JPH035343A - Fiberglass composition - Google Patents

Fiberglass composition

Info

Publication number
JPH035343A
JPH035343A JP13698489A JP13698489A JPH035343A JP H035343 A JPH035343 A JP H035343A JP 13698489 A JP13698489 A JP 13698489A JP 13698489 A JP13698489 A JP 13698489A JP H035343 A JPH035343 A JP H035343A
Authority
JP
Japan
Prior art keywords
cao
tensile strength
mgo
melting
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13698489A
Other languages
Japanese (ja)
Inventor
Yoshihito Sano
佐野 欣仁
Tadashi Noguchi
正 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP13698489A priority Critical patent/JPH035343A/en
Priority to GB9011781A priority patent/GB2233643A/en
Publication of JPH035343A publication Critical patent/JPH035343A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the fiberglass composition melting at industrial temp., capable of being easily formed and excellent in tensile strength by mixing SiO2, Al2O3, CaO and MgO with Y2O3, La2O3 or CeO2 in a specified ratio. CONSTITUTION:The glass composition contains 52-56wt.% SiO2, 28-32wt.% Al2O3, 9-12wt.% CaO and MgO and 4-7wt.% of >=1 kind among Y2O3, La2O3 and CeO2. The content of SiO2 is appropriately controlled to 52-56wt.% for the composition, the SiO2 forms an eutectic alloy with the Al2O3, CaO and MgO, hence the liq. phase temp. is lowered, and melting is facilitated. The content of Al2O3 is appropriately controlled to 28-32wt.%, hence the liq. crystal temp. is lowered, and melting is facilitated. When the content of the CaO and MgO in total is controlled to 9-10wt.% practically in balance with each other, the liq. phase temp. is lowered, and fiberizing is facilitated. The content of the rare-earth elements is controlled to >=4wt.%, and the tensile strength of the fiber is improved without drastically increasing the liq. phase temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は引張強度に優れたファイバーガラス組成物に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fiberglass composition with excellent tensile strength.

〔従来技術とその問題点〕[Prior art and its problems]

従来ファイバーガラスは複合材料の補強材等として広(
使用されている。公知のEガラスファイバーは引張強度
が280kg/mm”と−船釣な複合材料用補強材とし
て優れているが、高張力を必要とし、あるいは急激に張
力のかかるベルトプーリー、タイミングベルト等におい
ては強度が不充分である。
Conventionally, fiberglass has been widely used as a reinforcing material for composite materials (
It is used. The well-known E-glass fiber has a tensile strength of 280 kg/mm" and is excellent as a reinforcing material for composite materials used in boat fishing. However, it is not strong enough for belt pulleys, timing belts, etc. that require high tension or are subject to sudden tension. is insufficient.

酸化物ガラスファイバーにおいては、分子結合エネルギ
ー等から想定すれば500 kg/mm2以上に達する
ものと推定され、したがって、これに近い抗張力でかつ
実用性のあるガラスファイバーの開発が急務とされてい
る。
In oxide glass fibers, it is estimated to reach 500 kg/mm2 or more based on molecular bond energy, etc. Therefore, there is an urgent need to develop a practical glass fiber with a tensile strength close to this.

前記Eガラスに代わるものとしてはSiO□65重量%
(以下単に%という)、AIZO:l 25%、MgO
10%で代表される(通称Sガラス)イギリスパテント
第1209244号における開示組成物、あるいは5i
Oz 60χ、AIZO325%、MgO6%、CaO
9%で代表される(通称Rガラス)フランスパテント第
1435073号における開示組成物等があり、前記E
ガラスよりファイバー引張強度においてきわめて優れる
ことが記載されているが、前記500 kg/mm2の
強度には遠く及ばない。
SiO □ 65% by weight as a substitute for the E glass
(hereinafter simply referred to as %), AIZO:l 25%, MgO
The composition disclosed in British Patent No. 1209244 (commonly known as S glass) represented by 10% or 5i
Oz 60χ, AIZO325%, MgO6%, CaO
There is a composition disclosed in French Patent No. 1435073, which is represented by 9% (commonly known as R glass), and
Although it has been described that fiber tensile strength is extremely superior to glass, it is far from reaching the strength of 500 kg/mm2.

