JPS62100457A - Aluminous fiber and its production - Google Patents

Aluminous fiber and its production

Info

Publication number
JPS62100457A
JPS62100457A JP60241092A JP24109285A JPS62100457A JP S62100457 A JPS62100457 A JP S62100457A JP 60241092 A JP60241092 A JP 60241092A JP 24109285 A JP24109285 A JP 24109285A JP S62100457 A JPS62100457 A JP S62100457A
Authority
JP
Japan
Prior art keywords
soln
fiber
precursor
added
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60241092A
Other languages
Japanese (ja)
Inventor
Shozo Seo
省三 瀬尾
Akio Yamamoto
昭夫 山本
Hideo Yanagi
柳 英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP60241092A priority Critical patent/JPS62100457A/en
Publication of JPS62100457A publication Critical patent/JPS62100457A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/011Manufacture of glass fibres or filaments starting from a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/125Silica-free oxide glass compositions containing aluminium as glass former
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain a titled fiber having excellent transparency and tensile strength by subjecting a specific fiber precursor to 2 stages of calcination under specific calcination conditions. CONSTITUTION:Colloidal silica as an SiO2 component is added to a basic aluminum chloride soln as an Al2O3 component and if necessary, a chloride (salt) of P, Ba, Sn, Y, Co, Sr, Cr, Zr, or Fe is added as the oxide component of these metals to the soln.; further lactic acid or acetic acid is added as a viscosity adjusting and gelation preventive stabilizer to the soln. and thereafter the soln. is thickened by vacuum distillation to obtain a stock soln. for spinning having 700-3,000p viscosity (ordinary temp.). The soln. is extruded into dry gaseous flow from a vessel having many fine holes sized, for example, about 0.2mm to obtain the fiber precursor. The precursor is first heated to 400-600 deg.C in an NH3 atmosphere and is then subjected to a heat treatment up to 1,200 deg.C in an N2 atmosphere contg. 1-10vol% O2 by which the precursor is executed to two stages of calcination. The titled fiber which is approximately transparent, has >=25kg/mm2 tensile strength and contg. 3-12wt% SiO2 and <=10wt% above- mentioned metallic oxide is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] ε二の発明【、1、^い引張強1良をイ11jろアルミ
ノ質繊紺にかかる()のて゛ある。
[Detailed Description of the Invention] [Industrial Field of Application] The invention of ε2 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3 or 4 type methods for applying aluminous fibers to navy blue.

[従来の技術I U米からアルミ′)質繊輔は知らtiCいる。例λばポ
リアルミ/:l量1ンの、にう/i1m−[金属化合物
を出)P、原旧どしI、−ものはイれ白q紡糸に必要な
帖f1を11つていく)IJめ141^分子化合物を添
加づ−ること!K < 11’ IIK化l・きる。i
ノか」ノイ「がら、ポリアルミノキリ゛ンはぞれ自身が
きわめc高1dli Fあり、このr17t l’lか
らでき1.−アルミノvIjm uはかイ1す^い引張
り強面を有−4ろにbかかわらヂ高価で・ある!こめ市
場−C: (7) N及に[:L NU Iff カS
 −> k 、、又、その1.iかにAg2O3−8i
02系組成でr’205.1120g 、Ti 02 
、Mす0等の酸化物を添加し−て繊Ilf強痘を発現さ
1(ろb法ム知られでいるが、これらはSi(’12分
が1!1・〜・30%も含りしCおり、高lフルミノ縄
麗としCの機能を発揮(ノ1!?ない。
[Prior art IU aluminum') Textile fibers are known as TiC. For example, λ is polyaluminum/:l amount of 1 liter, Ni/i1m-[metal compound is produced]P, original old I, -thing is white, q takes 11 sheets of f1 necessary for spinning)IJ Me 141^ Adding molecular compounds! K <11' IIK conversion l・kiru. i
However, each polyalumino resin has an extremely high C height of 1 dli F, and can be made from this r17t l'l. Even though it is expensive, it is expensive!Kome market-C: (7) N and [:L NU Iff KaS
-> k,, also, part 1. i Crab Ag2O3-8i
02 system composition r'205.1120g, Ti 02
It is known that the addition of oxides such as oxides such as oxides such as oxides such as oxides such as oxides such as oxides such as oxides such as oxides such as oxidants such as oxides such as oxidants such as oxides such as oxidants such as oxides such as oxidants such as oxidants such as oxidants such as oxides such as oxides such as oxides such as oxidants such as oxides such as oxides such as oxidants such as Rishi C and high l Fulmino rope Rei Toshi C's function is demonstrated (no 1!? No.

塩基性塩化アルミニウムに1 フィト状シリカを添加し
てjフルミノ”繊維を製3!h″Ij?)h法は、本願
出願人の先1−i技術として知られでいる(特開11r
15423727j4)。このもの1よ紡糸に必要な粘
調竹を侍が残り、このためgillf強亀が10Kfl
 / ttua ”程度しか発現l!ず、構造材と()
てよりも甲(2る断熱材として利用しく!Iるにづぎイ
Tかった。
Flumino fibers are made by adding phytosilica to basic aluminum chloride.3!h''Ij? ) h method is known as the applicant's previous 1-i technology (Japanese Patent Application Laid-Open No. 11r
15423727j4). The samurai left the sticky bamboo necessary for spinning, and because of this, the gillf strong turtle made 10Kfl.
/ ttua ” only appears to a certain degree, but structural materials and ()
It is better to use it as a heat insulator than the first one!

1問題点を解決するための手段1 この発明は、人手の容易なかつアルミナ含有間の高い塩
基性塩化アルミニウムと]ロイド状シリカを出発原料ど
じ、これに粘性調製およびゲル化防庄剤どじ−C乳酸又
は酢酸を添加してWAN前駆体とするものである。
1. Means for Solving Problem 1 This invention uses basic aluminum chloride with a high alumina content and silica as starting materials, which are easy to handle, and uses a viscosity adjusting and gelling anti-shrink agent as a starting material. It is used as a WAN precursor by adding lactic acid or acetic acid.

本願発明者等はこの繊維前駆体の熱分解の過桿について
厳密なる検討を加え、塩素の離脱、PM本の酸化によS
9の形成を抑制御るために、2段焼成を試み、透明な引
張強度の高いアルミナ質muを得たものである。
The inventors of the present application conducted a rigorous study on the process of thermal decomposition of this fiber precursor, and found that S
In order to suppress the formation of No. 9, two-stage firing was attempted, and a transparent alumina mu with high tensile strength was obtained.

[作 用1 以トこの発明(:ついてiT細に説明1する。[Work 1 Hereinafter, this invention will be explained in detail.

すなわら、繊Illとして5102を3へ・12小品+
)6(以下Φ品%−て゛小lJ)を含み、り13成分と
しく1)。
In other words, 5102 to 3, 12 pieces +
) 6 (hereinafter referred to as Φ product % - small lJ), and has 13 components 1).

Ba、Sn、Y、Co、Sr、Cr、Ir、l−C調!
!する。この繊維前駆体は、△α203成分としては塩
基性塩化アルミニウ11△(12(ON > 5Cf1
・2.什(20を使用1ハ5i02成分と1−](1ま
]ロイド状シリカ、第3成分の金属酸化物はでの塩化物
又(ま塩を使用する。
Ba, Sn, Y, Co, Sr, Cr, Ir, l-C tone!
! do. This fiber precursor contains basic aluminum chloride 11Δ(12(ON > 5Cf1) as the Δα203 component.
・2. The second component is 20, and the third component is chloride or salt of the metal oxide.

