JPS62101055A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62101055A
JPS62101055A JP60242465A JP24246585A JPS62101055A JP S62101055 A JPS62101055 A JP S62101055A JP 60242465 A JP60242465 A JP 60242465A JP 24246585 A JP24246585 A JP 24246585A JP S62101055 A JPS62101055 A JP S62101055A
Authority
JP
Japan
Prior art keywords
epoxy resin
silane compound
resin
reaction product
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60242465A
Other languages
Japanese (ja)
Other versions
JPH0717739B2 (en
Inventor
Tatsushi Ito
達志 伊藤
Haruo Tabata
田畑 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP60242465A priority Critical patent/JPH0717739B2/en
Publication of JPS62101055A publication Critical patent/JPS62101055A/en
Publication of JPH0717739B2 publication Critical patent/JPH0717739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To improve an adhesive state, to interrupt the intrusion path of water and to enhance damp-proofing by constituting a sealing plastic package by using an epoxy resin composition as a special reaction product. CONSTITUTION:A sealing package is organized by employing an epoxy resin, a reaction product from a silane compound having at least one of a methoxy group and an ethoxy group in a molecule and a phenol resin, and inorganic fillers. The epoxy resin has two or more of epoxy groups in one molecule. THe reaction product from the silane compound having at least one of the methoxy group or the ethoxy group in the molecule and the phenol resin functions as a curing agent for the epoxy resin, and is acquired by arbitrarily combining the phenol resin and the silane compound and reacting them. Quartz glass powder and crystalline silica powder are proper as the inorganic fillers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、信頼性の優れた半導体装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly reliable semiconductor device.

〔従来の技術〕[Conventional technology]

トランジスタ、Ic、LSI等の半導体素子は、通常セ
ラミックパッケージもしくはプラスチックパッケージ等
により1.l止され、半導体装置化されている。上記セ
ラミックパッケージは、構成材料そのものが耐熱性を有
し、耐5fFA性にも優れているため、温度、湿度に対
して強く、しかも中空パッケージのため機械的強度も高
く信転性の高い封止が可能である。しかしながら、構成
材料が比較的高価なものであることと、量産性に劣る欠
点があるため、最近では上記プラスチックパッケージを
用いた樹脂封止が主流になっている。このような半導体
封止用樹脂としては、エポキシ樹脂、ノボラック型フェ
ノール樹脂、無機質充填剤を主成分とし、さらに硬化促
進剤1着色剤、離型剤を含むエポキシ樹脂組成物が賞月
されている。
Semiconductor elements such as transistors, ICs, and LSIs are usually packaged in ceramic packages or plastic packages. It has been turned into a semiconductor device. The above-mentioned ceramic package is resistant to temperature and humidity because the constituent material itself has heat resistance and is excellent in 5fFA resistance.Moreover, since it is a hollow package, it has high mechanical strength and is highly reliable. is possible. However, since the constituent materials are relatively expensive and the mass productivity is poor, resin sealing using the above-mentioned plastic package has recently become mainstream. As such resins for semiconductor encapsulation, epoxy resin compositions containing epoxy resin, novolac type phenolic resin, and inorganic filler as main components, and further containing a curing accelerator, a coloring agent, and a mold release agent have been praised. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようなエポキシ樹脂組成物によって
封止された半導体装置は、従来の金属やセラミックス材
料によるハーメチック封止方式によって得られる半導体
装置に比べ封11:操作が簡単で経済性1作業性等に優
れるという利点がある反面、封止された半導体装置のア
ルミ配線あるいはアルミ電極が吸湿によって腐食し、こ
の腐食によつてアルミ配線が断線したりして不良が発生
するという欠点を有していた。これは、封止樹脂とリー
ドフレームとの界面あるいは封止樹脂表面から半導体装
置内に水が浸入し、その浸入した水が封止樹脂中を透過
する際に封止樹脂中のイオン性不純物の運び役となって
、このイオン性不純物がアルミ配線あるいはアルミ電極
の腐食を発生させるものと考えられている。
However, semiconductor devices encapsulated with such epoxy resin compositions are easier to operate and more economical than semiconductor devices obtained by conventional hermetic encapsulation methods using metal or ceramic materials. Although it has the advantage of being superior, it has the disadvantage that the aluminum wiring or aluminum electrodes of the sealed semiconductor device corrode due to moisture absorption, and this corrosion causes the aluminum wiring to break, resulting in defects. This is because water enters the semiconductor device from the interface between the encapsulating resin and the lead frame or from the surface of the encapsulating resin, and when the infiltrated water permeates through the encapsulating resin, ionic impurities in the encapsulating resin are generated. It is thought that these ionic impurities act as carriers and cause corrosion of aluminum wiring or aluminum electrodes.

