JPH04164123A - Two-step supercharger of engine for vehicle - Google Patents

Two-step supercharger of engine for vehicle

Info

Publication number
JPH04164123A
JPH04164123A JP2286862A JP28686290A JPH04164123A JP H04164123 A JPH04164123 A JP H04164123A JP 2286862 A JP2286862 A JP 2286862A JP 28686290 A JP28686290 A JP 28686290A JP H04164123 A JPH04164123 A JP H04164123A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
systems
time
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2286862A
Other languages
Japanese (ja)
Inventor
Tetsukazu Inoue
哲一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2286862A priority Critical patent/JPH04164123A/en
Publication of JPH04164123A publication Critical patent/JPH04164123A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • F02B37/002Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel the exhaust supply to one of the exhaust drives can be interrupted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To prevent interference caused by confluence of exhaust gas by allowing exhaust gas flows discharged to both exhaust systems to make a confluent flow in series to both exhaust turbines at the time of a low speed and a low load and on the other hand, by allowing them to flow in parallel and individually at the time of a high speed and a high load. CONSTITUTION:Exhaust systems 15, 17 for discharging exhaust gas supplied from a plurality of cylinders of an engine while dividing the same exhaust gas into two system lines, and two turbochargers 9, 7 in which turbine units 33, 41 are positioned individually in the exhaust systems 15, 17, are provided. Communicating passages 31, 23 and control valves 45, 47, 37, 39 are provided in both exhaust systems 15, 17. Opening/closing operations of the control valves 45, 47, 37, 39 are controlled by a control circuit 49 so as to make exhaust gas discharged to both exhaust 15, 17 to be confluent in series to both turbine units 33, 41 at the time of a low speed and a low load and on the other hand, to flow individually in parallel at the time of high speed and a high load. It is thus possible to prevent fault in which function reduction of the turbo chargers 9, 7 may take place by interference following confluence of exhaust gas at the time of high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2ハの排気タービンを備えた自動車用エンジ
ンの2段過給装置に関し、特に車速に応じて排気タービ
ンの駆動を2段階に使い分けて過給作用を行なう2段式
の過給装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a two-stage supercharging device for an automobile engine equipped with a two-speed exhaust turbine, and in particular, to a two-stage supercharging device for an automobile engine equipped with a two-speed exhaust turbine. This invention relates to a two-stage supercharging device that can be used to perform supercharging.

゛ 〔従来の技術〕 排気ガスのエネルギーを利用して排気圧によりタービン
を回転させるターボチャージャにおいては、一般に、車
速か、低速の時に過給効率が有効なものは高速では排気
抵抗が大きくなって背圧の増加を招き出力が下がる。逆
に、高速の時に有効なものは低速では過給効率が落ちて
レスポンスが悪くなるという特性を持つ。この社1反す
る2つの特性を小さくするため従来より種々の工夫がな
さ゛れている。代表的なものとして、ターボチャージャ
を2基設け、回転慣性質量を小さくして低速時における
レスポンスを良くし、高速時には大きな過給量を得て高
出力が得られるツインターボが知られている。
゛ [Conventional technology] In a turbocharger that uses the energy of exhaust gas to rotate a turbine using exhaust pressure, generally speaking, turbocharging efficiency is effective at low vehicle speeds, but exhaust resistance increases at high speeds. This causes an increase in back pressure and a decrease in output. Conversely, what is effective at high speeds has the characteristic that at low speeds the supercharging efficiency decreases and the response worsens. Various efforts have been made to minimize these two contradictory characteristics. A typical example is a twin turbo, which has two turbochargers, reduces rotational inertia mass, improves response at low speeds, and obtains a large amount of supercharging at high speeds, resulting in high output.

最近では更に、特開昭58−190516号公報、特開
昭61−291.725号公報等に見られるように2基
設けられるターボチャージャの容量を変え、車速に応じ
て異なる組合せで過給するものも提案されている。
Recently, as seen in JP-A-58-190516 and JP-A-61-291.725, the capacities of the two turbochargers are changed, and supercharging is carried out in different combinations depending on the vehicle speed. Something has also been proposed.

