JPS62103420A - Turbosupercharger - Google Patents

Turbosupercharger

Info

Publication number
JPS62103420A
JPS62103420A JP60245198A JP24519885A JPS62103420A JP S62103420 A JPS62103420 A JP S62103420A JP 60245198 A JP60245198 A JP 60245198A JP 24519885 A JP24519885 A JP 24519885A JP S62103420 A JPS62103420 A JP S62103420A
Authority
JP
Japan
Prior art keywords
valve
exhaust
turbine
supercharging pressure
boost pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60245198A
Other languages
Japanese (ja)
Inventor
Toshimasu Tanaka
田中 稔益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60245198A priority Critical patent/JPS62103420A/en
Publication of JPS62103420A publication Critical patent/JPS62103420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To prevent the hunting of valve motion from occurring, by making exhaust gases in two systems so as to separate from each other and act on an exhaust turbine of a turbocharger, while installing a flow dividing valve of this separated passage and a turbine bypass valve, securing the setting supercharging pressure, and opening each valve at a time when it comes to the supercharging pressure higher than the specified value. CONSTITUTION:In a turbine 4 to be rotated by exhaust out of a turbocharger, an exhaust passage 12 for cylinders 2a and 2b and an exhaust passage 13 for cylinders 2c and 2d are separated from each other and led to an inlet of the turbine 4. An on-off valve 19 is installed in an interconnecting hole 18 in a partition wall 10 between these passages 12 and 13, and furthermore another on-off valve 16 is also installed in a passage 15 bypassing the turbine 4, while each valve is opened or closed by output of an engine control unit (ECU) corresponding to engine speed 26 and supercharging pressure 27, thus control over the supercharging pressure takes place. At the time of variations in an engine driving state in a direction making the supercharging pressure go up, opening operation of each valve is carried out when it becomes higher than the setting supercharging pressure, thus valve opening or closing is prevented from hunting.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、独立した2系統のlJ+気通路からそれぞれ
排気ガスをタービンに導くようにしIこ排気ターボ過給
装置の改良口I−る;bのである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides an improved exhaust turbo supercharging system in which exhaust gas is guided to a turbine from two independent systems of IJ+ air passages. It is b.

(従来技術) 従来から、例えば実開昭56−171630号公報に示
されるように、エンジンの各気筒とターボ過給機のター
ビンとの間の、υ1気マニホールドからタービン周囲の
スクロール室にわたる範囲の排気系を、互いに独立して
それぞれ半数ずつの気筒からの排気ガスを独立にタービ
ンに導く2系統の排気通路に分けることににす、排気脈
動を有効に利用して低速域でのターボ過給機の駆動効率
を高め、トルク向上を図るにうにしたものが知られてい
る。なお、このように独立した2系統の排気通路を構成
する場合に、上記公報の装置では排気行程が連続しない
気筒の排気ガスが同一系統の排気通路に導かれるように
しているが、排気行程が連続する気筒の排気ガスが同一
系統の排気通路に導かれるようにしても、吸気脈動が高
められて有効にタービンに作用し、駆動効率を高めるこ
とができる。
(Prior Art) Conventionally, as shown in, for example, Japanese Utility Model Application Publication No. 56-171630, the area between each cylinder of an engine and the turbine of a turbocharger, from the υ1 air manifold to the scroll chamber around the turbine, has been developed. The exhaust system is divided into two exhaust passages that independently guide exhaust gas from half of each cylinder to the turbine. Turbocharging at low speeds is achieved by effectively utilizing exhaust pulsation. There are known devices designed to increase the drive efficiency of the machine and improve torque. In addition, when configuring two independent exhaust passages in this way, the device in the above publication allows exhaust gas from cylinders whose exhaust strokes are not consecutive to be guided to the exhaust passages of the same system. Even if the exhaust gases of consecutive cylinders are guided to the exhaust passage of the same system, the intake pulsation is increased and effectively acts on the turbine, thereby increasing drive efficiency.