本発明の目的は1650℃以下の工業的温度で溶融でき
、容易に成型、すなわちファイバリングできるとともに
、従来公知のものよりさらに優れ、450 kg/mm
”以上もの引張強度を有するファイバーガラス組成物を
提供することにある。
The object of the present invention is to melt at an industrial temperature of 1,650°C or less, to easily mold, i.e., form fibers, and to be superior to conventionally known products, with a weight of 450 kg/mm.
``The purpose of this invention is to provide a fiberglass composition having a tensile strength of the above.''

〔問題点を解決するための手段〕[Means for solving problems]

本発明は重量%で、Si0□52〜56、AIZ032
8〜32、CaOおよびMgO9〜12であり、Y2O
3、La2O3またはCeO,の1種以上が4〜7より
なるファイバーガラス組成物からなる。
In the present invention, in weight%, Si0□52-56, AIZ032
8-32, CaO and MgO9-12, Y2O
3. A fiberglass composition in which one or more of La2O3 and CeO is 4 to 7.

本発明の組成範囲においてSingは52〜56%の範
囲が好適で、A1zO3、CaO、MgOと共融するこ
とにより液相温度が低下し溶融が容易となる。
In the composition range of the present invention, Sing is preferably in the range of 52 to 56%, and eutectic melting with A1zO3, CaO, and MgO lowers the liquidus temperature and facilitates melting.

52%未満では成型性すなわちファイバリングが不充分
となり、また液相温度も上昇する。56%を超えるとフ
ァイバーの引張強度を低下し、あるいは液相温度が上昇
する。
If it is less than 52%, moldability, that is, fiber ringing will be insufficient, and the liquidus temperature will also rise. When it exceeds 56%, the tensile strength of the fiber decreases or the liquidus temperature increases.

Ah03は28〜32%の範囲が好適で、液相温度を下
げ、溶融を容易とする。28%未満ではファイバーの引
張強度が低下し、32%を超えると、ファイバリングが
不充分となる。
A preferable content of Ah03 is in the range of 28 to 32%, which lowers the liquidus temperature and facilitates melting. If it is less than 28%, the tensile strength of the fiber will decrease, and if it exceeds 32%, fiber ring will be insufficient.

CaOおよびMgOは合計9〜12%をほぼ均衡して用
いることにより、液相温度を低下し、またファイバリン
グを容易とする。CaOおよびMgOが9%未満である
と液相温度を上昇し溶融性を悪化させる。他方12%を
超えるとファイバーの引張強度を低下させる等物性面で
劣る。
By using a total of 9 to 12% of CaO and MgO in a substantially balanced manner, the liquidus temperature is lowered and fibering is facilitated. When CaO and MgO are less than 9%, the liquidus temperature increases and the meltability deteriorates. On the other hand, if it exceeds 12%, the tensile strength of the fiber decreases, resulting in poor physical properties.

希土類すなわちY2O3、LazO3またはCentは
、これら1種以上を4%以上導入することにより、液相
温度を大巾に上昇させることなくファイバーの引張強度
を向上させるもので、4%未満では強度の向上に著効を
示さない。他方7%を超えると液相温度が上昇し溶融が
困難となるので7%以下とする。
By introducing 4% or more of one or more of these rare earth elements, Y2O3, LazO3, or Cent, the tensile strength of the fiber can be improved without significantly increasing the liquidus temperature. No significant effect was shown. On the other hand, if it exceeds 7%, the liquidus temperature will rise and melting will become difficult, so the content should be 7% or less.

なお、これらのうちではY2O3が比較的ファイバーと
して引張強度を高める効果が大きい。
Note that among these, Y2O3 has a relatively large effect of increasing tensile strength as a fiber.

さらに、これらの希土類の導入は化学的耐久性の向上に
効果を奏する。
Furthermore, the introduction of these rare earth elements is effective in improving chemical durability.