〔発明が解決し・ようとする課題〕[Problem that the invention attempts to solve]

しかしながら上述した先行技術では、エンジンの排気系
が単一のため、複数の気筒からの排熱ガスが合流する際
に干渉が生じてターボチャージャとしての機能を低下さ
せてしまう。
However, in the above-mentioned prior art, since the engine has a single exhaust system, interference occurs when exhaust gases from multiple cylinders are combined, resulting in a decrease in the function of the turbocharger.

更に、高速時には排気ガスの流通系路を2つに分けて各
別にそれぞれの排気タービンを駆動するよう並列とする
こが望ましいが、この並列とする場合、排気ガスは抵抗
の少ないタービン、即ち流れ易い方のタービン側に多く
流れる傾向が生じて2基のターボチャージャ間に動作ム
ラが生じるという問題点も起る。
Furthermore, at high speeds, it is desirable to divide the exhaust gas flow into two paths and connect them in parallel so that each path drives their own exhaust turbines. There also arises a problem that more fluid tends to flow to the easier turbine side, resulting in uneven operation between the two turbochargers.

本発明は、上述した問題点を解消する意図で提案された
もので、排気ガスの合流による干渉が生じることなく、
2基のターボチャージャの働きにムラのない2段過給装
置を提供することを目的とする。
The present invention was proposed with the intention of solving the above-mentioned problems.
The purpose of the present invention is to provide a two-stage supercharging device that allows two turbochargers to function evenly.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明による2段過給装置
は、エンジンの複数気筒からの排気ガスを2系列に分け
て排出させる第1及び第2の排気系と、上記第1及び第
2の排気系にそれぞれ各別に排気タービンを位置させた
第1及び第2の2基のターボチャージャと、上記第1及
び第2の排気系に設けられ、両排気系に排出される排気
ガスを、低速低負荷時には合流して第1及び第2の排気
タービンに対し直列に流通させ、高速高負荷時には各別
に第1及び第2の排気タービンに対し並列に流通させる
よう車速に応じて流通系路を切換える連通路及び制御弁
と、を備えてなることを特徴とするものである。
In order to achieve the above object, a two-stage supercharging device according to the present invention includes a first and second exhaust system that separates and discharges exhaust gas from a plurality of cylinders of an engine into two systems; two turbochargers, a first and a second turbocharger each having an exhaust turbine located in each of the exhaust systems, and exhaust gas provided in the first and second exhaust systems to be discharged to both exhaust systems; The distribution system is configured according to the vehicle speed so that the flow merges and flows in series to the first and second exhaust turbines at low speeds and low loads, and flows separately to the first and second exhaust turbines in parallel at high speeds and high loads. The invention is characterized by comprising a communication path and a control valve for switching.

〔作   用〕[For production]

上記の構成に基づいて本発明は、低速低負荷時には、第
1及び第2の排気系から排出される排気ガスの、全量に
よって2基の排気タービンが次々に駆動されるので、排
気圧が低い低速時でも所定の過給効果が得られてその応
答性が向上する作用が得られる。
Based on the above configuration, the present invention provides a low exhaust pressure at low speeds and low loads because the two exhaust turbines are driven one after another by the entire amount of exhaust gas discharged from the first and second exhaust systems. Even at low speeds, a predetermined supercharging effect can be obtained and the responsiveness can be improved.

また高速高負荷時には、第1及び第2の排気系から排出
される排気ガスが系列毎に、2基の排気タービンに並列
に流通して各別にタービンが駆動されるので、背圧が減
少し、高速高負荷時における排気抵抗を小さくして出力
が向上する作用が得られる。
Also, at high speeds and high loads, the exhaust gas discharged from the first and second exhaust systems flows in parallel to two exhaust turbines for each system, driving each turbine separately, reducing back pressure. , the effect of improving output by reducing exhaust resistance at high speeds and high loads can be obtained.