ところで、上記従来装置では、簡単な構造で最高過給圧
を制御するため、2系統のうちの一方の排気通路とター
ビン下流側との間に、過給圧が設定値に達したとき開作
動するバイパス弁を備えたバイパス通路を設けているが
、このようにした場合、上記バイパス弁が開かれたとき
、一方の排気通路のみから排気ガスがバイパス通路に逃
がされるため、両排気通路における背圧に差が生じ、そ
の影響で気筒によってトルク等にばらつきが生じるとい
う問題がある。
By the way, in the conventional device described above, in order to control the maximum boost pressure with a simple structure, an opening operation is performed between the exhaust passage of one of the two systems and the downstream side of the turbine when the boost pressure reaches a set value. However, in this case, when the bypass valve is opened, exhaust gas is released from only one exhaust passage to the bypass passage, so that the back side of both exhaust passages is There is a problem in that a pressure difference occurs, which causes variations in torque, etc., depending on the cylinder.

そこでこのにうな問題を解消するため、上記排気通路間
に連通弁で開閉される連通孔を設けておき、上記バイパ
ス弁が間かれたときに上記連通弁を問いて両排気通路間
で排気ガスを流通させるようにすることが考えられる。
Therefore, in order to solve this problem, a communication hole that is opened and closed by a communication valve is provided between the exhaust passages, and when the bypass valve is closed, the communication valve is opened and the exhaust gas is transferred between the two exhaust passages. It is conceivable to make it available for distribution.

しかしこの場合、単に過給圧が設定値に達したとぎに上
記バイパスかおj:び連通弁を開作動されるだ(′、J
では、連通弁が間かれると排気脈動による効果が失われ
て過給圧が急激に低下するので、過給圧が設定値に達し
た直後の運転域で、バイパス弁おJ、び連通弁の開作動
による過給圧の低下と、これに応じてバイパス弁および
連通弁が閉じられることによる過給圧の上昇とが繰返さ
れて、過給圧が大幅に変動するハンチングを生じ、運転
状態が不安定になるという問題が生じる。
However, in this case, the bypass and communication valves are opened simply as soon as the boost pressure reaches the set value (', J).
If the communication valve is closed, the effect of exhaust pulsation is lost and the boost pressure drops rapidly, so in the operating range immediately after the boost pressure reaches the set value, the bypass valve J and the communication valve are The decrease in boost pressure due to the opening operation and the increase in boost pressure due to the closing of the bypass valve and communication valve are repeated, causing hunting in which the boost pressure fluctuates significantly, and the operating state changes. The problem of instability arises.

〈発明の目的) 本発明はこのような事情に鑑み、2系統の独立した排気
通路により低速域での過給機駆動効率を高めるとともに
、一方の()1気通路に接続したバイパス通路のバイパ
ス弁で過給圧を制御しつつ、両排気通路間に圧力差が生
じることを防止し、しかも過給圧が設定値に達した直後
の運転域でハンチングが生じることを防++T、−する
ことのできる排気ターボ過給装置を提供するものである
(Objective of the Invention) In view of these circumstances, the present invention improves the supercharger drive efficiency in the low speed range by providing two independent exhaust passages, and also improves the turbocharger drive efficiency in the low speed range by reducing the bypass passage connected to one (1) exhaust passage. To prevent a pressure difference from occurring between both exhaust passages while controlling the boost pressure with a valve, and also to prevent hunting from occurring in the operating range immediately after the boost pressure reaches the set value. The present invention provides an exhaust turbo supercharging device that can perform the following functions.

(発明の構成) 本発明は、複数気筒のJJI気系を2系統に分りで各々
独立に排気ガスをターボ過給機のタービンに導く2系統
の排気通路を構成し1c排気ターボ過給装置において、
上記2系統の排気通路のうちの一方の排気通路に開口し
て上記タービンをバイパスするバイパス通路と、このバ
イパス通路を開閉して最高過給圧を設定値に制御するバ
イパス弁と、上記2系統の排気通路を連通させる連通孔
と、この連通孔を開閉する連通弁と、過給圧上昇方向へ
のエンジン運転状態変動時に、上記設定値より高い過給
圧となる所定運転状態となるまで上記バイパス弁および
連通弁の開作動を停止させて上記所定運転状態で上記バ
イパス弁および連通弁を開作動する制御手段とを設けた
ものである。
(Structure of the Invention) The present invention divides a JJI gas system of multiple cylinders into two systems and configures two exhaust passages each independently guiding exhaust gas to a turbine of a turbo supercharger. ,
a bypass passage that opens into one of the exhaust passages of the two exhaust passages and bypasses the turbine; a bypass valve that opens and closes the bypass passage to control the maximum boost pressure to a set value; and a communication valve that opens and closes the communication hole, and when the engine operating condition changes in the direction of increasing the boost pressure, the above-mentioned until the specified operating condition where the boost pressure is higher than the set value is reached. A control means is provided for stopping the opening operation of the bypass valve and the communication valve and opening the bypass valve and the communication valve in the predetermined operating state.

