JPS63134502A - Sublimation purification of inorganic fluoride - Google Patents

Sublimation purification of inorganic fluoride

Info

Publication number
JPS63134502A
JPS63134502A JP27947686A JP27947686A JPS63134502A JP S63134502 A JPS63134502 A JP S63134502A JP 27947686 A JP27947686 A JP 27947686A JP 27947686 A JP27947686 A JP 27947686A JP S63134502 A JPS63134502 A JP S63134502A
Authority
JP
Japan
Prior art keywords
fluoride
metal
impurity
sublimation
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27947686A
Other languages
Japanese (ja)
Other versions
JPH0653561B2 (en
Inventor
Shigeki Sakaguchi
茂樹 坂口
Yoshiharu Mochida
持田 好晴
Toshio Tateno
立野 稔夫
Masahiro Hatsutori
服部 正尋
Mutsuhiro Tanaka
睦浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Kagaku Kogyo Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Morita Kagaku Kogyo Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Kagaku Kogyo Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Morita Kagaku Kogyo Co Ltd
Priority to JP27947686A priority Critical patent/JPH0653561B2/en
Publication of JPS63134502A publication Critical patent/JPS63134502A/en
Publication of JPH0653561B2 publication Critical patent/JPH0653561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To effect remarkable sublimation and removal of impurity metals from objective inorganic fluoride salts containing impurity metal compounds, without melting the inorganic fluoride, by carrying out sublimation purification while keeping large vapor-pressure difference between the inorganic fluoride and the impurity metal. CONSTITUTION:When the objective inorganic fluoride has high vapor pressure than the impurity metal fluoride, the fluoride is heat-treated in the presence of a metal oxide or water in the metal fluoride or in the treating atmosphere to convert the impurity metal fluoride to nonvolatile metal oxide and the objective fluoride is sublimed. When the inorganic fluoride has lower vapor pressure than the impurity metal fluoride, the amount of the metal oxide or water in the raw metal fluoride or in the treating atmosphere is reduced beforehand and the fluoride is heat-treated to effect sublimation and removal of the impurity metal while preventing the conversion of the impurity metal fluoride to nonvolatile metal oxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無機フッ化物塩類中の金属不純物を効率的に
分離除去するための昇華精製技術の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in sublimation purification technology for efficiently separating and removing metal impurities in inorganic fluoride salts.

〔従来の技術、発明が解決しようとする問題点〕エレク
トロニクス、オプトエレクトロニクスの進展とともに高
度に精製された素材原料としてのフッ化物塩類や、広い
光透過性のガラス、単結晶、多結晶の原料としてのフッ
化物塩類の需要がふえてきている。またその用途、効用
、特性等については多くの可能性が報告されている。
[Prior art and problems to be solved by the invention] With the advancement of electronics and optoelectronics, fluoride salts have become highly refined as raw materials, and as raw materials for wide light transmittance glasses, single crystals, and polycrystals. The demand for fluoride salts is increasing. Also, many possibilities regarding its uses, effects, properties, etc. have been reported.

しかしその反面、これらが用途に充分対応できる量産可
能な経済的手法で作られて供給されているとはいえない
0例えば最も混入しやすく、品質指標とされることの多
い鉄不純物については、有色遷移元素で用途的に不都合
とされる例が多いにもかかわらず、溶融精製によるもの
以外で鉄含有量1 ppm以下の市販フッ化物塩類は少
ない0通信用赤外光ファイバーとして有望なZrPe−
BaFt系フッ化物ガラスは10−” 〜10−’ d
B/kmという低損失を期待されているが、それには鉄
の最大許容含有量は0.36ppbと報告されている。
However, on the other hand, it cannot be said that these materials are produced and supplied using economical methods that can be mass-produced to meet various uses. Although there are many examples of transition elements that are considered to be inconvenient for applications, there are few commercially available fluoride salts with an iron content of 1 ppm or less other than those produced by melt-refining.ZrPe-
BaFt-based fluoride glass is 10-" to 10-' d
A low loss of B/km is expected, but the maximum permissible iron content is reported to be 0.36 ppb.