そしてその高速高負荷時において、複数気筒からの排気
ガスは1つに合流するのではなく2系列に分かれて各別
に流通されるので、従来高速時に生じていた排気ガスの
合流に伴う干渉に起因してターボチャージャの機能低下
が起る不都合を防止でき、また排気ガスは初めから2つ
の系列に分かれて流通するので、2基のタービンに対し
て流れ易い方にだけ片寄って流れる不都合も起らず2基
のターボチャージャの動作にムラが生じる不都合を解消
できる等の作用が得られる。
At high speeds and high loads, the exhaust gases from multiple cylinders do not merge into one, but are divided into two lines and distributed separately. This prevents the inconvenience of deterioration of turbocharger function, and since the exhaust gas is divided into two streams from the beginning and flows, there is no inconvenience that the exhaust gas flows only toward the side where it is easier to flow to the two turbines. Effects such as being able to eliminate the inconvenience caused by uneven operation of the two turbochargers can be obtained.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を添附図面に基づいて説明する
Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明による2段過給装置の全体概略図を示す
もので、図示のものは水平対向形の6気筒エンジンに適
用した例を示す。    ′上記エンジン本体lには、
その吸気系に、端部にエアクリーナ2を備えた吸気通路
3が接続されてあり、この吸気通路3の途中に、2基の
第1及び第2のターボチャージャ(以下単にターボとい
う)6.7が設けられ、それぞれのターボを構成する一
方の各ブロワ部61.71が吸気通路3内に配置されて
いる。
FIG. 1 shows an overall schematic view of a two-stage supercharging device according to the present invention, and the illustrated one shows an example applied to a horizontally opposed six-cylinder engine. 'In the engine body l,
An intake passage 3 having an air cleaner 2 at its end is connected to the intake system, and two first and second turbochargers (hereinafter simply referred to as turbos) 6.7 are installed in the middle of this intake passage 3. are provided, and one blower section 61, 71 constituting each turbo is disposed within the intake passage 3.

また前記エンジン本体lの排気系は、水平に対向する左
右列の気筒群から排出される排気ガスを2系列の排気通
路41.51に分けて排出流通させるように第1の排気
系4と第2の排気系5とに分岐構成されてあり、その第
1の排気通路41の途中に第1ターボ6側のタービン部
62が、また第2の排気通路51の途中に第2ターボ7
側のタービン部72が配置されている。
Further, the exhaust system of the engine main body l has a first exhaust system 4 and a first exhaust system 4, so that the exhaust gas discharged from the horizontally opposing left and right cylinder groups is divided into two series of exhaust passages 41, 51 and distributed. The turbine section 62 on the first turbo 6 side is located in the middle of the first exhaust passage 41, and the second turbo 7 is located in the middle of the second exhaust passage 51.
A side turbine section 72 is arranged.

前記第1及び第2の排気系4,5は、上記した第1ター
ボ6のタービン部62が配置された位置より上流側にお
いて第1連通路8により両排気通路41、51が相互に
連通されてあり、またそのタービン部62が配置された
位置の下流側においても第2連通路9により両排気通路
41.51が相互に連通されている。
In the first and second exhaust systems 4 and 5, both exhaust passages 41 and 51 are communicated with each other by a first communication passage 8 on the upstream side of the position where the turbine section 62 of the first turbo 6 is disposed. Also, on the downstream side of the position where the turbine section 62 is disposed, both the exhaust passages 41 and 51 are communicated with each other by the second communication passage 9.

そして上記した第1連通路8及び第2連通路9には、そ
れぞれ、その通路を開閉制御する第1制御弁11及び第
2制御弁12が介在されている。更に第1排気通路41
にも、上記第2連通路9が分岐された位置より通路下流
側に第1排気通路4■を開閉制御する第3制御弁13が
設けられ、また第2排気通路5Iにも、前記第1.連通
路8が接続された位置より通路下流側に第2排気通路5
1を開閉制御する第4制御弁14が設けられている。
A first control valve 11 and a second control valve 12 are interposed in the first communication passage 8 and the second communication passage 9, respectively, for controlling opening and closing of the passages. Furthermore, the first exhaust passage 41
Also, a third control valve 13 for controlling the opening and closing of the first exhaust passage 4 is provided downstream of the position where the second communication passage 9 is branched, and a third control valve 13 for controlling the opening and closing of the first exhaust passage 4 is also provided in the second exhaust passage 5I. .. A second exhaust passage 5 is located downstream of the position where the communication passage 8 is connected.
A fourth control valve 14 that controls opening and closing of the fourth control valve 1 is provided.