そこで、半導体装置内に水が浸入しない、耐湿性に優れ
た半導体装置の開発について0[究が進められ、樹脂組
成物中にシランカップリング剤を含有させたものや無機
質充填剤に表面処理を施したもの等が提案されている−
が、充分な効果が得られていないのが実情である。
Therefore, research is progressing on the development of semiconductor devices with excellent moisture resistance that prevents water from penetrating into the semiconductor devices, and research is underway to develop semiconductor devices that contain silane coupling agents in resin compositions and surface treatment of inorganic fillers. It has been proposed that
However, the reality is that sufficient effects have not been obtained.

この発明は、このような事情に鑑みなされた゛もので、
耐湿性ひいては耐腐食性に優れるとともに、プラスチッ
クパッケージ自体が機械的特性等に優れた半導体装置の
提供をその目的と−するものである。
This invention was made in view of these circumstances,
The purpose is to provide a semiconductor device which has excellent moisture resistance and corrosion resistance, and whose plastic package itself has excellent mechanical properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の半導体装置は、
下記の(A)〜(C)成分を含有しているエポキシ樹脂
組成物を用いて半導体素子を封止するという構成をとる
In order to achieve the above object, the semiconductor device of the present invention includes:
The structure is such that a semiconductor element is sealed using an epoxy resin composition containing the following components (A) to (C).

(A)エポキシ樹脂。(A) Epoxy resin.

(B)分子内にメトキシ基およびエトキシ基の少なくと
も一方を有するシラン化合 物とフェノール樹脂との反応生成物。
(B) A reaction product of a silane compound having at least one of a methoxy group and an ethoxy group in the molecule and a phenol resin.

(C)無機質充填剤。(C) Inorganic filler.

すなわち、本発明者らは、耐湿性ひいては耐腐食性に優
れる半導体装置を得ることを目的とし、半導体装置内へ
浸入する水の主たる経路について鋭く考察した結果、封
止樹脂中に分散する無機質充填剤粒子とその周囲の樹脂
との界面における空隙ならびにリードフレームと樹脂と
の界面がそれであることを確認し、上記経路を閉塞する
ため、無機質充填剤粒子、リードフレームに対する封止
樹脂の密着性を向上させるよう一連の研究を重ねた。そ
の結果、分子内にメトキシ基およびエトキシ基の少なく
とも一方を有するシラン化合物とフェノール類のノボラ
ックの反応生成物をエポキシ樹脂の硬化剤として使用す
ると、所期の目的を達成し得ることを見いだし、この発
明に到達した。
That is, with the aim of obtaining a semiconductor device with excellent moisture resistance and even corrosion resistance, the present inventors carefully considered the main route of water infiltration into a semiconductor device, and found that an inorganic filler dispersed in the sealing resin. Confirm that this is the void at the interface between the filler particle and the surrounding resin, and the interface between the lead frame and the resin, and check the adhesion of the sealing resin to the inorganic filler particle and the lead frame in order to block the above-mentioned path. A series of studies were conducted to improve this. As a result, they discovered that the desired purpose could be achieved by using a reaction product of a silane compound having at least one of a methoxy group and an ethoxy group in the molecule and a phenolic novolac as a curing agent for epoxy resin. The invention has been achieved.