これらの混合物μ粘性調整及びゲル化防11安定剤とし
て乳酸又は酢酸を添加1Jる。この原液を減圧蒸留装冒
で濃縮リ−ることに3J、って700−3000ボイズ
(常温)の紡糸液とする。乳酸又【まi’i+酸の添加
により、この紡糸液はi(時間放置しくも変化Uず、ゲ
ル化にJ、る結晶や沈澱物も生じ2にい。この紡糸液を
0.2m稈度の細孔を多数イjする容器内から乾燥気流
中に押し出すことによって、ml−ル等に巻き取ること
ができる。
To these mixtures, lactic acid or acetic acid is added as a stabilizer for adjusting viscosity and preventing gelation. This stock solution is concentrated using a vacuum distillation apparatus to obtain a spinning solution of 3 J, or 700-3000 voise (at room temperature). By adding lactic acid or acid, this spinning solution did not change even if it was left for a long time, and some crystals and precipitates were formed during gelation. By extruding it into a dry air stream from inside a container with many pores, it can be rolled up into a ml roll or the like.

この繊維前駆体は、水、塩化水素、乳酸又は酢酸を含有
しており空気中での熱処理によりこれらが1!lli 
IIIIJ I、て繊緒長が約45%収縮する。
This fiber precursor contains water, hydrogen chloride, lactic acid, or acetic acid, and when heat treated in air, 1! lli
IIIJ I, the cord length shrinks by about 45%.

前記した特開昭5123727号の発明においてはシリ
jJff1等賃なる点もあるが、この繊維前駆体をしの
ど考えられる。
In the invention of JP-A No. 5123727 mentioned above, there is also the point that the fiber precursor is equivalent to silicon.

そこで本発明者等は焼成条件を2段焼成どし、しかも低
温域の400へ・600℃迄はNH3ガス雰囲気で、高
温域の1200℃迄は少量の酸素を加えた窒素ガス雰囲
気とした。この−次焼成では水および500°0付近ま
での低温域を空気中で処理4ると塩化水素が残留しτ高
温焼成における急激な離脱となり空孔が残留しや1くな
る。乳酸又は酢酸の炭化も同様で、一時焼成Cはゆっく
りm化さけ、二次焼成においてこれを徐々に酸化さl!
ることが好ましい。
Therefore, the present inventors changed the firing conditions to two-stage firing, in which an NH3 gas atmosphere was used in the low temperature range up to 400°C and 600°C, and a nitrogen gas atmosphere with a small amount of oxygen added was used in the high temperature range up to 1200°C. In this second firing, hydrogen chloride remains when treated in water and in air at a low temperature of around 500° 0, and τ is rapidly removed during high-temperature firing, resulting in less pores remaining. The same goes for the carbonization of lactic acid or acetic acid; the primary firing C slowly converts the carbon, and the secondary firing gradually oxidizes it.
It is preferable that

二次焼成は1200℃迄加熱でるが、1[として窒素ガ
ス雰囲気で行い、炭素を酸化−4るに必要な小開の酸素
を含ませる。この場合、wA雛に対し張力を加えながら
焼成することは繊維強面を高めるのに有効である。すな
わち炭素の酸化離脱、微粒子のの白土に役立つものど各
えられる。又、P、11゜Sn、Y、Co、Sr、Cr
、7r、FO(71酸化物又はぞのl−を添加しU 4
!?た繊維ム、酸化物に換算して10%以下であれば特
i、T: 21Q焼成に」、−)〔史にに^い効果が得
られる。
The secondary firing is heated up to 1200°C, and is carried out in a nitrogen gas atmosphere to contain a small amount of oxygen necessary to oxidize carbon. In this case, firing the wA chicks while applying tension is effective in increasing the fiber strength. In other words, they are useful for the oxidation removal of carbon and the formation of fine particles of white clay. Also, P, 11°Sn, Y, Co, Sr, Cr
, 7r, FO (71 oxide or zono l- added U 4
! ? If the fiber content is 10% or less in terms of oxides, especially for 21Q firing, an unprecedented effect can be obtained.

[発明の効果1 このJ、うにして得t=本発明のアルミI質繊ル(1の
強mは40に!?/aa2以−1−に以遠1−7、f’
)、、7rを加えたものでは100Kg/ MM2以I
−のちのが得t)れた。
[Effect of the invention 1 This J, the obtained t = the aluminum I fiber of the present invention (the strong m of 1 is 40!?/aa2 or more -1- is 1-7, f'
),, 100Kg/MM2 or more with 7r added
- later obtained t).

以下にこの発明の詳細な説明4る。A detailed description of the invention is provided below.

実施例 1 塩Mfl塩化アルミニウムA (12(ON ) 5C
11表1に示す割合で5種のものを得た。それぞれに固
形分100に対し乳酸を20の割合で添加した。これら
を1−タリーφ■バボレーターで減圧濃縮して700〜
3000ボイズ(室温)の粘調液を得た。底に0.2#
の孔のあいた容器に入れ窒素ガスで加圧して、乾燥空気
中にAリフイスがらIINを押し出した。この繊緒前駆
体を乾燥後石英管内で1,5更/winのN +−13
ガスを流しながう500℃ig 108間¥1渇させて
15分間焼成した。次いで1%の酸素を含有する窒素ガ
スをL5u/winで流しながら、1200℃迄2時間
で胃温し、15分間焼成した。なお比較例どして空気中
で1200℃迄熱処理した従来法によるものをNn6,
7として示づ一0表    1 1     100    0    結晶成長・粉化
した 弱くて測定不能2    99   1   結
晶成長粉化した  弱くて測定不能3    97  
 3   やや結晶の成長が    70みられた(1
7.1f)) 4    95   5   やや結晶の成長が   
 64みられlこ(13,3μ) 6    97   3   結晶成長・もろい   
 9実施例 2 P205源とし−(A13PO485%溶液を表2に示
す割合で添加した以外は実施例1と同様に処即した。N
n16.17.18は従来法により1段焼成したもので
ある。
Example 1 Salt Mfl Aluminum chloride A (12(ON) 5C
11 Five types of products were obtained in the proportions shown in Table 1. Lactic acid was added to each at a ratio of 20 parts to 100 parts solid content. Concentrate these under reduced pressure with a 1-tally φ■ vaporizer to 700~
A viscous liquid of 3000 voids (room temperature) was obtained. 0.2# on the bottom
The container was placed in a perforated container, pressurized with nitrogen gas, and IIN was extruded through the A-rifice into dry air. After drying this cord precursor, it was dried in a quartz tube at a rate of 1.5%/win of N+-13.
It was fired for 15 minutes at 500°C with gas flowing for 108 minutes. Next, while flowing nitrogen gas containing 1% oxygen at a rate of 5 u/win, the sample was heated to 1200° C. for 2 hours and baked for 15 minutes. As a comparative example, Nn6,
7 Table 1 1 100 0 Crystal growth and powdering Weak and unmeasurable 2 99 1 Crystal growth and powdering Weak and unmeasurable 3 97
3 Slight crystal growth was observed at 70 (1
7.1f)) 4 95 5 Slight crystal growth
64 observed (13,3μ) 6 97 3 Crystal growth/brittle
9 Example 2 The procedure was carried out in the same manner as in Example 1, except that an 85% solution of A13PO4 was added as a P205 source at the ratio shown in Table 2.N
Nos. 16, 17 and 18 were fired in one stage using the conventional method.

一/− 表    2 実験 Al2O2%  Si02%  P205 % 
  焼成俊のl&1iIff   強 麻庵     
         の観察  Kfl/mAIt   
 90     7      :3     透明、
17.2μ  11312   95    0   
 5   結晶成長、粉化 −し易い 13    85      12      5) 
      透  明    8314    80 
     17      3       透  明
    2515    80     10    
 10      透  明    4816907 
     ζ3   結晶成長、もろい  2017 
  85     12     5    結晶成長
、もろい  1418   80     10   
  10    結晶成長、もろい  17実施例 3 れも3%となるように塩化物又はin類として添加した
以外は実施例1ど同様に処即し、その物性を表3に示し
た。No、111〜120に従来法による1段焼成のも
のである。
1/- Table 2 Experiment Al2O2% Si02% P205 %
Baked Shun's l&1iIff Strong Asan
Observation of Kfl/mAIt
90 7:3 transparent,
17.2μ 11312 95 0
5 Crystal growth, powdering - easy to cause 13 85 12 5)
Transparent 8314 80
17 3 Transparent 2515 80 10
10 Transparent 4816907
ζ3 Crystal growth, brittle 2017
85 12 5 Crystal growth, brittle 1418 80 10
10 Crystal growth, brittleness 17 Example 3 The same procedure as in Example 1 was carried out except that chloride or ins was added at a concentration of 3%, and the physical properties thereof are shown in Table 3. Nos. 111 to 120 were one-stage fired by the conventional method.

表    3 102 7r20:+   Zr0(C,lI2   
   透  明  12.27z  1(1!+103
  Fe2e3 Fe(j)3      淡黄色、透
明     51104  Ba OBa (j)2 
       A   明        り(lI0
5  SnO5n(j14        A   明
  13.9/j   70106   Y2 03 
    Y  (C)bcOOH)3    i古  
  明    11.0μ    1)!)t07  
CoOC0(J2i111内色、透明13.6fl  
 唄)8108  Sr OSr (E、I12   
     透   明  13.!1/171109 
 Y2O3Y(C11sC0011)318告色1:1
.177 81+                 
    透   明Co OCo CM 2 110  Y203   Y (CH3COOH)3 
 透  明  12.31194十 12.14z 112 7r203.7rOCρ2     結晶成i
%   I2.2I121113  Fe 203  
F−e cn :i       淡黄色、結晶成に−
101148a (’)    Ha O,Q 2  
     結晶成長13115  Sn OS11にΩ
4      結晶成長13.J114116  Y2
03   Y (0fbcOOl−1) 3  結晶成
t*   110/118117  COOCo C,
fl 2       淡肖色、結晶成1(201:i
6μ m18  sro    5r(J2      結晶
成(41:19Iz   14表    3 (続き) →−13,1μ Co OCO(J 2 120  Y203   Y (CI−1scOOH)
 3  結晶成長  12.3f121→− 7rO27rO2C12 これら実施例からも明らかなように、本発明の2段焼成
したものは繊維がほぼ透明で引張強度が25Kg/11
12以上のものが得られ、特にN011の場合は113
 Kj/ rstn 2にもなった。
Table 3 102 7r20: + Zr0(C, lI2
Transparent 12.27z 1(1!+103
Fe2e3 Fe(j)3 Pale yellow, transparent 51104 Ba OBa (j)2
A light (lI0
5 SnO5n (j14 A light 13.9/j 70106 Y2 03
Y (C)bcOOH)3 i old
Light 11.0μ 1)! )t07
CoOC0 (J2i111 inner color, transparent 13.6fl
Song) 8108 Sr OSr (E, I12
Transparent 13. ! 1/171109
Y2O3Y (C11sC0011) 318 coloration 1:1
.. 177 81+
Transparent Co OCo CM 2 110 Y203 Y (CH3COOH)3
Transparent 12.31194112.14z 112 7r203.7rOCρ2 Crystal formation i
% I2.2I121113 Fe 203
F-e cn:i Pale yellow, due to crystal formation-
101148a (') Ha O,Q 2
Crystal growth 13115 Ω to Sn OS11
4 Crystal growth 13. J114116 Y2
03 Y (0fbcOOl-1) 3 Crystal formation t* 110/118117 COOCo C,
fl 2 pale color, crystalline 1 (201:i
6μ m18 sro 5r (J2 Crystallization (41:19Iz 14 Table 3 (continued) →-13,1μ Co OCO (J 2 120 Y203 Y (CI-1scOOH)
3 Crystal growth 12.3f121→-7rO27rO2C12 As is clear from these examples, the fibers of the two-stage fired product of the present invention are almost transparent and the tensile strength is 25Kg/11
12 or more can be obtained, especially in the case of N011, 113
It also became Kj/rstn 2.

これは前述したJ:うに熱分解時にお【」る揮散の状態
を2段焼成および雰囲気調整によって焼成するようにし
た結束得られたものである。
This is a bundle obtained by firing the above-mentioned J: sea urchin in a two-stage firing process and adjusting the atmosphere to avoid the volatilization state that occurs during the thermal decomposition of sea urchin.

なお、第2段の高温焼成時に窒素中に含ませる酸素の割
合は、−次焼成で残存する炭素の量および状態によって
適宜選択されるが、1〜10容吊%、好ましい範囲は3
〜5容吊%である。
The proportion of oxygen contained in the nitrogen during the second stage high-temperature firing is appropriately selected depending on the amount and state of carbon remaining in the secondary firing, but is 1 to 10% by volume, and the preferred range is 3%.
~5% by volume.

手続補 正t!i’ (方式ン 昭和   昭和60年 特許願第241092号3、 
補正をする者 スバ沖との関係        特許出願人す、補正0
対象    e□細。(、ゎ明。工。親、□IC7)欄
 (あユ、−9)、補正の内容 手糸范字山1■三 二T!7:   (自発)昭和61
年 5月270 昭和60年 特許願第241092号 3、補正をする者 東京都中央区日本橋本町2丁目1番地 氏 名    日東ビル 電話(241>7’268番
願  書 7、補正の内容 /)本願の発明の数は2であるから、
Procedural amendment t! i' (Scheme Showa 1985 Patent Application No. 241092 3,
Relationship between the person making the amendment and Suva Oki Patent applicant, amendment 0
Target e□Fine. (, ゎ明. 工. parent, □IC7) Column (Ayu, -9), Correction contents Teitofan character mountain 1 ■ 3 2 T! 7: (Voluntary) Showa 61
May 270, 1985 Patent Application No. 241092 3, Person making the amendment 2-1 Nihonbashihonmachi, Chuo-ku, Tokyo Name Nitto Building Telephone (241>7'268 Application 7, Contents of amendment/) This application Since the number of inventions is 2,

Claims (2)

【特許請求の範囲】[Claims] (1)3〜12重量%のSiO_2および10重量%以
下のP、Ba、Sn、Y、Co、Sr、Cr、Zr、F
eの酸化物の少なくとも1つを含み残余がAl_2O_
3であり、ほぼ透明でかつ引張強度が25kg/mm^
2以上であることを特徴とするアルミナ質繊維。
(1) 3-12% by weight of SiO_2 and 10% by weight or less of P, Ba, Sn, Y, Co, Sr, Cr, Zr, F
containing at least one oxide of e, the remainder being Al_2O_
3, is almost transparent and has a tensile strength of 25kg/mm^
An alumina fiber characterized by having a ratio of 2 or more.
(2)塩基性塩化アルミニウム溶液にコロイド状シリカ
を加え、P、Ba、Sn、Y、Co、Sr、Cr、Zr
、Fe金属の塩化物又は塩を添加又は添加せずに乳酸又
は酢酸を加えて紡糸原液とし、これを濃縮紡糸して繊維
前駆体とし、これをNH_3雰囲気下で400〜600
℃に加熱し、更に1から10容量%の酸素を含む窒素雰
囲気下で1200℃まで熱処理することを特徴とするア
ルミナ質繊維の製法。
(2) Adding colloidal silica to basic aluminum chloride solution, P, Ba, Sn, Y, Co, Sr, Cr, Zr
, add lactic acid or acetic acid with or without addition of Fe metal chloride or salt to make a spinning stock solution, concentrate this to make a fiber precursor, and spin this into a fiber precursor under an NH_3 atmosphere.
A method for producing alumina fiber, which comprises heating the fiber to 1200°C in a nitrogen atmosphere containing 1 to 10% by volume of oxygen.
JP60241092A 1985-10-28 1985-10-28 Aluminous fiber and its production Pending JPS62100457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241092A JPS62100457A (en) 1985-10-28 1985-10-28 Aluminous fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241092A JPS62100457A (en) 1985-10-28 1985-10-28 Aluminous fiber and its production