これらの第1乃至第4制御弁11.12.13.14は
それぞれの各制御部11a 、 12a 、 13a 
、 L4aが制御回路20に接続されてコントロールさ
れるようになっている。この制御は、例えば第2図、第
3図に示される回転数とトルク、あるいは回転数と馬力
とによって表されるマツプグラフにより、制御ラインa
を境にして、低速低負荷時には、第1制御弁11と第2
制御弁[2とが開き、第3制御弁13と第4制御弁14
とが閉じるように制御され、また高速高負荷時には、第
1制御弁1■と第2制御弁12とが閉じ、第3制御弁1
3と第4制御弁14とが開くように制御される。
These first to fourth control valves 11, 12, 13, 14 have respective control units 11a, 12a, 13a.
, L4a are connected to the control circuit 20 and controlled. This control is carried out using a map graph representing the rotational speed and torque, or the rotational speed and horsepower, as shown in FIGS. 2 and 3, for example.
At low speed and low load, the first control valve 11 and the second control valve
The control valve [2] opens, and the third control valve 13 and the fourth control valve 14 open.
At high speed and high load, the first control valve 1 and the second control valve 12 are closed, and the third control valve 1 is closed.
3 and the fourth control valve 14 are controlled to open.

なお第1排気通路41には、前記第1ターボ6のタービ
ン部62が配置される個所にバイパスが設けられてこれ
にウェイストゲート弁(WG)15が設けられ、また第
2排気通路51にも、第2ターボ7のタービン部72が
配置される個所にバイパスが設けられてこれにウェイス
トゲート弁(WG)1Bが設けられている。これらのウ
ェイストゲート弁15゜16によりタービン部62.7
2の回転数が所定の上限を超える場合には排気ガスをバ
イパスさせることにより過給圧を一定に保つようにして
あり、なお第1排気通路41及び第2排気通路51の末
端はマフラー42.52を介して開放端となっている。
Note that the first exhaust passage 41 is provided with a bypass at a location where the turbine section 62 of the first turbo 6 is disposed, and a waste gate valve (WG) 15 is provided in this bypass, and the second exhaust passage 51 is also provided with a waste gate valve (WG) 15. A bypass is provided at a location where the turbine section 72 of the second turbo 7 is disposed, and a waste gate valve (WG) 1B is provided in this bypass. These waste gate valves 15 and 16 allow the turbine section 62.7
2 exceeds a predetermined upper limit, the supercharging pressure is kept constant by bypassing the exhaust gas, and the ends of the first exhaust passage 41 and the second exhaust passage 51 are connected to the muffler 42. It has an open end via 52.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

低速低負荷時には、制御回路20に記憶された情報に基
いてその出力信号により、第1連通路8及び第2連通路
9に設けた第1制御弁11.第2制御弁12がそれぞれ
開き、他の第3制御弁■3、第4制御弁14が閉じる。
At low speed and low load, the first control valves 11 . The second control valve 12 opens, and the other third control valve 3 and fourth control valve 14 close.

これにより、エンジン本体■より第1排気系4に排出さ
れる排気ガスはそのまま第1排気通路41に、また第2
排気系5に排出される排気ガスは第1連通路8を経て第
1排気通路41の側に合流され、この合流された全量の
排気ガスが第1図中−点鎖線で示すように第1排気通路
41を流通して第1ターボ6のタービン部62を回した
後、更に第2連通路9を経て第2排気通路5■の側に流
通し、第2ターボ7のタービン部72を回転さ ・せた
後、その第2排気通路51の末端より外部に排出される
As a result, the exhaust gas discharged from the engine body ① to the first exhaust system 4 is directly transferred to the first exhaust passage 41, and also to the second exhaust system 4.
Exhaust gas discharged into the exhaust system 5 passes through the first communication passage 8 and merges into the first exhaust passage 41 side, and the total amount of the combined exhaust gas flows into the first exhaust gas as shown by the dotted chain line in FIG. After flowing through the exhaust passage 41 to rotate the turbine section 62 of the first turbo 6, the air flows further through the second communication passage 9 to the second exhaust passage 5■, and rotates the turbine section 72 of the second turbo 7. After that, it is discharged to the outside from the end of the second exhaust passage 51.