この発明に用いるエポキシ樹脂組成物は、前記のように
、エポキシ樹脂(A成分)と、分子内にメトキシ基およ
びエトキシ基の少なくとも一方を有するシラン化合物と
フェノール樹脂との反応生成物(B成分)と、無機質充
填剤(C成分)とを用いて得られるものであって、通常
、粉末状もしくはそれを打錠したタブレット状になって
いる。
As mentioned above, the epoxy resin composition used in this invention is a reaction product of an epoxy resin (component A), a silane compound having at least one of a methoxy group and an ethoxy group in the molecule, and a phenol resin (component B). and an inorganic filler (component C), and is usually in the form of a powder or a tablet formed by compressing it.

上記A成分となるエポキシ樹脂は、1分子中に2個以上
のエポキシ基を有するものであれば特に制限するもので
はなく、タレゾールノボラック型、フェノールノボラッ
ク型やビスフェノールA型等、従来から半導体装置の封
止樹脂として用いられている各種のエポキシ樹脂があげ
られる。これらの樹脂のなかでも、融点が室温を超えて
おり、室温下では固形状もしくは高粘度の溶液状を呈す
るものを用いることが好結果をもたらす。ノボラック型
エポキシ樹脂としては、通常エポキシ当用160〜25
0.軟化点50〜130℃のものが用いられ、クレゾー
ルノボラック型エポキシ樹脂としては、エポキシ当量1
80〜210.軟化点60〜110℃のものが一般に用
いられる。
The epoxy resin serving as the above-mentioned A component is not particularly limited as long as it has two or more epoxy groups in one molecule. Various epoxy resins are used as sealing resins. Among these resins, it is preferable to use one that has a melting point above room temperature and is in the form of a solid or highly viscous solution at room temperature. As a novolac type epoxy resin, usually epoxy grade 160-25
0. A cresol novolak type epoxy resin with a softening point of 50 to 130°C is used, and an epoxy equivalent of 1
80-210. Those having a softening point of 60 to 110°C are generally used.

上記エポキシ樹脂と共に用いられる、B成分の、分子内
にメトキシ基およびエトキシ基の少なくども一方を有す
るシラン化合物とフェノール樹脂との反応生成物は、上
記エポキシ樹脂の硬化剤として作用するものであり、下
記のフェノール樹脂とシラン化合物とを任意に組み合わ
せて反応させることにより得られるものである。
The reaction product of a phenolic resin and a silane compound having at least one of a methoxy group and an ethoxy group in the molecule, which is used together with the epoxy resin, acts as a curing agent for the epoxy resin, It is obtained by reacting any combination of the following phenol resin and silane compound.

ここに、フェノール樹脂としては、フェノールノボラッ
ク、O−タレゾールノボラック、m−タレゾールノボラ
ック、p−タレゾールノボラック、0−エチルフェノー
ルノボラック、m−エチルフェノールノボラック、p−
エチルフェノールノボラック等を用いることができ、一
方、シラン化合物としては、3−グリシドキシプロピル
トリメトキシシラン、3−グリシドキシプロビルメチル
ジメトキシシラン、2− (3,4−エボキシシクロヘ
キシル)エチル1−リメトキシシラン、3−グリシドキ
シプロピルメチルメトキジエトキシシラン、3−グリシ
ドキシプロピルトリエトキジシラン等を用いることがで
きる。
Here, as the phenol resin, phenol novolak, O-talesol novolak, m-talesol novolak, p-talesol novolak, 0-ethylphenol novolak, m-ethylphenol novolak, p-
Ethylphenol novolak etc. can be used, while silane compounds include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-eboxycyclohexyl)ethyl 1 -rimethoxysilane, 3-glycidoxypropylmethylmethoxydiethoxysilane, 3-glycidoxypropyltriethoxydisilane, etc. can be used.

上記フェノール樹脂とシラン化合物の反応は、例えばシ
ラン化合物が3−グリシドキシプロビルトリメトキシシ
ランである場合、下記のように示すことができる。
The reaction between the phenol resin and the silane compound can be shown as follows, for example, when the silane compound is 3-glycidoxyprobyltrimethoxysilane.