つまり、低過給域から過給圧が上昇して本来の最高過給
圧制御値である設定値に達した後も、一時的に過給圧が
」−配設定値より高くなる状態までバイパス弁および連
通弁を閉じ、この状態からバイパス弁および連通弁を開
いてこのときに過給圧が設定値にまで低下するにとどま
るようにし、その後は上記バイパス弁により過給圧が設
定値に維持されるようにしたものである。
In other words, even after the boost pressure rises from the low boost range and reaches the set value, which is the original maximum boost pressure control value, the bypass will temporarily occur until the boost pressure becomes higher than the set value. The valve and communication valve are closed, and from this state the bypass valve and communication valve are opened to ensure that the boost pressure only drops to the set value at this time, and after that, the bypass valve maintains the boost pressure at the set value. It was designed so that

(実施例) 第1図は本発明の一実施例を示し、この図では本発明装
置を4気筒エンジンに適用しており、1はエンジン、2
8〜2dはエンジン1の各気筒である。また、3はター
ボ過給機であって、排気系に組込まれたタービン4と、
このタービン4に軸5を介して連結されて吸気系に組込
まれたコンプレッサ6とを備え、排気ガス流によりター
ビン4が駆動され、これに伴ってコンプレッサ6が回転
することにより、エンジン1に吸気を過給するようにな
っている。上記タービン4を収容するタービンハウジン
グ7の排気導入口部分は、排気マニホールド8の下流端
部に連結されている。
(Embodiment) FIG. 1 shows an embodiment of the present invention, in which the device of the present invention is applied to a four-cylinder engine, and 1 is an engine, and 2
8 to 2d are each cylinder of the engine 1. Further, 3 is a turbo supercharger, which includes a turbine 4 incorporated in the exhaust system,
A compressor 6 is connected to the turbine 4 via a shaft 5 and incorporated into the intake system, and the turbine 4 is driven by the exhaust gas flow, and the compressor 6 rotates accordingly, causing the engine 1 to receive intake air. It is designed to supercharge. An exhaust gas inlet portion of the turbine housing 7 that accommodates the turbine 4 is connected to a downstream end of the exhaust manifold 8.

上記排気マニホールド8には、各気筒2a〜2dの排気
ボート9に連通Jる通路が集結する部分に排気系を2系
統に分ける仕切壁10が設けられている。またタービン
ハウジング7にも、排気導入口部分およびこれに続くタ
ービン4周囲のスクロール室に、上記仕切壁10に対応
した仕切壁11が設けられている。こうして、に記仕切
壁10゜11により、各気筒2a〜2dの排気系が2群
に分けられ、各々独立に排気ガスをタービン4に導く2
系統の排気通路12.13が構成されており、図示の実
施例では、第1.第2気筒2a、2bに連通ずる排気通
路12と、第3.第4気筒2C。
The exhaust manifold 8 is provided with a partition wall 10 that divides the exhaust system into two systems at a portion where the passages communicating with the exhaust boats 9 of the cylinders 2a to 2d converge. Further, the turbine housing 7 is also provided with a partition wall 11 corresponding to the partition wall 10 in the exhaust inlet portion and in the scroll chamber surrounding the turbine 4 following this. In this way, the exhaust systems of the cylinders 2a to 2d are divided into two groups by the partition walls 10 and 11, each of which independently guides the exhaust gas to the turbine 4.
The exhaust passages 12.13 of the system are constructed, and in the illustrated embodiment the first. an exhaust passage 12 communicating with the second cylinders 2a, 2b; 4th cylinder 2C.