本発明を実施するにあたり、前記各成分原料は市販の入
手容易な原料を用いればよく、例えば5i(h;珪砂、
AhO3+水酸化アルミニウム、Cab;炭酸カルシウ
ム、)1gO;炭酸マグネシウム、YZO3+酸化イツ
トリウム、LazO:+ ;酸化ランタン、CeO,;
酸化セリウム等が用いられる。
In carrying out the present invention, commercially available and easily available raw materials may be used as the raw materials for each component, such as 5i (h; silica sand,
AhO3 + aluminum hydroxide, Cab; calcium carbonate, ) 1gO; magnesium carbonate, YZO3 + yttrium oxide, LazO: +; lanthanum oxide, CeO,;
Cerium oxide or the like is used.

0.5〜0.6%以下の不純成分、例えばNa zo、
K2O、Pez03、Mn0zの混入は差支えない。Z
rO2分は1.5%以下であれば化学的耐久性、引張強
度を向上させるが、それを越えると溶融、ファイバリン
グを悪化する。
Impurity components of 0.5 to 0.6% or less, such as Nazo,
There is no problem in mixing K2O, Pez03, and Mn0z. Z
If the rO2 content is 1.5% or less, chemical durability and tensile strength will be improved, but if it exceeds this, melting and fibering will deteriorate.

また溶融清澄剤として1%以下のCaFz、AS20.
.5b203、CaSO4等を混入してもよい。
In addition, 1% or less of CaFz, AS20.
.. 5b203, CaSO4, etc. may be mixed.

これら原料を所望組成にもとすき秤量、混合後、タンク
炉、ルツボ炉等任意の溶融手段により1650℃以下、
4時間以下程度で溶融、均質化でき、さらに紡糸炉に導
き1500℃未満で容易にファイバリングすることがで
きる。
After preparing these raw materials to the desired composition, weighing them, and mixing them, use any melting means such as a tank furnace or a crucible furnace to melt them at 1650°C or lower.
It can be melted and homogenized in about 4 hours or less, and furthermore, it can be introduced into a spinning furnace and easily fiberized at less than 1500°C.

以下実施例に基づき本発明を説明する。The present invention will be explained below based on Examples.

〔実施例〕〔Example〕

第1表に示す実施例1〜5および比較例1〜5の組成に
基づき原料調製後、白金ルツボに充填し、電気炉内で1
550℃〜1700℃、2時間〜4時間の適宜温度−時
間で溶融した。その後溶融ガラスを取出し、冷却後小片
を採取し通常の手段で温度勾配炉により液相温度を測定
した。
After preparing the raw materials based on the compositions of Examples 1 to 5 and Comparative Examples 1 to 5 shown in Table 1, the raw materials were filled into a platinum crucible and heated in an electric furnace for 1
Melting was carried out at an appropriate temperature and time of 550° C. to 1700° C. for 2 hours to 4 hours. Thereafter, the molten glass was taken out, and after cooling, a small piece was collected and the liquidus temperature was measured using a temperature gradient furnace using a conventional method.

次いでガラスを白金ロジウム裂紡糸炉に投入し1350
〜1500℃の適宜温度で紡糸ノズル約1.7mmφよ
りガラスを引出し、約9μmφのファイバーを得た。各
ファイバーサンプルについては強度試験機で引張強度を
測定した。
Next, the glass was put into a platinum-rhodium fission spinning furnace and
The glass was drawn out from a spinning nozzle with a diameter of about 1.7 mm at an appropriate temperature of ~1500°C to obtain a fiber with a diameter of about 9 μm. The tensile strength of each fiber sample was measured using a strength testing machine.

溶融温度−時間、液相温度、紡糸温度、引張強度試験結
果について第1表に併せて示す。
The melting temperature-time, liquidus temperature, spinning temperature, and tensile strength test results are also shown in Table 1.

第1表から明らかなように本発明に係る実施例1〜5は
1650℃以下で溶融でき、紡糸性も良好でファイバー
引張強度も450kg/mm”以上と優れている。
As is clear from Table 1, Examples 1 to 5 according to the present invention can be melted at 1650° C. or lower, have good spinnability, and have excellent fiber tensile strengths of 450 kg/mm” or higher.

他方比較例1は液相温度が高く粘稠性に富むため溶融温
度が高く、また紡糸温度も高い。またファイバー引張強
度も450 kg/mm2に達しない。
On the other hand, Comparative Example 1 has a high liquidus temperature and high viscosity, so the melting temperature is high and the spinning temperature is also high. Furthermore, the fiber tensile strength does not reach 450 kg/mm2.