このようなフェノール樹脂とシラン化合物の反応率は、
85%以上であることが好ましく、特に95%以上であ
ることが好適である。また、シラン化合物のフェノール
樹脂に対する配合割合は0゜1〜10重量%(以下「%
」と略す)であることが好ましい。
The reaction rate of such phenolic resin and silane compound is
It is preferably 85% or more, particularly preferably 95% or more. In addition, the blending ratio of the silane compound to the phenol resin is 0.1 to 10% by weight (hereinafter "%").
”) is preferable.

C成分の無機質充填剤としては、一般に用いられる石英
ガラス粉末、タルク、結晶性シリカ粉末、アルミナ粉末
、クレー、R酸カルシウム、酸化ジルコニウム、珪酸ジ
ルコニウム、酸化ベリリウム、ガラス繊維等が適宜に用
いられるが、特に石英ガラス粉末、結晶性シリカ粉末が
好適である。
As the inorganic filler for component C, commonly used quartz glass powder, talc, crystalline silica powder, alumina powder, clay, calcium oxide, zirconium oxide, zirconium silicate, beryllium oxide, glass fiber, etc. can be used as appropriate. In particular, quartz glass powder and crystalline silica powder are suitable.

また、この発明では、上記A成分、B成分およびC成分
以外に必要に応じて硬化促進剤、離型剤等を用いること
ができる。硬化促進剤としては、フェノール硬化エポキ
シ樹脂の硬化反応の触媒となるものはすべて用いること
ができ、例えば、2.4,6−トリ (ジメチルアミノ
メチル)フェノール、2−メチルイミダゾール等をあげ
ることができる。離型剤としては、従来公知のステアリ
ン酸、バルミチン酸等の長鎖カルボン酸、ステアリン酸
亜鉛、ステアリン酸カルシウム等の長鎖カルボン酸の金
属塩、カルナバワックス、モンタンワックス等のワック
ス類等を用いることができる。
Moreover, in this invention, in addition to the above-mentioned components A, B, and C, a curing accelerator, a mold release agent, etc. can be used as necessary. As the curing accelerator, any catalyst for the curing reaction of the phenol-cured epoxy resin can be used, such as 2,4,6-tri(dimethylaminomethyl)phenol, 2-methylimidazole, etc. can. As the mold release agent, conventionally known long-chain carboxylic acids such as stearic acid and barmitic acid, metal salts of long-chain carboxylic acids such as zinc stearate and calcium stearate, and waxes such as carnauba wax and montan wax may be used. I can do it.

この発明に用いるエポキシ樹脂組成物は、例えばつぎの
ようにして製造することができる。すなわち、前記成分
と、場合により顔料、カップリング剤等その他の添加剤
を適宜配合し、この配合物をミキシングロール機等の混
練機にかけて加熱状態で混練して溶融混合し、これを室
温に冷却したのら公知の手段によって粉砕し、必要に応
じて打錠するという一連の工程により目的とするエポキ
シ樹脂組成物を得ることができる。
The epoxy resin composition used in this invention can be produced, for example, as follows. That is, the above-mentioned components and other additives such as pigments and coupling agents are appropriately blended, and the mixture is kneaded in a heated state using a kneading machine such as a mixing roll machine to melt and mix, and the mixture is cooled to room temperature. Then, the desired epoxy resin composition can be obtained through a series of steps of pulverizing by known means and, if necessary, tableting.

このようなエポキシ樹脂組成物を用いての半導体素子の
封止は特に限定するものではなく、通常の方法、例えば
トランスファー成形等の公知のモールド方法により行う
ことができる。
Sealing of a semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a conventional method, for example, a known molding method such as transfer molding.