しかしフッ化物塩類の場合には、通常フッ化物合成原料
選択の段階で不都合金属成分の少ない精製されたものを
選ぶか、フッ化物水溶液での抽出、単結晶、イオン交換
等の湿式精製プロセスが使われており、最終の精製フッ
化物を得るためには更に合成もしくは不都合成分分離等
の工程を必要とし、不都合金属成分の混入が見込まれる
。同時に、加水分解を起こしてフッ化物としての純度も
低下しやすい、従って、経過的にはそうした方法を採用
して粗製のフッ化物塩類を合成しても最終段階では乾式
精製プロセスを採用するのが望ましい。
However, in the case of fluoride salts, usually at the stage of selecting raw materials for fluoride synthesis, purified products with fewer undesirable metal components are selected, or wet purification processes such as extraction with aqueous fluoride solutions, single crystals, and ion exchange are used. In order to obtain the final purified fluoride, further steps such as synthesis or separation of undesirable components are required, and contamination with undesirable metal components is expected. At the same time, hydrolysis tends to occur and the purity of the fluoride is likely to decrease. Therefore, even if such a method is used to synthesize crude fluoride salts, it is recommended to use a dry purification process in the final stage. desirable.

そうした乾式精製プロセスとしては溶融精製技術(ブリ
ッジマン法、チョクラルスキー法、帯融解法)、昇華精
製技術(特開昭60−11239号、同60−3636
4号)等が報告されている。
Such dry refining processes include melt refining technology (Bridgeman method, Czochralski method, zone melting method), sublimation refining technology (JP-A-60-11239, JP-A-60-3636).
No. 4) etc. have been reported.

前者においては、一般にフッ化物溶融物が高温で腐蝕性
をもち耐蝕材料に制約を受けることや、一般にフッ化物
は融点近くで蒸気圧が高く昇華性化合物も多いために適
用しにくいこと、量産が難しいこと等から経済性のある
精製方法となりにくい、また、2成分以上のフッ化物多
成分系ではほとんど適用できない点にも問題がある。
In the former case, fluoride melts are generally corrosive at high temperatures, and there are restrictions on the availability of corrosion-resistant materials; fluorides are generally difficult to apply because they have high vapor pressure near their melting point and contain many sublimable compounds; and mass production is difficult. There are also problems in that it is difficult to achieve an economical purification method due to its difficulty, and it is hardly applicable to multi-component fluoride systems containing two or more components.

一方、後者において例えばZrPa+ AeFs+ H
fF*。
On the other hand, in the latter case, for example, ZrPa+ AeFs+ H
fF*.

CuFt等のフッ化物に対する不純物FeF、、 Pe
F3のように製品と不純物が近い蒸気圧特性を示す場合
には、分離精製度も低下する問題がある。
Impurities for fluorides such as CuFtFeF, Pe
When the product and impurities exhibit similar vapor pressure characteristics like F3, there is a problem that the degree of separation and purification also decreases.

このように無機フッ化物の不純物金属除去精製において
量産可能な経済性のある手法を求めるニーズが存在する
ことは明らかである。
As described above, it is clear that there is a need for an economical method that can be mass-produced in the purification of inorganic fluoride to remove impurity metals.

本発明は不純物金属成分を昇華除去もしくは不揮発化さ
せることにより、固−気系で対象の無機フッ化物が溶融
することなく精製される昇華精製技術の優位性を更に向
上させることを目的とするものである。
The purpose of the present invention is to further improve the superiority of sublimation refining technology in which the target inorganic fluoride is purified in a solid-gas system without melting by sublimating or non-volatile impurity metal components. It is.

〔問題点を解決するための手段、作用〕本発明は、対象
の無機フッ化物塩類とそれらに含有される不純物金属化
合物の昇華精製時における蒸気圧差を太き(保つことに
よって、°不純物金属を効率的に分離除去しようとする
昇華精製技術の改良方法であり、本発明者等は不純物金
属フッ化物より蒸気圧の大きい無機フッ化物を熱処理し
て含有される不純物金属を固−気系で分離除去する場合
には、あらかじめ原料金属フッ化物中もしくは処理雰囲
気中に金属酸化物もしくは水を共存させて処理すること
によって、不純物金属フッ化物を不揮発性の金属酸化物
に変えて目的フッ化物を昇華させれば、不純物金属が大
巾に除去できることを見出した。
[Means and effects for solving the problem] The present invention aims to increase the vapor pressure difference between target inorganic fluoride salts and impurity metal compounds contained in them during sublimation purification, thereby reducing impurity metals. This is an improved method of sublimation purification technology that attempts to efficiently separate and remove impurity metals. When removing the metal fluoride, the impurity metal fluoride is converted into a non-volatile metal oxide and the target fluoride is sublimated by treating the raw metal fluoride with metal oxide or water in advance or in the processing atmosphere. It has been found that impurity metals can be removed to a large extent by doing so.