Publications (1)

Publication Number Publication Date
JPS62100457A true JPS62100457A (en) 1987-05-09

Family

ID=17069166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241092A Pending JPS62100457A (en) 1985-10-28 1985-10-28 Aluminous fiber and its production

Country Status (1)

Country Link
JP (1) JPS62100457A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265424A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
JPH035343A (en) * 1989-05-30 1991-01-11 Central Glass Co Ltd Fiberglass composition
FR2718129A1 (en) * 1994-04-05 1995-10-06 Europ Propulsion Process for the protection against oxidation of a porous material containing carbon, and material obtained
US8163377B2 (en) 2005-11-10 2012-04-24 The Morgan Crucible Company Plc High temperature resistant fibres

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025822A (en) * 1973-07-12 1975-03-18
JPS58186613A (en) * 1982-04-26 1983-10-31 Mitsubishi Keikinzoku Kogyo Kk Production of refractory alumina fiber
JPS60139817A (en) * 1983-12-28 1985-07-24 Nichibi:Kk Production of alumina based inorganic fiber precursor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025822A (en) * 1973-07-12 1975-03-18
JPS58186613A (en) * 1982-04-26 1983-10-31 Mitsubishi Keikinzoku Kogyo Kk Production of refractory alumina fiber
JPS60139817A (en) * 1983-12-28 1985-07-24 Nichibi:Kk Production of alumina based inorganic fiber precursor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265424A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
JPH035343A (en) * 1989-05-30 1991-01-11 Central Glass Co Ltd Fiberglass composition
FR2718129A1 (en) * 1994-04-05 1995-10-06 Europ Propulsion Process for the protection against oxidation of a porous material containing carbon, and material obtained
WO1995026934A1 (en) * 1994-04-05 1995-10-12 Societe Europeenne De Propulsion Method for protecting a porous carbon-containing material from oxidation and material obtained thereby
US8163377B2 (en) 2005-11-10 2012-04-24 The Morgan Crucible Company Plc High temperature resistant fibres

Similar Documents

Publication Publication Date Title
JPS63159238A (en) Dealkalized sheet glass and manufacture
JPS62100457A (en) Aluminous fiber and its production
JPH0411023A (en) Production of oxynitride ceramic fiber
US6348428B1 (en) High-purity crystalline inorganic fiber, molded body thereof, and method of production thereof
JPH04149020A (en) Method for refining rare-earth oxysulfide
KR880006136A (en) Process for preparing precursor composition of colored glass composition
JPS62297236A (en) Production of quartz glass fiber
JPS61124626A (en) Aluminum nitride fiber and production thereof
JPH02259112A (en) Ceramic fiber wherein sio2 and zro2 are base material and preparation thereof
JPH04263615A (en) Production of viscous aluminosilicate sol
JP2000160434A (en) High purity alumina filament and its fiber product and fire-resistant insulating material
JPS61289130A (en) Production of zirconia fiber having high strength and toughness
JPH0478731B2 (en)
CN115626771B (en) High-hardness Ge-As-Se chalcogenide glass and preparation method and application thereof
JPS5988917A (en) Refractory alumina fiber and its manufacture
DE3314221A1 (en) Process for applying a glaze to a silicon carbide article
NO163874B (en) PISTON COMBUSTION ENGINE.
JPH0450315A (en) Porous hollow yarn of polyether-based copolymer
JPS605022A (en) Manufacture of alumina fiber
JPS60209016A (en) Preparation of composite ceramic fiber
JPH0470252B2 (en)
JPS6246965A (en) Sic-si3n4 base composite ceramics and manufacture
JPS63274636A (en) Manufacture of fine denier alumina continuous fiber
JPS63134502A (en) Sublimation purification of inorganic fluoride
JPH076091B2 (en) Method for producing silica-alumina fiber