また高速高負荷時の運転領域になると、制御回路20か
らの出力信号により、逆に第3及び第4制御弁13.1
4が開き、第1及び第2制御弁11.12が閉じるよう
に切替わる。これにより、エンジン本体lより第1排気
系4及び第2排気系5に流出される排気ガスは、それぞ
れ各別に第1図中二点鎖線で示す如く第1排気通路41
.第2排気通路51に並列に流通して、第1排気通路4
1内を流通する排気ガスにより第1ターボ6のタービン
部62が回転され、また第2排気通路5■内を流通する
排気ガスにより第2ターボ7のタービン部72が回転さ
れてそれぞれの排気ガスは第1排気通路41及び第2排
気通路5■の各末端より各別に排出される。
In addition, when the operating range is at high speed and high load, the output signal from the control circuit 20 causes the third and fourth control valves 13.1 to
4 is opened, and the first and second control valves 11.12 are switched to close. As a result, the exhaust gas flowing out from the engine body l to the first exhaust system 4 and the second exhaust system 5 is directed to the first exhaust passage 41 and the second exhaust system 5, respectively, as shown by the two-dot chain lines in FIG.
.. The first exhaust passage 4 flows in parallel with the second exhaust passage 51.
The exhaust gas flowing through the second exhaust passage 5 rotates the turbine section 62 of the first turbo 6, and the exhaust gas flowing through the second exhaust passage 5 rotates the turbine section 72 of the second turbo 7, so that the respective exhaust gases are rotated. is discharged separately from each end of the first exhaust passage 41 and the second exhaust passage 5.

このような流通形態より、低速低負荷時の運転領域では
、6気筒から出る排気ガスの全量が2基のターボ6.7
のタービン部82.72に流通して両タービン部82.
72を回転駆動させるようになることで、排気圧の低い
低速時であっても十分に排気タービン62.72が駆・
動されてその応答性が向上される。
Due to this type of distribution, in the operating range at low speeds and low loads, the total amount of exhaust gas emitted from the six cylinders is reduced to two turbo 6.7
turbine section 82.72 of both turbine sections 82.72.
By rotationally driving the exhaust turbines 62 and 72, the exhaust turbines 62 and 72 can be sufficiently driven even at low speeds with low exhaust pressure.
and improve its responsiveness.

また高速高負荷時には、6気筒のうち半数の気筒から出
る排気ガスが、それぞれ分流して別々に第1及び第2タ
ーボ6.7のタービン部62.72に並列に流通され、
この際は、排気圧が高いことから各タービン部62.7
2は所要に回転駆動された状態でありながらも、排気抵
抗、即ち背圧が減少することで出力が向上される。
In addition, at high speed and high load, the exhaust gas emitted from half of the six cylinders is divided and separately distributed in parallel to the turbine sections 62.72 of the first and second turbos 6.7,
At this time, since the exhaust pressure is high, each turbine section 62.7
Even though the engine 2 is rotated as required, the output is improved by reducing the exhaust resistance, that is, the back pressure.

しかも常に2基のターボのタービン部82.72が駆動
されているため従来のシーケンシャルタルボに有り勝ち
な制御切換時の過給圧の落込み、つまり段付きがなく、
全運転領域でより良好な過給性能が得られる。
Moreover, since the two turbo turbine sections 82 and 72 are always being driven, there is no drop in boost pressure when switching control, that is, a step, which is common in conventional sequential turbos.
Better supercharging performance can be obtained in all operating ranges.