また、不純物金属フッ化物より蒸気圧の小さい無機フッ
化物を熱処理して含有される不純物金属を固−気系で分
離除去する場合において、あらかじめ原料金属フッ化物
中もしくは処理雰囲気中の金属酸化物もしくは水の量を
削減することによって、不純物金属フッ化物を不揮発性
の金属酸化物に変えないようにして熱処理すれば、不純
物金属が大巾に昇華除去できることを見出した。
In addition, when heat-treating an inorganic fluoride that has a lower vapor pressure than the impurity metal fluoride and separating and removing the impurity metal contained in the solid-gas system, it is possible to remove the metal oxide or It has been found that by reducing the amount of water and performing heat treatment without converting impurity metal fluorides into non-volatile metal oxides, impurity metals can be largely removed by sublimation.

これらの事実は08−アニオンとF−アニオンの似かよ
ったイオン半径から、通常固体状態の無機フッ化物がか
なりの部分で酸化物に置換されているため昇華精製時に
大きな影響を受けていることを示している。
These facts indicate that the similar ionic radii of the 08-anion and the F-anion indicate that a considerable portion of the normally solid inorganic fluoride is replaced by oxide, which is greatly affected during sublimation purification. ing.

本発明でいう金属酸化物とは、前処理時もしくは昇華精
製を行なう高温で分解もしくは反応して酸化物となりう
る水酸化物、炭酸塩、硫酸塩、硝酸塩、各種含水塩をは
じめとする含酸素化合物の全てを含む。
In the present invention, metal oxides include oxygen-containing salts such as hydroxides, carbonates, sulfates, nitrates, and various hydrated salts that can decompose or react to form oxides during pretreatment or at high temperatures during sublimation purification. Contains all compounds.

通常フッ化物と酸化物の沸点は次表のように大きく異な
り、かなりの差のあることが知られている。
It is known that the boiling points of fluorides and oxides are usually very different, as shown in the table below.

(以下余白) フッ化物  沸点    酸化物  沸点MgFt  
 2260℃   Mg0   3600 ’CAeF
3  129N昇華) α−Alt’:h  2980
SIF4  86     5ift    2230
FeFs  >1000(昇華)  Fe!03  1
565FeFz  〜1100(昇華)  PeO〜1
370CaFg   2500      CaO28
50CuFz  〜850(昇華)   Cu0ZrF
a  〜600(昇11)  Zr0t   〜500
0BaFt   2260      Ba0   2
000Lass   2327     Lag’s 
  4200HfF4 〜650(昇華)  Hrot
    2758WFb   19.5      W
O*    18378P、   17.5     
 UOt    2878工業的に製造される精製の無
機フッ化物塩類は、前述のように通常数百pp−から数
%の酸化物を含有しており、こうしたフッ化物と酸化物
もしくは水の混合系では熱処理時に当該フッ化物金属と
不純物金属の間で、組合せによって金属が交換されたフ
ッ化物、酸化物およびオキシフッ化物への固相化学反応
が起りうる。また、組合せによっては常温からでも徐々
に反応進行するものがある。例えば粗製フッ化物中に多
い不純物元素としてFe+Si+8’、Cuがあり、こ
れらは以下のように製品中に共存する酸化物と見掛上同
権化学反応する。
(Left below) Fluoride boiling point Oxide boiling point MgFt
2260℃ Mg0 3600'CAeF
3 129N sublimation) α-Alt': h 2980
SIF4 86 5ift 2230
FeFs >1000 (sublimation) Fe! 03 1
565FeFz ~1100 (sublimation) PeO~1
370CaFg 2500 CaO28
50CuFz ~850 (sublimation) Cu0ZrF
a ~600 (rise 11) Zr0t ~500
0BaFt 2260 Ba0 2
000Lass 2327 Lag's
4200HfF4 ~650 (sublimation) Hrot
2758WFb 19.5W
O* 18378P, 17.5
UOt 2878 Industrially produced purified inorganic fluoride salts usually contain several hundred pp- to several percent of oxides, and such mixed systems of fluorides and oxides or water require heat treatment. Solid state chemical reactions can sometimes occur between the fluoride metal and the impurity metal to combinatorially exchange metal fluorides, oxides and oxyfluorides. Further, depending on the combination, there are some in which the reaction proceeds gradually even at room temperature. For example, impurity elements that are common in crude fluoride include Fe+Si+8' and Cu, which apparently undergo chemical reactions with oxides coexisting in the product as described below.