2dに連通ずる排気通路13とに分割されている。The exhaust passage 13 is divided into an exhaust passage 13 and an exhaust passage 13 communicating with the exhaust passage 2d.

上記2系統のうちの一方の排気通路12とタービン4の
下流側の排気通路14との間には、タービン4をバイパ
スするバイパス通路15が設けられ、このバイパス通路
15は例えばタービンハウジング7に一体に形成されて
おり、このバイパス通路15にはバイパス弁16が設け
られている。
A bypass passage 15 that bypasses the turbine 4 is provided between the exhaust passage 12 of one of the two systems and the exhaust passage 14 on the downstream side of the turbine 4, and this bypass passage 15 is integrated into the turbine housing 7, for example. The bypass passage 15 is provided with a bypass valve 16.

このバイパス弁16は、過給圧に応じて働くアクチュエ
ータ17により開閉作動されて通常時の最高過給圧を設
定値に制御し、つまり、後述する作動停止時以外は、ア
クチュエータ17の圧力室17aに導入される過給圧が
予めスプリング17bにより定められた設定値以上のと
きに開作動されて排気ガスの一部を逃がすようになって
いる。
This bypass valve 16 is opened and closed by an actuator 17 that operates according to the boost pressure to control the maximum boost pressure in normal times to a set value. When the supercharging pressure introduced into the spring 17b exceeds a set value predetermined by the spring 17b, the valve is opened to allow a portion of the exhaust gas to escape.

また、両排気通路12.13間の仕切壁10には両排気
通路12.13を連通ずる連通孔18が設けられ、この
連通孔18に連通弁19が設けられている。この連通弁
19も、過給圧に応じて働くアクチュエータ20ににっ
て開閉作動され、作動停止時以外はアクチュエータ20
の圧力室20aに導入される過給圧が予めスプリング2
0bによって定められた値以上のとき連通弁19を開作
動するようになっている。ただし、このアクチュエータ
20による連通弁19の間弁汁設定値は、バイパス弁1
6のアクチュエータ17による最高過給圧制御用の設定
値よりも低く設定されている。
Further, a communication hole 18 is provided in the partition wall 10 between the two exhaust passages 12.13 to communicate the two exhaust passages 12.13, and a communication valve 19 is provided in the communication hole 18. This communication valve 19 is also opened and closed by an actuator 20 that operates according to the boost pressure, and is operated by the actuator 20 except when the operation is stopped.
The supercharging pressure introduced into the pressure chamber 20a of the spring 2
When the value is equal to or greater than the value determined by 0b, the communication valve 19 is opened. However, the valve fluid setting value between the communication valve 19 and the bypass valve 19 by this actuator 20 is
This is set lower than the set value for maximum boost pressure control by actuator 17 of No. 6.

上記各アクチュエータ17.20は、それぞれの圧力室
17a、20aが通路21.22および三方電磁弁23
を介してコンプレブザ6下流の吸気通路24と大気側と
に選択的に連通され、三方電磁弁23がONとなったと
ぎは上記各圧力室17a、20aに過給圧が導入されて
アクチュエータ17.20が作動可能な状態となり、三
方電磁弁23がOFFとなったときは上記各圧力室17
a、20aが大気に開放されてアクチユエータ17.2
0によるバイパス弁16および連通弁19の開作動が停
止されるようになっている。
Each of the actuators 17.20 has a pressure chamber 17a, 20a connected to a passage 21.22 and a three-way solenoid valve 23.
When the three-way solenoid valve 23 is turned on, supercharging pressure is introduced into each of the pressure chambers 17a and 20a, and the actuator 17. 20 is ready for operation and the three-way solenoid valve 23 is turned off, each pressure chamber 17 is
a, 20a is opened to the atmosphere and actuator 17.2
The opening operation of the bypass valve 16 and the communication valve 19 due to the opening of the bypass valve 16 and the communication valve 19 is stopped.