このようにして得られる半導体装置は、分子内にメトキ
シ基およびエトキシ基の少なくとも一方を有するシラン
化合物とフェノール樹脂との反応生成物をエポギシ樹脂
の硬化剤として含有するエポキシ樹脂組成物を用いて封
止されており、無機質充填剤粒子と樹脂との界面および
リードフレームと樹脂との界面において樹脂の接着状態
が向上していて水の浸入経路が遮断されているため、耐
湿性(IIliJ腐食性)に著しく優れている。また、
封止プラスチックパッケージ自体の機械的強度等にも優
れているのである。
The semiconductor device thus obtained is sealed using an epoxy resin composition containing a reaction product of a phenol resin and a silane compound having at least one of a methoxy group and an ethoxy group in the molecule as a curing agent for the epoxy resin. The adhesion of the resin is improved at the interface between the inorganic filler particles and the resin and the interface between the lead frame and the resin, blocking the path of water ingress, resulting in moisture resistance (IIliJ corrosion resistance). significantly superior to Also,
The sealed plastic package itself also has excellent mechanical strength.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導体装置は、分子内にメト
キシ基およびエトキシ基の少なくとも一方を有するシラ
ン化合物とフェノール樹脂との反応生成物を含む特殊な
エポキシ樹脂組成物を用いて封止されており、その封止
プラスチックパッケージが、従来のエポキシ樹脂組成物
製のものとは異なるため、樹脂成分とシラン粉末等の無
機質充填剤との接着状態および樹脂成分とリードフレー
ムとの接着状態が良好で水の浸入経路が遮断されており
耐湿性に冨んでいる。したがって、アルミ配線やアルミ
電極等の腐食が生じず、信頼性が大幅に向上する。しか
も、上記封止プラスチックパッケージの機械的特性等が
優れており、トランジスタ素子や集積回路等の半導体装
置はもちろんメモリ、マイクロコンビ、1−夕等のVL
SI (超高密度集積回路)に至るまで広く用いること
ができるのである。
As described above, the semiconductor device of the present invention is encapsulated using a special epoxy resin composition containing a reaction product of a phenol resin and a silane compound having at least one of a methoxy group and an ethoxy group in the molecule. Since the sealed plastic package is different from those made from conventional epoxy resin compositions, the adhesion between the resin component and inorganic filler such as silane powder and the adhesion between the resin component and the lead frame are good. Water infiltration routes are blocked, making it highly moisture resistant. Therefore, corrosion of aluminum wiring, aluminum electrodes, etc. does not occur, and reliability is greatly improved. In addition, the above-mentioned sealed plastic package has excellent mechanical properties, and can be used not only for semiconductor devices such as transistor elements and integrated circuits, but also for VL devices such as memories, microcombiners, and single-unit devices.
It can be widely used up to SI (ultra high density integrated circuit).

つぎに、実施例について説明する。Next, examples will be described.

〔実施例1〜8〕 まず、フェノール樹脂とシラン化合物とを反応させ、硬
化剤(B成分)を得た。つぎに、上記硬化剤と他の原料
を混合し、ミキシングロール機(ロール温度80〜90
℃)で10分間溶融混練を行い冷却固化後粉砕し、目的
とする粉末状のエポキシ樹脂組成物を得た。なお、各原
料の組成は下記の第1表に従った。
[Examples 1 to 8] First, a phenol resin and a silane compound were reacted to obtain a curing agent (component B). Next, the above curing agent and other raw materials are mixed and processed using a mixing roll machine (roll temperature 80 to 90).
The mixture was melt-kneaded for 10 minutes at a temperature of 100° C.), cooled and solidified, and then pulverized to obtain the desired powdered epoxy resin composition. The composition of each raw material was as shown in Table 1 below.

(以下余白) 〔比較例1,2〕 フェノールノボラック樹脂とシラン化合物の反応生成物
に代えて、単なるフェノールノボラック樹脂を用いた。
(The following is a blank space) [Comparative Examples 1 and 2] A simple phenol novolac resin was used instead of the reaction product of a phenol novolac resin and a silane compound.

それ以外は実施例1〜8と同様にして粉末状のエポキシ
樹脂組成物(比較例1)を得た。
Other than that, a powdered epoxy resin composition (Comparative Example 1) was obtained in the same manner as in Examples 1 to 8.