ここで、加熱時の水の存在は付着水、結晶水、雰囲気中
の水蒸気等いかなる形でもフッ化物を加水分解して自然
発生的に酸化物を生成する点で同様の効果がある。
Here, the presence of water during heating has a similar effect in that it hydrolyzes fluoride in any form such as attached water, crystal water, or water vapor in the atmosphere to spontaneously generate oxides.

(以下余白) 酸化物   不純物 HzOln CaF、  + Pea、 →CaF、 
+ FezO3CaOin CaF、  + FeF、
−= CaFt + Fete。
(Left below) Oxide Impurity HzOln CaF, + Pea, →CaF,
+ FezO3CaOin CaF, + FeF,
−=CaFt + Fete.

BaOin CaFl  + Fees −” BaF
z + FezesZrOt in ZrF4  + 
FeFs −ZrtO9F+o+Fet03→ZrFt
  + Fezes 1、atOs’ in LaFs + PeFs −L
a0F + Fetus→LaF3 + pe=03 AZgOs in Aj!Fs+ Fees −’ A
j!F!+ FezO5HfO* in HfFl +
 Fe)lfPh’ 6JO→HfF4+FezO3N
atCO1in NaF + Na1SIFi”’= 
NaF+5i01にICO3in KF + LSiF
4 = KF + SiftMgOin Mgh+Mg
SiF4 ・6H*0”MgF1+5tO1NaBFa
 in NaF + Na1COs −NaP + B
tusKBP* in KP + K富CO2→にF 
+ BxOiBaOin BaF、 + CaFt ・
2HtO→BaF、+Cu0CaOin CaFt  
+  Curt ・2H1O−*CaF、+Cu0Cu
lt ・2H*Oin Mgh  =  IP  + 
 CuO酸化物もしくは共存する水の量を多くすれば反
応の完結を確実にすることができ、酸化物もしくは共存
する水をなくしてしまえば反応の進行を止めることがで
きろ。
BaOin CaFl + Fees -”BaF
z + FezesZrOt in ZrF4 +
FeFs −ZrtO9F+o+Fet03→ZrFt
+ Fezes 1, atOs' in LaFs + PeFs -L
a0F + Fetus→LaF3 + pe=03 AZgOs in Aj! Fs+Fees-'A
j! F! + FezO5HfO* in HfFl +
Fe)lfPh' 6JO→HfF4+FezO3N
atCO1in NaF + Na1SIFi"'=
ICO3in KF + LSiF to NaF+5i01
4 = KF + SiftMgOin Mgh+Mg
SiF4 ・6H*0”MgF1+5tO1NaBFa
in NaF + Na1COs -NaP + B
tusKBP* in KP + K wealth CO2 → to F
+ BxOiBaOin BaF, + CaFt ・
2HtO → BaF, +Cu0CaOin CaFt
+ Curt ・2H1O-*CaF, +Cu0Cu
lt ・2H*Oin Mgh = IP +
By increasing the amount of CuO oxide or coexisting water, it is possible to ensure the completion of the reaction, and by eliminating the oxide or coexisting water, the progress of the reaction can be stopped.

特許請求の範囲第1項(a)の実施において、均一系反
応であれば本来共存させる酸化物の量は不純物金属に対
して化学量論的に当量であればよいが、昇華系のように
固相の場合には不均一反応のために過剰量が一般に必要
であり、しかも添加する場合には反応しやすい微粉等の
方が好ましい、この場合、添加する酸化物は精製しよう
とするフッ化物の金属種に特に限定されるものではない
、また昇華精製工程の前に昇華温度より低い温度で長時
間固相反応を確実に進行させることも有効・となる場合
がある。
In carrying out claim 1(a), in the case of a homogeneous reaction, the amount of oxide to be allowed to coexist should be stoichiometrically equivalent to the impurity metal, but in the case of a sublimation system, In the case of a solid phase, an excess amount is generally required due to the heterogeneous reaction, and when added, it is preferable to use a fine powder that is easy to react.In this case, the oxide to be added is the same as the fluoride to be purified. The metal species are not particularly limited, and it may also be effective to ensure that the solid phase reaction proceeds for a long time at a temperature lower than the sublimation temperature before the sublimation purification step.