また、25はバイパス弁16および連通弁19に対する
制御手段としてのコントロールユニット(ECU)であ
って、エンジン回転数検出信号26、過給圧検出信号2
7を入力し、上記三方電磁弁26に制御信号を出力して
いる。このコントロールユニット27は、過給圧が上昇
する方向にエンジンの運転状態が変化する加速時には、
上記設定値より高い過給圧となる後述の所定運転状態と
なるまで三方電磁弁23をOFF状態とし、所定運転状
態で三方電磁弁23をON状態に切替えるようにしてい
る。また減速時には、上記所定運転状態よりもエンジン
回転数がある程度低くなったとき三方電磁弁23をON
からOFFに切替えるようにしている。なお、加速時お
よび減速時の検出は例えばエンジン回転数の変動を調べ
ることによって行ない、上記所定運転状態の検出はエン
ジン回転数検出信号26もしくは過給圧検出信号27に
よって行なうようにすればよい。
Further, 25 is a control unit (ECU) as a control means for the bypass valve 16 and the communication valve 19, and includes an engine rotation speed detection signal 26 and a supercharging pressure detection signal 2.
7 is input, and a control signal is output to the three-way solenoid valve 26. This control unit 27 controls the control unit 27 during acceleration when the engine operating condition changes in the direction of increasing boost pressure.
The three-way solenoid valve 23 is kept in the OFF state until a predetermined operating state (described later) in which the supercharging pressure is higher than the set value is reached, and the three-way solenoid valve 23 is switched to the ON state in the predetermined operating state. Also, during deceleration, the three-way solenoid valve 23 is turned on when the engine speed becomes a certain degree lower than the predetermined operating state.
I am trying to switch it from OFF to OFF. Incidentally, the detection of acceleration and deceleration may be performed, for example, by checking fluctuations in the engine speed, and the detection of the predetermined operating state may be performed using the engine speed detection signal 26 or the supercharging pressure detection signal 27.

このターボ過給装置の動作を第2図によって説明する。The operation of this turbocharger will be explained with reference to FIG.

第2図はエンジン回転数と過給圧との関係を示し、本発
明装置においてバイパス弁16および連通弁19が閉じ
られている状態にあるときの過給圧変動特性はこの図の
線A1のようになり、また仮に上記連通弁19が常に開
かれているとした場合の、近似的に2系統の排気通路に
分けられていない場合と同等の状態の排気系(以下[ス
タンダード排気系]と呼ぶ)による低速域での過給圧変
動特性は破1!ilBのようになる。このように、2系
統の排気通路12.13間の連通弁19が閉じられてい
るとき、両排気通路12.13からタービン4に有効に
伝えられるUt気脈動により過給機駆動効率が高められ
るため、スタンダード排気系による場合よりも低速域で
の過給圧が高められる。
Fig. 2 shows the relationship between engine speed and supercharging pressure, and the supercharging pressure fluctuation characteristic when the bypass valve 16 and communication valve 19 are closed in the device of the present invention is shown by line A1 in this figure. In addition, if the communication valve 19 is always open, the exhaust system is approximately the same as the case where the exhaust passages are not divided into two systems (hereinafter referred to as [standard exhaust system]). The supercharging pressure fluctuation characteristics in the low speed range are unmatched! Be like ilB. In this way, when the communication valve 19 between the two exhaust passages 12.13 is closed, the supercharger drive efficiency is increased by the Ut air pulsations that are effectively transmitted from both exhaust passages 12.13 to the turbine 4. Therefore, the boost pressure in the low speed range is higher than when using the standard exhaust system.

また、所定運転状態より高回転側であって、上記バイパ
ス弁16および連通弁19がそれぞれアクチュエータ1
7.20により過給圧に応じて作動される状態となって
いるときは、過給圧が設定値81以上になろうとすると
上記バイパス弁16が開かれて排気ガスがバイパス通路
15に逃がされることにより、過給圧が上記設定値P1
に制御される一方、上記連通弁19が開かれて両排気通
路12.13が連通されることにより、両排気通路12
.13間で圧力差が生じることが防止される。
Also, the rotation speed is higher than the predetermined operating state, and the bypass valve 16 and the communication valve 19 are connected to the actuator 1, respectively.
7.20, when the system is operated according to the supercharging pressure, when the supercharging pressure is about to exceed the set value 81, the bypass valve 16 is opened and the exhaust gas is released to the bypass passage 15. As a result, the boost pressure reaches the above set value P1.
On the other hand, the communication valve 19 is opened and both exhaust passages 12.13 are communicated with each other, so that both exhaust passages 12.
.. 13 is prevented from occurring.