また、フェノールノボラック樹脂とシラン化合物の反応
生成物に代えて、フェノールノボラック樹脂90重量部
と3−グリシドキシロプロピルトリメトキシシラン2重
量部を反応させずにそのまま用いた。それ以外は実施例
1〜8と同様にして粉末状のエポキシ樹脂組成物(比較
例2)を得た。
Further, instead of the reaction product of the phenol novolac resin and the silane compound, 90 parts by weight of the phenol novolac resin and 2 parts by weight of 3-glycidoxylopropyltrimethoxysilane were used as they were without reacting them. A powdered epoxy resin composition (Comparative Example 2) was obtained in the same manner as in Examples 1 to 8 except for the above.

以上の実施例および比較例によって得られた粉末状のエ
ポキシ樹脂組成物を用い、半導体素子をトランスファー
成形(170℃、2分間)でモールドすることにより半
導体装置を得た。このようにして得られた半導体装置に
ついて、煮沸ρV特性1曲げ弾性率、吸水率、耐腐食性
等を測定した。上記曲げ弾性率はJIS −K−691
1に従い、吸水率は実施測高および比較測高に用いたエ
ポキシ樹脂組成物を直径50鰭、厚み1鶴の円板に成形
したのら、40℃/95%R11,60℃/95%R1
1゜80°C/95%R1+の各条件下で50時間放置
してその重量変化を測定することにより求めた。上記耐
腐食性は、145℃、95%RH、4,atm雰囲気下
でアルミ配線あるいは電極の腐食による断線時間を測定
し、評価した。
A semiconductor device was obtained by molding a semiconductor element by transfer molding (170° C., 2 minutes) using the powdered epoxy resin composition obtained in the above Examples and Comparative Examples. Regarding the semiconductor device thus obtained, boiling ρV characteristic 1 flexural modulus, water absorption, corrosion resistance, etc. were measured. The above bending elastic modulus is JIS-K-691
According to 1, the water absorption rate is 40℃/95%R11, 60℃/95%R1 after molding the epoxy resin composition used for the actual height measurement and comparative height measurement into a disk with a diameter of 50 fins and a thickness of 1 crane.
The weight change was determined by standing for 50 hours under the following conditions: 1.degree. 80.degree. C./95% R1+. The above-mentioned corrosion resistance was evaluated by measuring the disconnection time due to corrosion of the aluminum wiring or electrodes in an atmosphere of 145° C., 95% RH, and 4,000 ml of atm.

これらの測定の結果を下記の第2表に示した。The results of these measurements are shown in Table 2 below.

(以下余白) 第2表の結果から、実施測高は比較別品に比べてそのプ
ラスチックパッケージの吸水率が低く、耐腐食性に優れ
ており、しかも機械的特性にも優れていることがわかる
(Left below) From the results in Table 2, it can be seen that the plastic package of the actual height measurement has a lower water absorption rate, better corrosion resistance, and better mechanical properties than the comparative product. .

なお、実施測高であるエポキシ樹脂組成物中において、
シラン化合物がフェノール樹脂と反応して反応生成物と
して取り込まれていることは硬化反応の反応機構から明
らかである。
In addition, in the epoxy resin composition that was measured,
It is clear from the reaction mechanism of the curing reaction that the silane compound reacts with the phenol resin and is incorporated as a reaction product.

Claims (1)

【特許請求の範囲】[Claims] (1)下記の(A)〜(C)成分を含有しているエポキ
シ樹脂組成物を用いて半導体素子を封止してなる半導体
装置。 (A)エポキシ樹脂。 (B)分子内にメトキシ基およびエトキシ基の少なくと
も一方を有するシラン化合 物とフェノール樹脂との反応生成物。 (C)無機質充填剤。
(1) A semiconductor device in which a semiconductor element is encapsulated using an epoxy resin composition containing the following components (A) to (C). (A) Epoxy resin. (B) A reaction product of a silane compound having at least one of a methoxy group and an ethoxy group in the molecule and a phenol resin. (C) Inorganic filler.
JP60242465A 1985-10-28 1985-10-28 Semiconductor device Expired - Lifetime JPH0717739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242465A JPH0717739B2 (en) 1985-10-28 1985-10-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242465A JPH0717739B2 (en) 1985-10-28 1985-10-28 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8053413A Division JP2655833B2 (en) 1996-03-11 1996-03-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62101055A true JPS62101055A (en) 1987-05-11
JPH0717739B2 JPH0717739B2 (en) 1995-03-01