更に高速高負荷時には、従来の先行技術のような排気タ
ービンの制御排気系が1系統でなく2系統に分流されて
いるため、高速時の排気の合流に伴う干渉がなく、過給
機としての機能の低下が抑止される。また高速時におい
ては、一方の排気系を流通する排気ガスは必ず一方のタ
ービンを回すことになり、従来の先行技術のように抵抗
の小さい排気タービンの側に片寄って流れる傾向が生じ
なくなり、2基のターボチャージャの働きにムラがなく
なる。
Furthermore, at high speeds and high loads, the exhaust turbine control exhaust system is divided into two systems instead of one system as in conventional prior art, so there is no interference caused by the merging of exhaust gases at high speeds, and the turbocharger is Deterioration of functionality is suppressed. In addition, at high speeds, the exhaust gas flowing through one exhaust system always turns one turbine, and there is no tendency for the exhaust gas to flow toward the exhaust turbine with less resistance, as in the conventional prior art. There is no unevenness in the operation of the base turbocharger.

また低速低負荷時には、第1排気通路41より第2排気
通路51を経て片方のマフラ52から排気ガスを流出さ
せる糸路となることより、こもり音が出に<<、低速ト
ルクが得易い上に、両方のマフラ42、52を経由した
流出系路に切換えて高出力も得−11= られるようになる。
Also, at low speeds and low loads, the exhaust gas flows from the first exhaust passage 41 through the second exhaust passage 51 to one of the mufflers 52, which causes muffled noise and makes it easier to obtain low-speed torque. In addition, high output can be obtained by switching to an outflow path that passes through both mufflers 42 and 52.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明による2段過給装置によれ
ば、低速低負荷時には第1及び第2の排気系から排出さ
れる排気ガスの全量によって2基の排気タービンを駆動
する構成であるから、排気圧の低い低速時の過給効果が
充分に得られてその応答性を向上でき、また、高速高負
荷時においては第1及び第2の排気系から排出される排
気ガスが系列毎に、2基の排気タービンに並列に流通し
て各別にタービンを駆動する構成としたので背圧が減少
し、排気抵抗を小さくして高出力を確保することができ
る。
As explained above, according to the two-stage supercharging device according to the present invention, at low speed and low load, the two exhaust turbines are driven by the entire amount of exhaust gas discharged from the first and second exhaust systems. Therefore, at low speeds with low exhaust pressure, a sufficient supercharging effect can be obtained and the response can be improved, and at high speeds and high loads, the exhaust gas discharged from the first and second exhaust systems is Furthermore, since the exhaust gas is configured to flow through two exhaust turbines in parallel and drive each turbine separately, back pressure is reduced, exhaust resistance is reduced, and high output can be ensured.

しかも高速高負荷時において、複数気筒からの排気ガス
は1つに合流するのではなく2系列に分かれて各別に流
通する構成なので、従来の先行技術のように高速時の排
気ガスの合流に伴う干渉に起因してターボチャージャの
機能低下が起る不都合を防止でき、また排気ガスは当初
より2系列に分かれて流通するので、2基の排気タービ
ンに対して流れ易い方にだけ片寄って流れる不都合も起
らず2基のターボチャージャの動作にムラが生じる不都
合も解消できる等の効果も併せ得られる。
Furthermore, at high speeds and high loads, the exhaust gases from multiple cylinders do not merge into one system, but are divided into two lines and circulated separately. This prevents the inconvenience of turbocharger performance deterioration due to interference, and since the exhaust gas is divided into two streams from the beginning, the inconvenience of flowing only to the side that is easier to flow to the two exhaust turbines is avoided. This also has the advantage of eliminating the inconvenience of uneven operation of the two turbochargers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による2段過給装置の全体概
略説明図、第2図及び第3図は第1図の制御回路で制御
を行うための制御マツプ1例を示す図である。 ■・・・エンジン本体、2・・・エアクリーナ、3・・
・吸気通路、 4・・・第1排気系、41・・・第1排気通路、42・
・・第1排気通路のマフラ、 5・・・第2排気系、5I・・・第2排気通路、52・
・・第2排気通路のマフラ 6・・・第1のターボチャージャ、61・・・同ブロア
部、62・・・同排気タービン部、 7・・・第2のターボチャージャ、71・・・同ブロア
部、72・・・同排気タービン部、 8・・・第1の連通路、9・・・第2の連通路、11、
12.13.14・・・第1〜第4制御弁、15、 1
6・・・ウェイストゲート弁(WG)、20・・・制御
回路、a・・・制御ライン特許出願人  富士重工業株
式会社 代理人 弁理士  小 橋 信 滓 量  弁理士  小 倉   亘
FIG. 1 is an overall schematic explanatory diagram of a two-stage supercharging device according to an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing an example of a control map for controlling with the control circuit of FIG. 1. be. ■...Engine body, 2...Air cleaner, 3...
・Intake passage, 4... First exhaust system, 41... First exhaust passage, 42.
...Muffler of first exhaust passage, 5...Second exhaust system, 5I...Second exhaust passage, 52.
...Muffler 6 of the second exhaust passage...First turbocharger, 61...The same blower part, 62...The same exhaust turbine part, 7...The second turbocharger, 71...The same Blower part, 72... Exhaust turbine part, 8... First communication path, 9... Second communication path, 11,
12.13.14...First to fourth control valves, 15, 1
6...Wastegate valve (WG), 20...Control circuit, a...Control line Patent applicant Fuji Heavy Industries Co., Ltd. agent Patent attorney Nobu Kobashi Slag quantity Patent attorney Wataru Kokura