ところで1、このような最高過給圧の制御と両排気通路
12.13間での圧力差の防止とを図るだけであれば、
過給圧が設定値P1まで上昇したとき(点×)にバイパ
ス弁16および連通弁19が開作動するようにしておけ
ばよいわりであるが、このようにすると、上記の点Xに
達した直後の運転域では、バイパス弁16および連通弁
19の開閉作動が繰返されて過給圧が破線矢印すで示す
ように大幅に変動するハンチングが生じる。つまり、上
記の点Xでバイパス弁16および連通弁19が開作動さ
れると排気脈動による効果が失われて過給圧が急激にス
タンダード排気系による場合の特性まで低下し、このよ
うに過給圧が低下するとバイパス弁16および連通弁1
9が閉じて過給圧が再び設定値P1まで上昇するという
動作が繰返される。
By the way, 1. If you only want to control the maximum boost pressure and prevent the pressure difference between both exhaust passages 12 and 13,
It would be better if the bypass valve 16 and the communication valve 19 were opened when the boost pressure rose to the set value P1 (point In the immediately subsequent operating range, the bypass valve 16 and the communication valve 19 are repeatedly opened and closed, causing hunting in which the supercharging pressure fluctuates significantly as indicated by the broken line arrow. In other words, when the bypass valve 16 and the communication valve 19 are opened at the above point When the pressure decreases, the bypass valve 16 and the communication valve 1
9 closes and the supercharging pressure rises again to the set value P1, which is repeated.

そこでコントロールユニット25により、加速時には上
記の点Xに達した後も、スタンダード排気系による場合
に過給圧が設定値P1に達する点Yに対応する所定運転
状態(回転数Ny)までは三方電磁弁23をOFF状態
としてアクチュエータ17.20の作動機能を停止させ
、これによってハンチングを防止している。つまり、過
給圧が設定値P1に達してからしバイパス弁16および
連通弁19が閉じられた状態に保たれて線A′1のよう
に点Y′まで過給圧が−に貸し、この場合の過給圧上昇
は一時的なものであるためエンジンに悪影響を及ぼすこ
とはない。そして、上記の点Y′でこのときの過給圧も
しくは回転数NYの検出に基づいて三方電磁弁23がO
N状態に切替えられることにより、バイパス弁16およ
び連通弁19が開作動され、このとき排気脈動の効果が
失われても線A2のように過給圧は設定値P1にまで低
下するにとどまり、その後は線A3のように過給圧が設
定値P1に雛持されるので、ハンチングが防止されるこ
ととなる。
Therefore, the control unit 25 controls the three-way electromagnetic system to maintain the three-way electromagnetic state during acceleration even after reaching the point The valve 23 is turned OFF to stop the actuating function of the actuator 17, 20, thereby preventing hunting. In other words, when the supercharging pressure reaches the set value P1, the mustard bypass valve 16 and the communication valve 19 are kept closed, and the supercharging pressure is applied to - as shown by line A'1 until point Y'. The boost pressure increase in this case is temporary and will not have any negative effect on the engine. Then, at the above point Y', the three-way solenoid valve 23 is turned to O based on the detection of the boost pressure or rotational speed NY at this time.
By switching to the N state, the bypass valve 16 and the communication valve 19 are opened, and even if the effect of exhaust pulsation is lost at this time, the supercharging pressure only decreases to the set value P1 as shown by line A2. After that, the supercharging pressure is maintained at the set value P1 as indicated by line A3, so hunting is prevented.

また、当実施例によると減速時には、先ず高速域から回
転数が低下して点Yを過ぎると、バイパス弁16は閉じ
られるが連通弁19は開弁圧設定値P2が低く設定され
ているので開いた状態のまま、過給圧がスタンダード排
気系による特性に沿ってmA4のように低下する。そし
て、例えば前記の点Xに対応する回転数NXで三方電磁
弁23をON状態からOFF状態に切替えることにより
、この回転数N×で連通弁19が閉じられるに伴って線
A5のように過給圧が点X′より点Xまでいったん上界
してから、引続き線A1に沿って過給圧が低下する。こ
うして減速時にもハンチングが防止される。
Further, according to this embodiment, when decelerating, the rotation speed first decreases from a high speed range and passes point Y, the bypass valve 16 is closed, but the valve opening pressure setting value P2 of the communication valve 19 is set low. While in the open state, the boost pressure decreases to mA4 in accordance with the characteristics of the standard exhaust system. For example, by switching the three-way solenoid valve 23 from the ON state to the OFF state at the rotation speed NX corresponding to the point After the boost pressure once rises from point X' to point X, the boost pressure continues to decrease along line A1. Hunting is thus prevented even during deceleration.

なお、加速時に三方電磁弁23をON状態とする切替点
および減速時に三方電磁弁23をOFF状態とする切替
点はそれぞれ、第2図の点Y′より高回転側(高過給圧
側)、点X′より低回転側等に多少ずれていても差し支
えない。また、パイパス弁16おJ:び連通弁19に対
する作動手段および制御手段は上記実施例に限定されず
、例えばンレノイド等の電気的なアクチュエータを用い
てこれを制御するようにしてもよい。
Note that the switching point at which the three-way solenoid valve 23 is turned ON during acceleration and the switching point at which the three-way solenoid valve 23 is turned OFF during deceleration are on the higher rotation side (higher boost pressure side) than point Y' in FIG. There is no problem even if it deviates slightly from point X' to the low rotation side. Further, the actuating means and control means for the bypass valves 16 and 19 are not limited to those in the above embodiments, and may be controlled using electric actuators such as lenoids.

(発明の効果) 以上のように本発明は、低速域での排気脈動の効果を高
めるべく2系統のυ1気通路を構成し、その一方の排気
通路に開口したバイパス通路に最高過給圧を設定するバ
イパス弁を設けるとともに、両排気通路間に連通弁で開
閉される連通孔を設けているので、両排気通路に圧力差
を生じることなく最高過給圧を制御1゛ることができる
。しかも、過給圧上昇時には過給圧が上記設定値より高
くなる所定運転状態となってから上記バイパス弁および
連通弁が開作動されるようにしているので、バイパス弁
および連通弁が開作動される状態となった直後にハンチ
ングが生じることが防止され、このような過渡時の運転
状態および過給圧制御の信頼性を向上することができる
ものである。
(Effects of the Invention) As described above, the present invention configures two systems of υ1 air passages in order to enhance the effect of exhaust pulsation in the low speed range, and applies maximum boost pressure to the bypass passage opened to one of the exhaust passages. Since a bypass valve to be set is provided and a communication hole opened and closed by a communication valve is provided between both exhaust passages, the maximum supercharging pressure can be controlled without creating a pressure difference between both exhaust passages. Moreover, when the boost pressure increases, the bypass valve and the communication valve are opened only after the boost pressure reaches a predetermined operating state higher than the set value, so the bypass valve and the communication valve are not opened. Hunting can be prevented from occurring immediately after a state in which the engine is in a state where the engine is in a state where the engine is in a state where the engine is in a state where the engine is running, and the reliability of the operating state and the boost pressure control during such a transient period can be improved.

【図面の簡単な説明】 第1図は本発明の一実施例を示す概略断面図、第2図は
エンジン回転数と過給圧との関係を示す説明図である。 1・・・エンジン、2a〜2d・・・気筒、3・・・タ
ーボ過給機、4・・・タービン、12.13・・・2系
統の排気通路、15・・・バイパス通路、16・・・バ
イパス弁、17・・・アクチュエータ、19・・・連通
弁、20・・・アクチュエータ、25・・・コンI−ロ
ールユニット。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between engine speed and boost pressure. DESCRIPTION OF SYMBOLS 1... Engine, 2a-2d... Cylinder, 3... Turbo supercharger, 4... Turbine, 12.13... Exhaust passage of 2 systems, 15... Bypass passage, 16... ... Bypass valve, 17... Actuator, 19... Communication valve, 20... Actuator, 25... Control I-roll unit.