特許請求の範囲第1項伽)の実施において、系内の酸化
物の量を制限し不純物金属をフッ化物としておく場合に
はHPSF!等の反応性ガス雰囲気で前処理してより確
実にフッ素化しておいたり、同じフッ化物でもより蒸気
圧の高い高次のフッ化物(例えばFeF、に対するFe
Fs+CuFに対するCIJPI>とするために、P富
、NF3等の酸化性ガス雰囲気で前処理する。またフッ
化物ガス処理以外にも酸性フッ化アンモニウムNH,P
 −HPを共存させて熱処理することによっても同様の
効果が得られる。アルカリ金属フッ化物やBad、を精
製する場合には最初からこれらの酸性フッ化物塩を使用
して次式のように熱処理時に自然発生的にIF雰囲気を
作って前処理し、その後不純物金属フッ化物を昇華除去
することもできる。
In carrying out claim 1), if the amount of oxide in the system is limited and the impurity metal is fluoride, HPSF! For more reliable fluorination, pretreatment in a reactive gas atmosphere such as
In order to achieve CIJPI> for Fs+CuF, pretreatment is performed in an oxidizing gas atmosphere such as P-rich and NF3. In addition to fluoride gas treatment, acidic ammonium fluoride NH, P
A similar effect can be obtained by heat treatment in the presence of -HP. When purifying alkali metal fluorides and Bad, these acidic fluoride salts are used from the beginning to pre-treat by creating an IF atmosphere spontaneously during heat treatment as shown in the following formula, and then the impurity metal fluoride is purified. can also be removed by sublimation.

MP−HF  −MP + IF ↑ 特許請求の範囲第1.2項の手段は昇華精製する対象無
機フッ化物と不純物金属成分の組合せにより選択し、昇
華精製時に不純物金属成分を蒸気圧の小さい酸化物もし
くは蒸気圧の太きいフッ化物のいずれかにして実施すれ
ば不純物金属成分を有効に除去できる。多くの場合こう
した手段は昇華前の前処理として実行しても、昇華と同
時に進行させても有効である。
MP-HF -MP + IF ↑ The means of claim 1.2 selects the target inorganic fluoride to be purified by sublimation depending on the combination of the impurity metal component, and replaces the impurity metal component with an oxide with a low vapor pressure during sublimation purification. Alternatively, impurity metal components can be effectively removed by using either a fluoride with a high vapor pressure. In many cases, such means are effective either as a pretreatment before sublimation or concurrently with sublimation.

フッ化物に共存する酸化物もしくは水の量は精製しよう
とするフッ化物と不純物金属の組合せ、量比、目標精製
度、雰囲気(真空減圧下、不活性ガス雰囲気等)、粒径
、不純物元素の結晶内分布状態等によって個々に設定す
べきである。
The amount of oxide or water that coexists with fluoride depends on the combination of fluoride and impurity metal to be purified, quantitative ratio, target degree of purification, atmosphere (vacuum, reduced pressure, inert gas atmosphere, etc.), particle size, impurity element. It should be set individually depending on the distribution state within the crystal, etc.

(実施例〕 本発明を以下の実施例によってさらに具体的に説明する
が、本発明はそれらのみに制限されるものではない。
(Examples) The present invention will be explained in more detail by the following Examples, but the present invention is not limited thereto.

叉鳳■上 Fe不純物20ppmを含む粗製HfP* (フッ素換
算純度99.0%)粉末10gを石英炉心管付電気炉内
に白金皿に入れてセットし、0.51/w+の湿空気流
中で500℃5時間加熱処理し、その後石英炉心管に真
空ポンプ系を接続し、0.1Torrの真空にして72
0℃5時間昇華させ、電気炉外に出ている石英管の端部
の内面に約6gの訂F9を沈積させた。沈積部のFe含
量は0.5pp−以下であった。
10 g of crude HfP* (fluorine equivalent purity 99.0%) powder containing 20 ppm of Fe impurities was placed in a platinum dish in an electric furnace with a quartz core tube, and heated in a flow of humid air of 0.51/w+. After heating at 500°C for 5 hours, a vacuum pump system was connected to the quartz furnace tube, and the vacuum was raised to 0.1 Torr at 72°C.
Sublimation was carried out at 0° C. for 5 hours, and about 6 g of F9 was deposited on the inner surface of the end of the quartz tube that was exposed outside the electric furnace. The Fe content in the deposited portion was 0.5 pp- or less.

この場合湿空気中熱処理を省略して同条件で昇華のみさ
せた場合にはFe含量6 ppmであった。
In this case, when the heat treatment in humid air was omitted and only sublimation was performed under the same conditions, the Fe content was 6 ppm.

