、つまり第1気筒2aと第
4気筒2dとに対応する各気筒別バイパス通路16、お
よび第2気筒2bと第3気筒2Cとに対応する各気筒別
バイパス通路16が各々集合されており、この2つのバ
イパス通路集合部17が下流側の共通バイパス通路18
に連通している。共通バイパス通路18の下流端はター
ビン7下流の排気通路19に開口している。上記両バイ
パス通路集合部17はバイパス弁20にJ:ってそれぞ
れ開閉され、図に示す実施例では共通のバイパス弁20
によって開閉されるようになっている1゜ 第2図および第3図は主要部の具体構造を示している。
Reference numeral 15 denotes a bypass passage that bypasses the turbine 7 and guides the υ1 air gas. A passage 16 is provided. These bypass passages 16 for each cylinder are grouped together corresponding to cylinders whose exhaust strokes are not continuous, that is, bypass passages 16 for each cylinder corresponding to the first cylinder 2a and the fourth cylinder 2d, and the bypass passages 16 for each cylinder corresponding to the second cylinder 2b Bypass passages 16 for each cylinder corresponding to and the third cylinder 2C are gathered together, and these two bypass passage collection parts 17 form a common bypass passage 18 on the downstream side.
is connected to. A downstream end of the common bypass passage 18 opens into an exhaust passage 19 downstream of the turbine 7 . Both of the bypass passage gathering parts 17 are opened and closed by a bypass valve 20, respectively, and in the embodiment shown in the figure, a common bypass valve 20 is used.
Figures 2 and 3 show the specific structure of the main parts.

これらの図に示すように、上記各気筒別バイパス通路1
6は排気マニホールド5に一体に形成され、上記両バイ
パス通路集合部17は排気マニホールド5に取付けられ
た弁室21に開口し、この弁室21に共通バイパス通路
18が接続されている。そして、弁室21に軸22を介
して回動可能に取付けられたバイパス弁20により、上
記両バイパス通路集合部17の弁室21に対する各開口
部が同時に開閉されるようになっている。上記バイパス
弁20は、過給圧に応じて働くアクチュエータ23によ
り、過給圧が設定値となったとき開作動されるようにな
っている。
As shown in these figures, the above-mentioned bypass passage 1 for each cylinder
6 is formed integrally with the exhaust manifold 5, and both of the bypass passage gathering portions 17 open into a valve chamber 21 attached to the exhaust manifold 5, and a common bypass passage 18 is connected to this valve chamber 21. A bypass valve 20 rotatably attached to the valve chamber 21 via a shaft 22 opens and closes the respective openings of the bypass passage gathering portions 17 to the valve chamber 21 at the same time. The bypass valve 20 is opened by an actuator 23 that operates in accordance with the boost pressure when the boost pressure reaches a set value.

このtjl気ターボ過給装置においては、排気ガス量が
少なくて過給圧が設定値よりも低い低速域では、バイパ
ス弁20によりバイパス通路15が閉じられた状態で、
各気筒2a〜2dからの排気ガスがターボ過給1fi6
のタービン7に導かれ、またiJl気ガス量が多い高速
域では、過給圧が設定値に達するに伴ってバイパス弁2
0が開かれ、各気筒2a〜2dからの排気ガスの一部が
気筒別バイパス通路16および共通バイパス通路18を
通ってタービン7の下流にバイパスされ、これによって
最高過給圧が制御される。この場合、v1気ポート3の
近傍から排気ガスがバイパスされるので、これにより下
流の気筒別IJI気通路4おJ:び刊気通路13.14
は、高速域での排気ガスバイパス量を除いた排気ガスを
流通させるに足る程度に細くしておけばよい。従って排
気ガス吊の少ない低速域で、排気通路において排気エネ
ルギーが低下することが抑制され、排気エネルギーを有
効にタービン7に作用させて過給効率を高めることがで
きる。
In this turbocharger, in a low speed range where the amount of exhaust gas is small and the boost pressure is lower than the set value, the bypass passage 15 is closed by the bypass valve 20.
Exhaust gas from each cylinder 2a to 2d is turbocharged 1fi6
In high-speed ranges where the amount of iJl gas is large, the bypass valve 2 is guided as the boost pressure reaches the set value.
0 is opened, and part of the exhaust gas from each cylinder 2a to 2d is bypassed downstream of the turbine 7 through the cylinder-specific bypass passage 16 and the common bypass passage 18, thereby controlling the maximum boost pressure. In this case, the exhaust gas is bypassed from the vicinity of the V1 air port 3, so that the downstream IJI air passage 4 and J: cylinder air passage 13.14
should be made thin enough to allow the flow of exhaust gas excluding the exhaust gas bypass amount in the high speed range. Therefore, in a low speed range with little exhaust gas suspension, exhaust energy is prevented from decreasing in the exhaust passage, and the exhaust energy can be effectively applied to the turbine 7 to increase supercharging efficiency.

さらに当実施例のように排気系を2系統の排気通路13
.14に分けた場合、これによって排気の動圧が利用さ
れることと、上記の排気通路径が小さくされることとの
相乗作用により、低速域での過給効率がより一層高めら
れる。
Furthermore, as in this embodiment, the exhaust system has two exhaust passages 13.
.. When divided into 14 parts, the synergistic effect of utilizing the dynamic pressure of the exhaust gas and reducing the diameter of the exhaust passage described above further increases the supercharging efficiency in the low speed range.

また上記のように排気ボート3近傍に気筒別バイパス通
路16を開口させる場合に、特に低速域では、IJI気
行程が連続する気筒に対応した気筒別バイパス通路16
が連通すると排気干渉が生じ、つまりこれらの気筒間で
11気行程がオーバーラツプする期間に排気行程開始直
後の気筒の高圧の排気ガスが排気行程終了直前の気筒へ
持ち込まれる排気の吹ぎ返し等が生じるが、本発明では
υ1気行程が連続しない気筒に対応した気筒別バイパス
通路16を各々集合させてここにバイパス弁20を設け
ることにより、排気行程が連続する気筒に対応した気筒
別バイパス通路16が低速域で連通ずることを避けてい
るため、上記の排気干渉を防止することができる。
In addition, when opening the cylinder-specific bypass passage 16 near the exhaust boat 3 as described above, especially in the low speed range, the cylinder-specific bypass passage 16 corresponding to the cylinder with consecutive IJI strokes is
When these cylinders communicate, exhaust interference occurs, which means that during the period when 11 strokes overlap between these cylinders, high-pressure exhaust gas from the cylinder immediately after the start of the exhaust stroke is brought into the cylinder just before the end of the exhaust stroke, resulting in exhaust blowback. However, in the present invention, the cylinder-specific bypass passages 16 corresponding to the cylinders in which the υ1 exhaust strokes are not consecutive are assembled and the bypass valves 20 are provided here, so that the cylinder-specific bypass passages 16 corresponding to the cylinders in which the exhaust strokes are consecutive are collected. Since communication is avoided in the low speed range, the above-mentioned exhaust interference can be prevented.

なお、上記の排気干渉を防止するためには各気筒別バイ
パス通路16にそれぞれバイパス弁20を設けることも
考えられるが、このようにすると気筒数だ【プバイパス
弁20が必要となる。これと比べて本発明では、バイパ
ス通路集合部17にバイパス弁20を設けているので、
構造を簡素化できる。この場合、両バイパス通路集合部
17に別個にバイパス弁20を設けておいてもよいが、
上記実施例のように共通のバイパス弁20で両バイパス
通路集合部17を開閉させるようにすれば、構造がより
一層簡素化される。
In order to prevent the above-mentioned exhaust interference, it is conceivable to provide a bypass valve 20 in each cylinder-specific bypass passage 16, but in this case, more bypass valves 20 are required for each cylinder. In contrast, in the present invention, since the bypass valve 20 is provided in the bypass passage collecting section 17,
The structure can be simplified. In this case, bypass valves 20 may be provided separately in both bypass passage gathering portions 17;
If the common bypass valve 20 is used to open and close both the bypass passage gathering portions 17 as in the above embodiment, the structure can be further simplified.

(発明の効果) 以上のように本発明は、気筒別バイパス通路の上流端を
各気筒の排気ボー1−近傍に開口さけているので、排気
ボー1〜近傍からタービンまでの排気通路系を高速域で
のtJl気ガスバイパス量に見合う分だけ小さくするこ
とができ、これにJ:って低速域での過給効率を高める
ことができる。しかも、排気行程が連続しない気筒に対
応気筒別バイパス通路同士を各々集合さu′にれらの集
合部がバイパス弁で開閉されるにうにしているので、簡
単な構造によりながら、排気行程が連続する気筒間で排
気干渉が生じることを避り、排気の吹き返しによる出力
低下等を防止することができるものである。
(Effects of the Invention) As described above, in the present invention, the upstream end of the bypass passage for each cylinder is opened near the exhaust bow 1 of each cylinder, so that the exhaust passage system from the exhaust bow 1 to the turbine can be operated at high speed. This can be reduced by an amount commensurate with the amount of gas bypass in the range tJl, thereby increasing the supercharging efficiency in the low speed range. In addition, the bypass passages corresponding to the cylinders whose exhaust strokes are not consecutive are assembled together at u', and these gathering parts are opened and closed by bypass valves, so that the exhaust stroke can be controlled even though the structure is simple. This prevents exhaust interference between consecutive cylinders and prevents a decrease in output due to exhaust blowback.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2図は主要
部の具体構造を示寸断面図、第3図は第2図の■−■線
に沿った断面図である。 1・・・エンジン、2a〜2d・・・気筒、3・・・排
気ボー1〜.4・・・気筒別排気通路、13.14・・
・排気通路、15・・・バイパス通路、16・・・気筒
別バイパス= 11− 通路、20・・・バイパス弁。 特許出願人     マ ツ ダ 株式会社代 理 人
     弁理士  小谷 悦司同       弁理
士  艮1月  正向       弁理士  板谷 
原人第 2 図 第  1  図 第  3  図 ・[1
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a sectional view showing the specific structure of the main part, and FIG. 3 is a sectional view taken along the line 1--2 in FIG. 1...Engine, 2a-2d...Cylinder, 3...Exhaust bow 1-. 4... Exhaust passage by cylinder, 13.14...
- Exhaust passage, 15... Bypass passage, 16... Bypass for each cylinder = 11- passage, 20... Bypass valve. Patent applicant: Mazda Co., Ltd. Agent Patent attorney: Etsushi Kotani Patent attorney: Masamuki Tsuzuki Patent attorney: Itaya
Primitive Man Figure 2 Figure 1 Figure 3 [1

Claims (1)

【特許請求の範囲】[Claims] 1、複数の気筒の排気ポートから排気ガスをターボ過給
機のタービンに導く排気通路と、上記タービンをバイパ
スして排気ガスを導くバイパス通路と、このバイパス通
路を開閉してエンジンへの過給圧を制御するバイパス弁
とを備えた排気ターボ過給装置において、上記バイパス
通路に、上流端が各気筒の排気ポート近傍の排気通路に
それぞれ開口する気筒別バイパス通路を形成するととも
に、これら気筒別バイパス通路のうちの排気行程が連続
しない気筒に対応する通路同士を各々集合させ、これら
の集合部にバイパス弁を設けたことを特徴とする排気タ
ーボ過給装置。
1. An exhaust passage that guides exhaust gas from the exhaust ports of multiple cylinders to the turbine of a turbocharger, a bypass passage that bypasses the turbine and guides the exhaust gas, and supercharging the engine by opening and closing this bypass passage. In the exhaust turbo supercharging device equipped with a bypass valve for controlling pressure, the bypass passage is formed with cylinder-specific bypass passages each having an upstream end opening into an exhaust passage near the exhaust port of each cylinder. An exhaust turbo supercharging device characterized in that passages corresponding to cylinders whose exhaust strokes are not consecutive among the bypass passages are assembled together, and bypass valves are provided at these gathering parts.
JP60245197A 1985-10-30 1985-10-30 Turbosupercharger Pending JPS62103418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245197A JPS62103418A (en) 1985-10-30 1985-10-30 Turbosupercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245197A JPS62103418A (en) 1985-10-30 1985-10-30 Turbosupercharger

Publications (1)

Publication Number Publication Date
JPS62103418A true JPS62103418A (en) 1987-05-13

Family

ID=17130064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245197A Pending JPS62103418A (en) 1985-10-30 1985-10-30 Turbosupercharger

Country Status (1)

Country Link
JP (1) JPS62103418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029681A (en) * 2000-10-13 2002-04-19 이계안 A turbo-charger providing multiple bypass orifice
JP2006297359A (en) * 2005-04-21 2006-11-02 Sogo Setsubi Keikaku:Kk Filter unit
US7428813B2 (en) * 2002-12-12 2008-09-30 Daimler Ag Internal combustion engine comprising an exhaust gas turbocharger
JP2010084578A (en) * 2008-09-30 2010-04-15 Mazda Motor Corp Exhaust system for multiple cylinder engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029681A (en) * 2000-10-13 2002-04-19 이계안 A turbo-charger providing multiple bypass orifice
US7428813B2 (en) * 2002-12-12 2008-09-30 Daimler Ag Internal combustion engine comprising an exhaust gas turbocharger
JP2006297359A (en) * 2005-04-21 2006-11-02 Sogo Setsubi Keikaku:Kk Filter unit
JP2010084578A (en) * 2008-09-30 2010-04-15 Mazda Motor Corp Exhaust system for multiple cylinder engine

Similar Documents

Publication Publication Date Title
JPH02112619A (en) Twin-turbo internal combustion engine
JPH0768910B2 (en) Exhaust valve pause mechanism engine with supercharger
JPS62103418A (en) Turbosupercharger
JPH0249925A (en) Car engine with exhaust turbosupercharger
JPH10169455A (en) Turbo charger engine
JPS6120294Y2 (en)
JPS61291725A (en) S-step type superchaging device
JPH04164123A (en) Two-step supercharger of engine for vehicle
JPH0650158A (en) Control device for engine with supercharger
JPS61250344A (en) Turbosupercharged engine
JP2710951B2 (en) Exhaust system structure of turbocharged engine
JPS62107230A (en) Exhaust device for engine
JPS60252120A (en) Twin turbo engine
JPS62103419A (en) Turbosupercharged engine
JP2784775B2 (en) Intake structure of supercharged engine
JPS62101832A (en) Exhaust turbosupercharger device
JP2708780B2 (en) Exhaust system structure of turbocharged engine
JPS6155317A (en) Exhauster of multi-cylinder engine with supercharger
JPH04194318A (en) Suction device for engine
JPH0654093B2 (en) Exhaust turbocharged engine
JPH0563616B2 (en)
JPH01300017A (en) Engine exhaust turbo-supercharging device
JPS62101831A (en) Exhaust turbosupercharger device
JPH01208519A (en) Multiple cylinder internal combustion engine with turbocharger
JPS61218720A (en) Intake device of engine with supercharger