Family

ID=17089484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242465A Expired - Lifetime JPH0717739B2 (en) 1985-10-28 1985-10-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0717739B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451548A (en) * 1990-06-19 1992-02-20 Nitto Denko Corp Semiconductor device
JPH08239453A (en) * 1996-03-11 1996-09-17 Nitto Denko Corp Semiconductor device
JP2012052123A (en) * 2005-02-18 2012-03-15 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918724A (en) * 1982-07-23 1984-01-31 Nitto Electric Ind Co Ltd Termosetting resin composition
JPS5993729A (en) * 1982-11-22 1984-05-30 Hitachi Ltd Silicone phenolic compound, its preparation and composition
JPS59172541A (en) * 1983-03-23 1984-09-29 Sumitomo Bakelite Co Ltd Mold-releasable resin composition
JPS59181036A (en) * 1983-03-30 1984-10-15 Nitto Electric Ind Co Ltd Semiconductor device
JPS6250324A (en) * 1985-08-29 1987-03-05 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918724A (en) * 1982-07-23 1984-01-31 Nitto Electric Ind Co Ltd Termosetting resin composition
JPS5993729A (en) * 1982-11-22 1984-05-30 Hitachi Ltd Silicone phenolic compound, its preparation and composition
JPS59172541A (en) * 1983-03-23 1984-09-29 Sumitomo Bakelite Co Ltd Mold-releasable resin composition
JPS59181036A (en) * 1983-03-30 1984-10-15 Nitto Electric Ind Co Ltd Semiconductor device
JPS6250324A (en) * 1985-08-29 1987-03-05 Hitachi Chem Co Ltd Epoxy resin molding material for sealing electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451548A (en) * 1990-06-19 1992-02-20 Nitto Denko Corp Semiconductor device
JPH08239453A (en) * 1996-03-11 1996-09-17 Nitto Denko Corp Semiconductor device
JP2012052123A (en) * 2005-02-18 2012-03-15 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device

Also Published As

Publication number Publication date
JPH0717739B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
TW561177B (en) Epoxy resin compositions and premolded semiconductor packages
JPH0288621A (en) Epoxy resin composition for sealing semiconductor
JPS62101055A (en) Semiconductor device
JPH03116958A (en) Semiconductor device
JP2655833B2 (en) Semiconductor device
JP3176502B2 (en) Semiconductor device and epoxy resin composition for semiconductor encapsulation used therein
JP2534296B2 (en) Semiconductor device
JPS63299151A (en) Semiconductor device
JP2001085576A (en) Manufacture of epoxy resin composition for sealing semicondcutor, and epoxy resin composition for sealing the semiconductor and semiconductor device obtained thereby
JP2938811B2 (en) Semiconductor device manufacturing method
JP2574434B2 (en) Semiconductor device
JP3537859B2 (en) Semiconductor device and epoxy resin composition used therein
JP2523669B2 (en) Semiconductor device
JPH0776257B2 (en) Semiconductor device
JPS6370445A (en) Semiconductor device
JPH05315473A (en) Semiconductor device
JP2000256438A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus using the same
JPH06326220A (en) Resin-sealed semiconductor device
JPH09208807A (en) Epoxy resin composition for sealing material and semiconductor device using the same
JPS62254452A (en) Resin-sealed semiconductor device
JPS63160255A (en) Semiconductor device
JP2859640B2 (en) Semiconductor device
JPH0764918B2 (en) Semiconductor device
JP3239970B2 (en) Semiconductor device
JPH0776258B2 (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term