比較例2.3も同様に引張強度において充分ではない。Comparative Example 2.3 is also not sufficient in tensile strength.

比較例4は希土類導入量が過剰で、1700℃において
も熔融せず実用性に欠ける。比較例5は希土類導入量が
過少でファイバー引張強度の向上に明白な効果を示さな
い等いずれも実施例に比し劣ることが明らかである。
In Comparative Example 4, the amount of rare earth introduced was excessive, and it did not melt even at 1700°C, so it lacked practicality. It is clear that Comparative Example 5 is inferior to the Examples in all respects, as the amount of rare earth introduced is too small and does not show any obvious effect on improving the fiber tensile strength.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1650°C以下で溶融できるとともに
ファイバーとして引張強度において優れ、タンミングベ
ルト等常に引張力を受ける複合材として用いても耐久性
に優れるという効果を奏する。
According to the present invention, it can be melted at 1650° C. or lower, has excellent tensile strength as a fiber, and has excellent durability even when used as a composite material that is constantly subject to tensile force, such as a tamming belt.

Claims (1)

【特許請求の範囲】[Claims] 1)重量%で、SiO_252〜56、Al_2O_3
28〜32、CaOおよびMgO9〜12であり、Y_
2O_3、La_2O_3またはCeO_2の1種以上
が4〜7よりなることを特徴とするファイバーガラス組
成物。
1) In weight%, SiO_252-56, Al_2O_3
28-32, CaO and MgO9-12, Y_
A fiberglass composition characterized in that one or more of 2O_3, La_2O_3, or CeO_2 consists of 4 to 7.
JP13698489A 1989-05-30 1989-05-30 Fiberglass composition Pending JPH035343A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13698489A JPH035343A (en) 1989-05-30 1989-05-30 Fiberglass composition
GB9011781A GB2233643A (en) 1989-05-30 1990-05-25 Glass fiber high in tensile strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13698489A JPH035343A (en) 1989-05-30 1989-05-30 Fiberglass composition

Publications (1)

Publication Number Publication Date
JPH035343A true JPH035343A (en) 1991-01-11

Family

ID=15188058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13698489A Pending JPH035343A (en) 1989-05-30 1989-05-30 Fiberglass composition

Country Status (2)

Country Link
JP (1) JPH035343A (en)
GB (1) GB2233643A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221104A (en) * 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
JP2009221105A (en) * 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
WO2013132858A1 (en) * 2012-03-08 2013-09-12 ニチアス株式会社 La/Ce-CONTAINING INORGANIC FIBRES THAT ARE SOLUBLE IN PHYSIOLOGICAL SALINE, AND COMPOSITION THEREOF
JP2018517653A (en) * 2016-02-29 2018-07-05 ジュシ グループ カンパニー リミテッド High modulus glass fiber composition and glass fiber and composite material thereof
CN114085039A (en) * 2022-01-18 2022-02-25 山东墨匠新材料科技有限公司 High-strength high-modulus glass fiber composition, and production method and application of glass fiber