実施U 実施例1と同じ電気炉設備を用い、Fe含量20ppm
の粗製ZrF* 55 son%、Fe含量o、5pp
−のZr0g45ao 1%の粉体混合物10gを0.
5J/sinの窒素気流中で500℃、5時間加熱処理
しオキシフロライドZr?09F+eを合成し、その後
0.1Torrの真空にして700℃5時間熱分解昇華
させ、約48のZrFオを沈積させた。沈積部のFe含
量は0.2pp−以下であった。
Implementation U Using the same electric furnace equipment as in Example 1, Fe content was 20 ppm.
Crude ZrF* 55 son%, Fe content o, 5pp
- Zr0g45ao 10g of 1% powder mixture 0.
Oxyfluoride Zr? 09F+e was synthesized and then pyrolyzed and sublimated at 700° C. for 5 hours under a vacuum of 0.1 Torr to deposit about 48 ZrF. The Fe content in the deposited portion was 0.2 pp- or less.

この場合ZrO*を添加する熱処理を省略して粗製Zr
Feのみから同条件で昇華させた場合にはFe含量4.
8p9−であうた。
In this case, the heat treatment to add ZrO* is omitted and the crude Zr
When sublimated from Fe alone under the same conditions, the Fe content was 4.
It was 8p9-.

ス屓l生1 不純物NatCOs 0.3%、NatSiFh 2.
3%含量の粗製NaF (フッ素換算純度97.0%)
10gを実施例1と同じ電気炉設備を用い、酸性フッ化
ナトリウムNaF−HF2gと混合後セットし、0.5
1/winの窒素気流中で250℃5時間熱処理してI
IFガスを発生させた後、更に0.51 /winの窒
素気流中で700℃5時間加熱してSiF#ガスを放出
させて約98のNaPを得た。熱処理物のNagSiF
a含量は0.1%であった。
1. Impurity NatCOs 0.3%, NatSiFh 2.
3% content of crude NaF (fluorine equivalent purity 97.0%)
Using the same electric furnace equipment as in Example 1, 10 g was mixed with 2 g of acidic sodium fluoride, NaF-HF, and then set.
Heat treated at 250°C for 5 hours in a nitrogen stream of 1/win.
After generating IF gas, it was further heated at 700° C. for 5 hours in a nitrogen stream of 0.51/win to release SiF# gas and obtain about 98 NaP. Heat-treated NagSiF
The a content was 0.1%.

この場合NaF−HP添加熱処理を省略して同条件で不
純物昇華のみさせた場合にはNazSiF6含量0.7
%であった。
In this case, if the NaF-HP addition heat treatment is omitted and only impurity sublimation is performed under the same conditions, the NazSiF6 content is 0.7.
%Met.

叉施±玉 実施例1と同じ電気炉設備を用い、CU含量1.1pp
−の一度昇華精製させたフッ素換算純度99゜1gを混
1合後でセットして0.51 /@inの窒素気流中で
700℃5時間熱処理した後、更に0.ITorrの真
空にして1100℃5時間昇華させ、約8gのAlIF
5を沈積させた。沈積部のCu含量は0.2ppm以下
であった。
Using the same electric furnace equipment as in Example 1, the CU content was 1.1 pp.
- 1 g of fluorine equivalent purity, which has been sublimated and purified once, was mixed and set, heat treated at 700°C for 5 hours in a nitrogen stream of 0.51/@in, and then further heated at 700°C for 5 hours. Approximately 8 g of AlIF was sublimated at 1100°C for 5 hours under a vacuum of ITorr.
5 was deposited. The Cu content in the deposited portion was 0.2 ppm or less.

この場合Aj(OH)s添加と熱処理を省略して元のA
IFsのみから同条件で昇華させた場合にはCu含量1
.01)p@であった。
In this case, Aj(OH)s addition and heat treatment are omitted and the original A
When sublimated from only IFs under the same conditions, the Cu content is 1.
.. 01) It was p@.

叉隻■工 実施例1と同じ電気炉設備を用い、Cυ含量lppm 
Fe含量15pp−の粗製Ba1t 10gをセントし
て、h/Nt −0,1mo 11 /so jの混合
ガスQ、51 /1einの気流中で500℃5時間熱
処理した後、単に0゜1Torrの真空にして1000
℃5時間不純物昇華させて約10gのBangを得た。
Using the same electric furnace equipment as in Example 1, the Cυ content lppm
10 g of crude Ba1t with an Fe content of 15 pp- was heat-treated at 500°C for 5 hours in a mixed gas Q of h/Nt -0,1 mo 11 /so j, 51 /1 ein, and then simply vacuumed at 0°1 Torr. 1000
The impurities were sublimated at ℃ for 5 hours to obtain about 10 g of Bang.