Claims (1)

【特許請求の範囲】[Claims] 1、複数気筒の排気系を2群に分けて各々独立に排気ガ
スをターボ過給機のタービンに導く2系統の排気通路を
構成した排気ターボ過給装置において、上記2系統の排
気通路のうちの一方の排気通路に開口して上記タービン
をバイパスするバイパス通路と、このバイパス通路を開
閉して最高過給圧を設定値に制御するバイパス弁と、上
記2系統の排気通路を連通させる連通孔と、この連通孔
を開閉する連通弁と、過給圧上昇方向へのエンジン運転
状態変動時に、上記設定値より高い過給圧となる所定運
転状態となるまで上記バイパス弁および連通弁の開作動
を停止させて上記所定運転状態で上記バイパス弁および
連通弁を開作動する制御手段とを設けたことを特徴とす
る排気ターボ過給装置。
1. In an exhaust turbo supercharging device in which the exhaust system of a plurality of cylinders is divided into two groups and two exhaust passages are configured to independently guide exhaust gas to the turbine of a turbo supercharger, one of the two exhaust passages is a bypass passage that opens into one of the exhaust passages and bypasses the turbine; a bypass valve that opens and closes this bypass passage to control the maximum boost pressure to a set value; and a communication hole that communicates the two exhaust passages. and a communication valve that opens and closes this communication hole, and when the engine operating state changes in the direction of increasing the boost pressure, the bypass valve and the communication valve are opened until a predetermined operating state where the boost pressure is higher than the set value is reached. An exhaust turbo supercharging device characterized by comprising: control means for opening the bypass valve and the communication valve in the predetermined operating state by stopping the exhaust gas turbocharging device.
JP60245198A 1985-10-30 1985-10-30 Turbosupercharger Pending JPS62103420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245198A JPS62103420A (en) 1985-10-30 1985-10-30 Turbosupercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245198A JPS62103420A (en) 1985-10-30 1985-10-30 Turbosupercharger

Publications (1)

Publication Number Publication Date
JPS62103420A true JPS62103420A (en) 1987-05-13

Family

ID=17130078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245198A Pending JPS62103420A (en) 1985-10-30 1985-10-30 Turbosupercharger

Country Status (1)

Country Link
JP (1) JPS62103420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2349179A (en) * 1999-04-22 2000-10-25 Daimler Chrysler Ag Multi-cylinder i.c. engine with separate exhaust gas lines leading to a turbocharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2349179A (en) * 1999-04-22 2000-10-25 Daimler Chrysler Ag Multi-cylinder i.c. engine with separate exhaust gas lines leading to a turbocharger
GB2349179B (en) * 1999-04-22 2001-03-07 Daimler Chrysler Ag Multi-cylinder internal combustion engine with an exhaust-gas turbocharger

Similar Documents

Publication Publication Date Title
US4637210A (en) Supercharge pressure control apparatus of a supercharged engine
US4598549A (en) Turbocharger manifold pressure control system
JP2570403B2 (en) Supercharging pressure control device for twin turbo engine
JPH0543240Y2 (en)
JPS62103420A (en) Turbosupercharger
JPH0751897B2 (en) Control device for turbocharger
US4216758A (en) Automobile fuel intake system
JPS62101832A (en) Exhaust turbosupercharger device
JPS6367011B2 (en)
JPS61164041A (en) Internal-combustion engine with turbo charger
JPH0650158A (en) Control device for engine with supercharger
KR100291086B1 (en) Actuator control apparatus of turbo charger west gate valve
JPS62101831A (en) Exhaust turbosupercharger device
JPH09287463A (en) Supercharging pressure control device for turbocharger
JPS6224771Y2 (en)
JPH03194122A (en) Composite-type supercharging device for vehicular internal combustion engine
JP2002256873A (en) Changeable intake system of internal combustion engine
JPH0242123A (en) Control device for engine with supercharger
JPS6229631Y2 (en)
JPS61164040A (en) Internal-combustion engine with turbo charger
JPS60252123A (en) Control device of waste gate
JPH0529768B2 (en)
JPH0311125A (en) Control of internal combustion engine equipped with exhaust turbine supercharger and device therefor
JPH07109173B2 (en) Supercharging pressure controller for engine with supercharger
JPS62271934A (en) Engine with supercharger