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895774A3 (en) * 1997-08-06 2002-01-30 JENERIC/PENTRON Incorporated Radiopaque dental composites
US9156729B2 (en) 2010-10-18 2015-10-13 Ocv Intellectual Capital, Llc High refractive index glass composition
US9278883B2 (en) * 2013-07-15 2016-03-08 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
US10035727B2 (en) 2013-07-15 2018-07-31 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
US9944551B2 (en) 2015-05-07 2018-04-17 Ppg Industries Ohio, Inc. Glass compositions, fiberizable glass compositions, and glass fibers made therefrom
CN105753329B (en) 2016-03-15 2018-07-31 巨石集团有限公司 A kind of high-performance glass fiber composition and its glass fibre and composite material
CN114538784A (en) * 2020-07-10 2022-05-27 巨石集团有限公司 High-modulus glass fiber composition and glass fiber and composite material thereof
CN113754295B (en) * 2021-07-31 2023-05-09 广东金发科技有限公司 Low-dielectric modified glass fiber and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864243A (en) * 1981-10-13 1983-04-16 Asahi Glass Co Ltd Glass composition with high elasticity and heat resistance
JPS62100457A (en) * 1985-10-28 1987-05-09 Toshiba Monofuratsukusu Kk Aluminous fiber and its production
JPS6465045A (en) * 1987-05-28 1989-03-10 Shimadzu Corp Oxynitride glass fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147718A (en) * 1966-08-31 1969-04-02 Aerojet General Co High strength glass fibres
GB1209244A (en) * 1967-04-05 1970-10-21 Owens Corning Fiberglass Corp Glass composition
US3573078A (en) * 1967-11-16 1971-03-30 United Aircraft Corp Glass compositions with a high modulus of elasticity
US3804646A (en) * 1969-06-11 1974-04-16 Corning Glass Works Very high elastic moduli glasses
US3947281A (en) * 1969-11-06 1976-03-30 United Technologies Corporation High modulus rare earth and beryllium containing silicate glass compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864243A (en) * 1981-10-13 1983-04-16 Asahi Glass Co Ltd Glass composition with high elasticity and heat resistance
JPS62100457A (en) * 1985-10-28 1987-05-09 Toshiba Monofuratsukusu Kk Aluminous fiber and its production
JPS6465045A (en) * 1987-05-28 1989-03-10 Shimadzu Corp Oxynitride glass fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221104A (en) * 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
JP2009221105A (en) * 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
WO2013132858A1 (en) * 2012-03-08 2013-09-12 ニチアス株式会社 La/Ce-CONTAINING INORGANIC FIBRES THAT ARE SOLUBLE IN PHYSIOLOGICAL SALINE, AND COMPOSITION THEREOF
JPWO2013132858A1 (en) * 2012-03-08 2015-07-30 ニチアス株式会社 La / Ce-containing inorganic fiber soluble in physiological saline and composition thereof
JP2018517653A (en) * 2016-02-29 2018-07-05 ジュシ グループ カンパニー リミテッド High modulus glass fiber composition and glass fiber and composite material thereof
US10239781B2 (en) 2016-02-29 2019-03-26 Jushi Group Co., Ltd. High modulus glass fibre composition, and glass fibre and composite material thereof
US10696581B2 (en) 2016-02-29 2020-06-30 Jushi Group Co., Ltd. High-modulus glass fiber composition, glass fiber and composite material therefrom
CN114085039A (en) * 2022-01-18 2022-02-25 山东墨匠新材料科技有限公司 High-strength high-modulus glass fiber composition, and production method and application of glass fiber

Also Published As

Publication number Publication date
GB9011781D0 (en) 1990-07-18
GB2233643A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
US3947281A (en) High modulus rare earth and beryllium containing silicate glass compositions
US4363878A (en) Alkali- and heat-resistant inorganic fiber
JP4945711B2 (en) Glass yarns suitable for reinforcing organic and / or inorganic materials, composites containing these yarns, and compositions used for these yarns
JPH035343A (en) Fiberglass composition
JPH06219780A (en) Glass fiber of low dielectric constant
US5330940A (en) Fiberizable zinc-phosphate glass compositions
CA1244485A (en) Method for utilizing slag from metal production
US4818290A (en) Method for utilizing slag from ferroalloy production
JP3132234B2 (en) Glass long fiber
JPS6299B2 (en)
JPS58502054A (en) Resistant to alkali glass fiber
WO1999001393A1 (en) Glass composition for fibers
SU1273339A1 (en) Glass for glass fibre
JPH08231240A (en) Composition for high strength glass fiber
JP3771073B2 (en) Glass fiber
JPS58167444A (en) Alkali-resistant glass fiber
JPS5860639A (en) Silicate glass containing rare earth oxide
JPH11157876A (en) Corrosion resistant glass fiber
JPH06157072A (en) Corrosion resistant glass fiber
JPS63176340A (en) Glass fiber and production thereof
JPS623785B2 (en)
JP7235915B1 (en) Glass fibers and compositions for glass fibers
WO1989004813A1 (en) Method for mixing ferrochromium slag in order to produce fire-resistant and chemically resistant fiber
WO2024105894A1 (en) Glass fiber and composition for glass fiber
JPS62171940A (en) Production of long fiber using fly ash