熱処理物のCu含量は0.2pp−以下、Fe含量は0
.2ppm+以下であった。
The Cu content of the heat-treated product is 0.2 pp- or less, and the Fe content is 0.
.. It was 2 ppm+ or less.

この場合Ft−N!混合ガスによる熱処理を省略して同
条件で不純物昇華のみさせた場合にはCu含量o、sp
pm、Fe含量3.8ppmであった。
In this case Ft-N! When heat treatment with a mixed gas is omitted and only impurity sublimation is performed under the same conditions, the Cu content o, sp
pm, and the Fe content was 3.8 ppm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、無機フッ化物塩類中の金属不純物を効
率よく除去することができ、特にこの方法は量産可能で
経済性のあるものである。
According to the present invention, metal impurities in inorganic fluoride salts can be efficiently removed, and in particular, this method can be mass-produced and is economical.

特許出願人  日本電信電話株式会社 森田化学工業株式会社 (ばか2名) 手続補正書 昭和61年12月26日 昭和61年特許願第219416号 2、発明の名称 無機フッ化物の昇華精製方法 3、補正をする者 事件との関係 特 許 出 願 人 日本電信電話株式会社 森田化学工業株式会社 4、代理人 (ほか2名) !!  06−364−0693(代表)5、補正命令
の日付 7、補正の内容 別紙のとおり 7、補正の内容 +11  願書の特許出願人の欄を別紙訂正願書の通り
補正する。
Patent applicant Nippon Telegraph and Telephone Corporation Morita Chemical Industry Co., Ltd. (two idiots) Procedural amendment December 26, 1985 Patent application No. 219416 of 1985 2 Title of invention Sublimation purification method of inorganic fluoride 3 Relationship with the case of the person making the amendment Patent applicant Nippon Telegraph and Telephone Corporation Morita Chemical Industry Co., Ltd. 4, agent (and 2 others)! ! 06-364-0693 (Representative) 5, Date of amendment order 7, Contents of amendment as shown in attached sheet 7, Contents of amendment +11 Amend the patent applicant column of the application as per the attached amendment request form.

(2)  代理権を証明する書面(2通)を別紙の通り
補正する。
(2) Amend the documents (two copies) certifying the power of attorney as shown in the attached sheet.

(3)  明細書第3頁第18行(下から2行)中の「
フッ化物」と「水溶液」との間に「原料の1を加入する
(3) “In the specification, page 3, line 18 (two lines from the bottom)
Add raw material 1 between the fluoride and the aqueous solution.

(4)  明細書第3頁第19行(末社)中の「単結晶
」をr再結晶−と補正する。
(4) "Single crystal" in page 3, line 19 (Suesha) of the specification is corrected to r-recrystallization.

(5)  明細書第4頁第12行中のr60−3636
4Jを’6O−36304Jと補正する。
(5) r60-3636 in page 4, line 12 of the specification
Correct 4J to '6O-36304J.

(6)  明細書第5頁第3行及び第8頁第3行中の「
^eFsJを’AjFsaと補正する。
(6) In the specification, page 5, line 3 and page 8, line 3, “
^eFsJ is corrected as 'AjFsa.

以上that's all

Claims (1)