Claims (1)

【特許請求の範囲】 複数気筒からの排気ガスを2系列に分けて排出させる第
1及び第2の排気系と、 上記第1及び第2の排気系にそれぞれ各別に排気タービ
ンを位置させた第1及び第2の2基のターボチャージャ
と、 上記第1及び第2の排気系に設けられ、両排気系に排出
される排気ガスを、低速低負荷時には合流して第1及び
第2の排気タービンに対し直列に流通させ、高速高負荷
時には各別に第1及び第2の排気タービンに対し並列に
流通させるよう車速に応じて流通系路を切換える連通路
及び制御弁と、を備えたことを特徴とする自動車用エン
ジンの2段過給装置。
[Scope of Claims] First and second exhaust systems that separate and discharge exhaust gas from a plurality of cylinders into two systems; and a second exhaust system in which exhaust turbines are respectively located in the first and second exhaust systems. It is provided with two turbochargers, 1 and 2, and the above-mentioned first and second exhaust systems, and the exhaust gas discharged to both exhaust systems is combined at low speed and low load to be combined into the first and second exhaust systems. The exhaust system is equipped with a communication passage and a control valve that switch the flow path according to the vehicle speed so that the exhaust gas flows in series with the turbine, and in parallel with each of the first and second exhaust turbines at high speed and high load. Features of a two-stage supercharging device for automobile engines.
JP2286862A 1990-10-24 1990-10-24 Two-step supercharger of engine for vehicle Pending JPH04164123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286862A JPH04164123A (en) 1990-10-24 1990-10-24 Two-step supercharger of engine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286862A JPH04164123A (en) 1990-10-24 1990-10-24 Two-step supercharger of engine for vehicle

Publications (1)

Publication Number Publication Date
JPH04164123A true JPH04164123A (en) 1992-06-09

Family

ID=17709986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286862A Pending JPH04164123A (en) 1990-10-24 1990-10-24 Two-step supercharger of engine for vehicle

Country Status (1)

Country Link
JP (1) JPH04164123A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408979A (en) * 1990-05-15 1995-04-25 Ab Volvo Method and a device for regulation of a turbo-charging device
EP1221546A3 (en) * 2001-01-05 2003-11-26 Caterpillar Inc. Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine
DE102004061023A1 (en) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Internal combustion engine e.g. diesel engine, has two exhaust gas turbo-chargers connected with each other such that supercharged air compressed by one turbo-charger is repressed intermittently with other turbo-charger
DE102005053977A1 (en) * 2005-11-11 2007-05-16 Volkswagen Ag Internal combustion engine e.g. petrol engine, for e.g. passenger car, has compressors driven by turbine, where outlet side of compressor is connected with fresh air inlet of engine by air supply pipe that has adjustable butterfly valve
WO2009129894A1 (en) * 2008-04-25 2009-10-29 Daimler Ag Exhaust gas flow conducting device and internal combustion engine comprising an exhaust gas flow conducting device
WO2010097979A1 (en) 2009-02-27 2010-09-02 三菱重工業株式会社 Supercharging system for internal combustion engine
US20160312687A1 (en) * 2015-04-24 2016-10-27 Ford Global Technologies, Llc Internal combustion engine with two-stage supercharging capability and with exhaust-gas aftertreatment arrangement, and method for operating an internal combustion engine of said type

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408979A (en) * 1990-05-15 1995-04-25 Ab Volvo Method and a device for regulation of a turbo-charging device
EP1221546A3 (en) * 2001-01-05 2003-11-26 Caterpillar Inc. Two turbocharger exhaust gas re-circulation system having a first stage variable nozzle turbine
DE102004061023A1 (en) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Internal combustion engine e.g. diesel engine, has two exhaust gas turbo-chargers connected with each other such that supercharged air compressed by one turbo-charger is repressed intermittently with other turbo-charger
DE102005053977A1 (en) * 2005-11-11 2007-05-16 Volkswagen Ag Internal combustion engine e.g. petrol engine, for e.g. passenger car, has compressors driven by turbine, where outlet side of compressor is connected with fresh air inlet of engine by air supply pipe that has adjustable butterfly valve
DE102005053977B4 (en) 2005-11-11 2017-03-30 Volkswagen Ag Internal combustion engine and method for operating an internal combustion engine
WO2009129894A1 (en) * 2008-04-25 2009-10-29 Daimler Ag Exhaust gas flow conducting device and internal combustion engine comprising an exhaust gas flow conducting device
WO2010097979A1 (en) 2009-02-27 2010-09-02 三菱重工業株式会社 Supercharging system for internal combustion engine
JP2010196681A (en) * 2009-02-27 2010-09-09 Mitsubishi Heavy Ind Ltd Supercharging system for internal combustion engine
US8635869B2 (en) 2009-02-27 2014-01-28 Mitsubishi Heavy Industries, Ltd. Turbocharging system for internal combustion engine
US20160312687A1 (en) * 2015-04-24 2016-10-27 Ford Global Technologies, Llc Internal combustion engine with two-stage supercharging capability and with exhaust-gas aftertreatment arrangement, and method for operating an internal combustion engine of said type
US10107180B2 (en) * 2015-04-24 2018-10-23 Ford Global Technologies, Llc Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine

Similar Documents

Publication Publication Date Title
JP6059299B2 (en) Combustion engine forced introduction device, combustion engine, and operation method of combustion engine
JPH0472974B2 (en)
JPS5982526A (en) Supercharger for internal-combustion engine
JPH04164123A (en) Two-step supercharger of engine for vehicle
JP4940927B2 (en) Turbocharger control device
JPH0574688B2 (en)
JPS63309725A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JPS61164041A (en) Internal-combustion engine with turbo charger
JPH0734983A (en) Exhaust gas recirculation device for engine with supercharger
JPH0650158A (en) Control device for engine with supercharger
JPS62103418A (en) Turbosupercharger
JP2710951B2 (en) Exhaust system structure of turbocharged engine
JP3147430B2 (en) Prerotation device for sequential turbo
JPS59128919A (en) Twin-turbo
JPS6329852Y2 (en)
JPS61207826A (en) Engine equipped with exhaust turbosupercharger
JP2513525Y2 (en) Supercharged engine
JP2023136717A (en) Control device for internal combustion engine with supercharger
JPS63246416A (en) Supercharging device for internal combustion engine
JPS62335B2 (en)
JPS62103419A (en) Turbosupercharged engine
JPH01177413A (en) Engine with turbocharger
JPS59153918A (en) Suction cooler for engine associated with turbocharger
JPH07139362A (en) Intake controller of exhaust turbocharged engine
JPS62101833A (en) Exhaust turbosupercharger device for engine