【特許請求の範囲】 1、無機フッ化物塩類の昇華精製時に、 (a)不純物金属フッ化物より蒸気圧の大きい無機フッ
化物の場合には、あらかじめ原料 金属フッ化物中もしくは処理雰囲気中に金 属酸化物もしくは水を共存させて処理する ことによって、不純物金属フッ化物を不揮 発性の金属酸化物に変えるか、または (b)不純物金属フッ化物より蒸気圧の小さい無機フッ
化物の場合には、あらかじめ原料 金属フッ化物中もしくは処理雰囲気中の金 属酸化物もしくは水の量を削減することに よって、不純物金属フッ化物を不揮発性の 金属酸化物に変えないようにして、 各々、無機フッ化物塩類とそれらに含有される不純物金
属化合物の蒸気圧差を大きく保ち、当該フッ化物と不純
物金属成分を昇華分離することを特徴とする無機フッ化
物の昇華精製方法。 2、上記金属酸化物とは、熱処理時に分解もしくは反応
して金属酸化物となり得る水酸化物、炭酸塩、硫酸塩、
硝酸塩、含水塩等の含酸素化合物を含む特許請求の範囲
第1項記載の無機フッ化物の昇華精製方法。
[Claims] 1. During sublimation purification of inorganic fluoride salts, (a) In the case of an inorganic fluoride having a higher vapor pressure than an impurity metal fluoride, metal oxidation is carried out in advance in the raw material metal fluoride or in the processing atmosphere. (b) In the case of inorganic fluoride, which has a lower vapor pressure than the impurity metal fluoride, the raw material is prepared in advance. By reducing the amount of metal oxides or water in the metal fluoride or in the processing atmosphere, we avoid converting impurity metal fluorides to non-volatile metal oxides and reduce the amount of inorganic fluoride salts and their contents, respectively. 1. A sublimation purification method for inorganic fluoride, which comprises maintaining a large vapor pressure difference between impurity metal compounds and separating the fluoride and impurity metal components by sublimation. 2. The metal oxides mentioned above include hydroxides, carbonates, sulfates, which can decompose or react to become metal oxides during heat treatment.
The sublimation purification method for inorganic fluoride according to claim 1, which contains an oxygen-containing compound such as a nitrate or a hydrated salt.
JP27947686A 1986-11-21 1986-11-21 Sublimation purification method of inorganic fluoride Expired - Fee Related JPH0653561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947686A JPH0653561B2 (en) 1986-11-21 1986-11-21 Sublimation purification method of inorganic fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947686A JPH0653561B2 (en) 1986-11-21 1986-11-21 Sublimation purification method of inorganic fluoride

Publications (2)

Publication Number Publication Date
JPS63134502A true JPS63134502A (en) 1988-06-07
JPH0653561B2 JPH0653561B2 (en) 1994-07-20

Family

ID=17611582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947686A Expired - Fee Related JPH0653561B2 (en) 1986-11-21 1986-11-21 Sublimation purification method of inorganic fluoride

Country Status (1)

Country Link
JP (1) JPH0653561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255516A (en) * 2004-02-23 2005-09-22 Schott Ag METHOD FOR MANUFACTURING LARGE-VOLUME CaF2 SINGLE CRYSTAL HAVING LOW SCATTERING PROPERTY AND HIGH LASER STABILITY, CRYSTAL MANUFACTURED BY THE METHOD, AND USE OF THE CRYSTAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255516A (en) * 2004-02-23 2005-09-22 Schott Ag METHOD FOR MANUFACTURING LARGE-VOLUME CaF2 SINGLE CRYSTAL HAVING LOW SCATTERING PROPERTY AND HIGH LASER STABILITY, CRYSTAL MANUFACTURED BY THE METHOD, AND USE OF THE CRYSTAL

Also Published As

Publication number Publication date
JPH0653561B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
CN1069292C (en) Production of powder of 2-Aluminium monoxide
GB2146978A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
KR101530939B1 (en) Treatment of zirconia-based material with ammonium bi-fluoride
EP1437326B1 (en) Method for producing silicon
CA1302047C (en) Method for producing titanium fluoride
JPH02172814A (en) Preparation of metal fluoride with high purity
CN101600649A (en) Prepare hydrogen fluoride by Calcium Fluoride (Fluorspan) and sulfuric acid
US4012493A (en) Preparation of metal fluorides
JPS63134502A (en) Sublimation purification of inorganic fluoride
RU2424188C1 (en) Method of producing high-purity calcium fluoride
JP5421088B2 (en) Method for producing valuable materials and hydrochloric acid from waste liquid
TW201144225A (en) Method of continuously producing tetrafluorosilane by using various fluorinated materials, amorphous silica and sulfuric acid
KR20080024162A (en) Method for recycling zirconium tetrafluoride to form zirconia
CA1122416A (en) Method of extracting columbium-tantalum values from pyrochlore ores
Kinsman et al. Preparation and purification of metal fluorides for crystals and glasses
JPS62100404A (en) Production of pulverous hexagonal boron nitride having high purity
KR900004489B1 (en) Process for producing aluminium nitride powder
FR2614213A1 (en) PROCESS FOR THE PREPARATION OF ULTRA-HIGH PURITY METAL INORGANIC COMPOUNDS
JP2619925B2 (en) Purification method of raw material for quartz glass
JPH0640710A (en) Production of high-purity phosphorus
RU2060935C1 (en) Method for purification of silicium carbide
JPS63156013A (en) Removing method for trace fluorine incorporated in metallic compound
US5800795A (en) Hydrogen fluoride recovery process
JPH03137003A (en) Production of high-purity metal fluoride
Parker et al. Investigation of the system CaO‐MgO‐V2O5: I, Phase equilibria

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees