JPS60209016A - Preparation of composite ceramic fiber - Google Patents

Preparation of composite ceramic fiber

Info

Publication number
JPS60209016A
JPS60209016A JP6451984A JP6451984A JPS60209016A JP S60209016 A JPS60209016 A JP S60209016A JP 6451984 A JP6451984 A JP 6451984A JP 6451984 A JP6451984 A JP 6451984A JP S60209016 A JPS60209016 A JP S60209016A
Authority
JP
Japan
Prior art keywords
fibers
aqueous solution
silica
alumina
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6451984A
Other languages
Japanese (ja)
Inventor
Atsushi Ito
淳 伊藤
Rikio Endo
遠藤 利喜男
Takayoshi Kubota
久保田 高芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP6451984A priority Critical patent/JPS60209016A/en
Publication of JPS60209016A publication Critical patent/JPS60209016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fibers useful as a heat insulating material for high temperature, by blending non-crystalline ceramic fiber consisting essentially of alumina and silica with a precursor of crystalline ceramic fiber by a specific method, calcining the blend. CONSTITUTION:Melt consisting essentially of alumina and silica is extruded from a thin hole nozzle into a thin stream, and high-speed air current is sprayed through a nozzle on it. On the other hand, one or more of aluminum, zirconium, and magnesium are blended with a water-soluble organic polymer, and, if necessary, a silicon compound, to prepare a viscous aqueous solution of precursor. The aqueous solution of precursor is introduced into the high-speed air current, made into fibers, and blended with the noncrystalline ceramic fibers consisting essentially of alumina and silica, to give the a fiber aggregate. The aggregate is successively calcined at 650-1,250 deg.C, to give composite ceramic fibers.

Description

【発明の詳細な説明】 本発明は、高温用断熱材として使用されるに適した複合
セラミック繊維の製造方法に関するものであり、その目
的とするところは、非晶質のセラミック繊維と結晶質の
セラミックamとを効率よく混合、絡み合わせて、高温
時においても低収縮率でかつ高強度を維持できる高性能
で安価な断熱材を提供することにある、 各種工業炉の内張りとして、アルミノシリケート質セラ
ミック繊維が様々な形態で使用されてぃる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing composite ceramic fibers suitable for use as high-temperature heat insulating materials, and its purpose is to produce composite ceramic fibers that are made of amorphous ceramic fibers and crystalline ceramic fibers. Aluminosilicate material is used as the lining of various industrial furnaces by efficiently mixing and intertwining with ceramic am to provide a high-performance and inexpensive heat insulating material that maintains low shrinkage and high strength even at high temperatures. Ceramic fibers are used in various forms.

しかし、このセラミック繊維は主成分として40〜70
重量%のAl2O3と30〜60重量%の8 iozと
を含有する非晶質の繊維であるから、繊維の強度は高い
が、高温になると結晶が析出することに起因して著しい
収縮が起こる。
However, the main component of this ceramic fiber is 40 to 70%.
Since it is an amorphous fiber containing 30 to 60% by weight of 8 ioz by weight, the fiber has high strength, but at high temperatures, significant shrinkage occurs due to precipitation of crystals.

また、M2O3成分が70重量1以上であるような結晶
質セラミック繊維は高温での収縮は小さいけれども繊維
が脆いため、成形体として使用しても強度がなく耐用性
に劣る。
Furthermore, although crystalline ceramic fibers having an M2O3 component of 70% by weight or more have a small shrinkage at high temperatures, the fibers are brittle, so even when used as a molded article, they lack strength and have poor durability.

そこで、高温になっても高強度と低収縮を維持できるよ
うに、非晶質のセラミック繊維と結晶質ノセラミック#
i維や微粉結晶などを混合した士ラミック繊維複合体が
従来より提案されている。
Therefore, in order to maintain high strength and low shrinkage even at high temperatures, amorphous ceramic fiber and crystalline ceramic #
BACKGROUND ART A laminated fiber composite made of a mixture of i-fibers, fine crystals, etc. has been proposed in the past.

たとえば、特開昭55−71684号公報には非晶質セ
ラミック繊維と結晶質子ラミック繊維とを水中に分散し
て混合し、吸引濾過して成形体を作る方法が提案されて
いる。しかし、この方法では、繊維状物が層状に重ね合
わされてしまうために、繊維相互の絡み合いが二次元方
向に規制されてしまい、充分に収縮を抑えることができ
ず非晶質と結晶質のセラミック繊維を混合した効果がな
くなってしまう。
For example, Japanese Patent Application Laid-Open No. 55-71684 proposes a method of producing a molded body by dispersing and mixing amorphous ceramic fibers and crystalline ramic fibers in water, and filtering the mixture by suction. However, with this method, since the fibrous materials are layered on top of each other, the intertwining of the fibers is restricted in two-dimensional directions, and shrinkage cannot be suppressed sufficiently. The effect of mixing fibers is lost.

マタ、特開昭57−47972号公報にはセラミックア
A/ミノケイ酸塩繊維製造時に耐火性酸化物を導入して
、セラi−tり繊維の表面に酸化物の被覆を生成せしめ
るセラミックm維複合体の製造方法が記載されている。
Mata, Japanese Patent Application Laid-Open No. 57-47972, discloses a ceramic M fiber in which a refractory oxide is introduced during the production of Ceramic A/minosilicate fiber to form an oxide coating on the surface of the Ceramic fiber. A method for making the composite is described.

しかし、この方法はセラj7り繊維と耐火性酸化物とか
ら成る複合体の製造方法に関するものであって、本発明
のような繊維相互の絡み合いの改良を目的とするもので
はなく、また、セラミック繊維全体の被覆を酸化物粒子
で充分に行なうことができず、高温における収縮率を低
くすることができない。
However, this method relates to a method for manufacturing a composite consisting of ceramic fibers and a refractory oxide, and is not intended to improve the intertwining of fibers as in the present invention. The entire fiber cannot be sufficiently covered with oxide particles, and the shrinkage rate at high temperatures cannot be reduced.

以上の様に、従来のセラミック繊維複合体の製造方法で
は、Ia雑相互が三次元的に充分に絡み合い、高温にお
いても低収縮率と高強度とを維持できるセラミック繊維
複合体を製造することができなかった。
As described above, in the conventional method for manufacturing ceramic fiber composites, it is not possible to manufacture ceramic fiber composites in which Ia miscellaneous particles are sufficiently intertwined with each other in three dimensions and can maintain low shrinkage rate and high strength even at high temperatures. could not.

本発明は非晶質のセラミック繊維と結晶質のセラミック
繊維とが三次元的に絡み合った構造を有し、高温におい
ても低収縮率と高強度が維持できる複合セラミックIP
4維を提供することを目的とする。すなわち、本発明は
アルミナ、シリカを主体とする融体を細孔ノズルを介し
て細流となし、前記細流に高速気流を吹きつけてアルミ
ナ、シリカを主体とする非晶質中ラミック繊維を製造す
るに際して、前記高速気流の中へアルミニウム、ジルコ
ニウム、マグネシウムの何れか1種または2種以上の水
溶性金属化合物と水溶性有機重合体と必要に応じてケイ
素化合物を加えてなる粘稠な水溶液を導入して前駆体繊
維となし、前記前駆体繊維とアルミナ、シリカを主体と
する非晶質セラミック繊維とが混在してなる#I維集合
体を650〜1250℃の温度範囲で焼成することを特
徴とする複合セラミック繊維の製造方法を提供するもの
である。
The present invention is a composite ceramic IP having a structure in which amorphous ceramic fibers and crystalline ceramic fibers are three-dimensionally intertwined, and which can maintain low shrinkage and high strength even at high temperatures.
The purpose is to provide four fibers. That is, in the present invention, a molten material mainly composed of alumina and silica is made into a thin stream through a fine-hole nozzle, and a high-speed air stream is blown onto the thin stream to produce an amorphous medium ramic fiber mainly composed of alumina and silica. At this time, a viscous aqueous solution prepared by adding one or more water-soluble metal compounds of aluminum, zirconium, and magnesium, a water-soluble organic polymer, and, if necessary, a silicon compound, is introduced into the high-speed air flow. #I fiber aggregate, which is a mixture of the precursor fibers and amorphous ceramic fibers mainly composed of alumina and silica, is fired at a temperature range of 650 to 1250°C. The present invention provides a method for manufacturing a composite ceramic fiber.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

非晶質のセラミック繊維と結晶質のセラミック繊維とを
混合させて低収縮率を得る方法は公知のものである、し
かし、混合方法が水中に分散する手段を介して行なわれ
るため混合時に繊維が短く切断されてしまいII維相互
の絡み合いが不充分となる。また、乾燥に余分な熱量を
必要とし、コストが高くなる。また、繊維を短くしない
で2種類以上の繊維を十分に混合する手段としては、有
機繊維の混綿時に使用されるような空気流中に分散させ
る手段が知られている。
A method for obtaining a low shrinkage rate by mixing amorphous ceramic fibers and crystalline ceramic fibers is known. However, since the mixing method is carried out through dispersion in water, the fibers are mixed during mixing. The II fibers are cut short and the intertwining of the II fibers becomes insufficient. Additionally, extra heat is required for drying, which increases cost. Furthermore, as a means for sufficiently mixing two or more types of fibers without shortening the fibers, there is known a means for dispersing the fibers in an air stream, such as that used when blending organic fibers.

しかしながら、有機繊維に比較すると結晶質セラミック
繊維は弾性率が高く、いわゆる剛性が高いために曲げの
力に弱くすぐ折れる傾向があるために、空気流中に結晶
質セラミック繊維を導入しても、空気の乱流による力を
うけて長い部分は折れて短くなり、相互に凝集して1造
粒”し繊維としての特性を示さなくなる。
However, compared to organic fibers, crystalline ceramic fibers have a higher elastic modulus and so-called high rigidity, so they are weak against bending force and tend to break easily. Under the force of air turbulence, the long parts break and become short, and they coagulate together into granules, which no longer exhibit the characteristics of fibers.

本発明者等は、この様な湿式法でない方法(以下乾式法
という)によって充分な絡み合いを実現できる手段につ
いて鋭意研究した結果、前記結晶質セラミック繊維にし
なやかさを持たせれば、空気流中にても充分な絡み合い
を生成できることを新規に知見したものである。
The inventors of the present invention have conducted intensive research on methods that can achieve sufficient entanglement using a method other than the wet method (hereinafter referred to as the dry method), and have found that if the crystalline ceramic fibers are given flexibility, This is a new finding that sufficient entanglement can be generated even when

一般に結晶質セラミック繊維は、焼成して金属酸化物に
変化する金属化合物と有機重合体とを水に溶解して成る
粘稠な水溶液を押出法、遠心法、吹付法、延伸法などに
より繊維化して得た前駆体繊維を焼成して作られる。前
記前駆体繊維は有機重合体を含有しているためしなやか
さに優れているが強度が劣り取扱いに注意を要する。
Generally, crystalline ceramic fibers are made by extruding, centrifuging, spraying, stretching, etc. a viscous aqueous solution made by dissolving a metal compound and an organic polymer in water, which are converted into metal oxides by firing. It is made by firing the precursor fiber obtained by Since the precursor fiber contains an organic polymer, it has excellent flexibility, but has poor strength and must be handled with care.

したがって、この前駆体繊維をうまく利用することがで
きれば、乾式法による混合が実現できると予知された。
Therefore, it was predicted that if this precursor fiber could be utilized effectively, it would be possible to achieve mixing by a dry method.

しかし、前駆体繊維は上述した様に強度が劣るので、単
に空気流中に前記非晶質セラミック繊維と前駆体繊維と
を分散させるだけでは、前駆体繊維が短く切断されてし
まい充分とは言えなかった。
However, as mentioned above, the strength of the precursor fibers is poor, so simply dispersing the amorphous ceramic fibers and the precursor fibers in an air stream will cause the precursor fibers to be cut into short lengths, which may not be sufficient. There wasn't.

そこで、空気流中に非晶質セラミック繊維と前駆体繊維
とを分散せしめる方法について種々検討した結果、アル
ミナ、シリカを主体とする融体の細流に吹きつけて非晶
質セラミック繊維にする際に用いられる高速気流の中へ
前駆体繊維紡糸原液の水溶液を導入し、非晶質セラミッ
ク繊維を作ると同時に前駆体m維を生成せしめることが
最も有効であることが判明した。すなわち、前述の方法
によれば、非晶質セラミック繊維と比較的繊維の長い前
駆体繊維とが三次元的に十分に絡み合った状態で混在す
る繊維集合体を得ることができた。
Therefore, as a result of various studies on methods of dispersing amorphous ceramic fibers and precursor fibers in an air flow, we found that when making amorphous ceramic fibers by spraying them into a trickle of melt mainly composed of alumina and silica. It has been found that it is most effective to introduce an aqueous solution of a precursor fiber spinning dope into the high-speed air stream used to produce precursor m-fibers simultaneously with the production of amorphous ceramic fibers. That is, according to the method described above, it was possible to obtain a fiber aggregate in which amorphous ceramic fibers and relatively long precursor fibers were mixed in a three-dimensionally sufficiently intertwined state.

高速気流の中へ前駆体繊維紡糸原液の水溶液を導入する
手段としては例えば、アルミナ、シリカを主体とする融
体の細流に空気などの高速気流を吹きつけるノズル近傍
に配設した別のノズルを介して圧入する方法がある。前
駆体繊維紡糸原液の水溶液の添加量は所望する非晶質セ
ラミック繊維と前駆体繊維が焼成されてできる結晶質セ
ラミック繊維との配合比から非晶質セラミック繊維の生
成速度に合わせてきめることができる。また、高速気流
の速度、量に応じて前駆体am紡糸原液の水溶液の吐出
速度を変化させることにより前駆体繊維の太さ、長さを
変えることが可能である。
As a means of introducing the aqueous solution of the precursor fiber spinning dope into the high-speed airflow, for example, another nozzle disposed near the nozzle that blows a high-speed airflow of air into a trickle of melt mainly composed of alumina and silica can be used. There is a method of press-fitting through. The amount of the aqueous solution of the precursor fiber spinning dope can be determined in accordance with the production rate of the amorphous ceramic fibers based on the blending ratio of the desired amorphous ceramic fibers and the crystalline ceramic fibers produced by firing the precursor fibers. can. Furthermore, it is possible to change the thickness and length of the precursor fiber by changing the discharge speed of the aqueous solution of the precursor am spinning dope depending on the speed and amount of the high-speed airflow.

前駆体繊維紡糸原液の水溶液はアルミニウム、ジルコニ
ウム、マグネシウムの何れか1種または2種以上の水溶
性金属化合物と水溶性有機重合体を水に溶解した粘稠な
水溶液あるいは必要に応じて前記粘稠な水溶液にケイ素
化合物を溶解、分散せしめた水溶液である。前記アルミ
ニウムの水溶性金属化合物としては塩化アルミニウム、
塩基性塩化アルミニウム、塩基性m酸アルE : v7
 ム、塩基性酢酸アルミニウム、塩基性乳酸アルミニウ
ムなどがあり、特に塩化アルミニウム、塩基性塩化アル
ミニウム、塩基性乳酸アルミニウムの何れか1種または
2種以上を用いることが好適である。
The aqueous solution of the precursor fiber spinning stock solution is a viscous aqueous solution prepared by dissolving one or more water-soluble metal compounds of aluminum, zirconium, and magnesium and a water-soluble organic polymer in water, or if necessary, the above-mentioned viscous solution. This is an aqueous solution in which a silicon compound is dissolved and dispersed in an aqueous solution. The water-soluble metal compound of aluminum includes aluminum chloride,
Basic aluminum chloride, basic acid Al E: v7
aluminum, basic aluminum acetate, basic aluminum lactate, etc., and it is particularly preferable to use one or more of aluminum chloride, basic aluminum chloride, and basic aluminum lactate.

前記ジルコニウムの水溶性金属化合物としては塩化ジル
コニウム、塩基性塩化ジルコニウム、塩基性蟻酸ジルコ
ニウム、塩基性酢酸ジルコニウム、塩基性硝酸ジルコニ
ウムなどがある。前記マグネシウムの水溶性金属化合物
としては塩化マグネシウムなどがある。また、水溶性有
機重合体としてはポリ酢酸ビニル、ポリビニルアルコー
ル、ポリエチレンオキサイド、ポリエチレングリフール
、ポリアクリルアミドなとがあり、特にポリビニルアル
コール、ポリエチレンオキサイド、ポリアクリルアミド
の何れか1種または2種以上を用いることが好適である
。前記ケイ素化合物としてはコロイダルシリカなどがあ
る。特に、高速気流の中へ導入する前駆体繊維紡糸原液
の水溶液としては塩化アルミニウム、塩基性塩化アルミ
ニウム、塩基性具Mアルミニウムの何れか1種または2
種以上の水溶性アルミニウム化合物とポリビニルアシフ
ール、ポリエチレンオキサイド、ポリアクリルアミドの
何れか1種まkは2種以上の水溶性有機重合体とコロイ
ダルシリカとを水に溶解、分散させてなる粘稠な水溶液
が好ましい。また、前駆体繊維紡糸原液の水溶液はその
粘度が10〜1000ポイズの範囲内にある粘稠な水溶
液であることが好ましい。 ・ 次に、前述のようにして得られたアルミナ、シリカを主
体とする非晶質セラミック繊維と前駆体繊維とが三次元
的に十分に絡み合った状態で混在する繊維集合体を酸素
を含有する雰囲気下例えば大気中で650〜1250℃
の範囲内の温度で焼成する。この焼成により前記前駆体
繊維を構成する有機重合体を焼失せしめ、アルミニウム
、ジルコニラム、マグネシウムの化合物およびケイ素化
合物を分解、酸化せしめて酸化物となし、前駆体II維
を実質的に結晶質のセラミックl1I4雑にする。焼成
温度を650〜1250℃の範囲内に限定する理由は、
650℃未満の温度では前記前駆体繊維を実質的に結晶
質セラミック繊維にすることができず、一方1250℃
を越える温度では前記非晶質セラミック繊維の熱劣化が
顕著となるからである。
Examples of the water-soluble metal compounds of zirconium include zirconium chloride, basic zirconium chloride, basic zirconium formate, basic zirconium acetate, and basic zirconium nitrate. Examples of the water-soluble metal compound of magnesium include magnesium chloride. In addition, water-soluble organic polymers include polyvinyl acetate, polyvinyl alcohol, polyethylene oxide, polyethylene glyfur, and polyacrylamide, and in particular, one or more of polyvinyl alcohol, polyethylene oxide, and polyacrylamide is used. It is preferable that Examples of the silicon compound include colloidal silica. In particular, as the aqueous solution of the precursor fiber spinning stock solution introduced into the high-speed airflow, any one or two of aluminum chloride, basic aluminum chloride, and basic aluminum M may be used.
A viscous material made by dissolving and dispersing in water one or more water-soluble aluminum compounds, one or more water-soluble organic polymers of polyvinyl acyfur, polyethylene oxide, and polyacrylamide, and colloidal silica. Aqueous solutions are preferred. Further, the aqueous solution of the precursor fiber spinning dope is preferably a viscous aqueous solution having a viscosity within the range of 10 to 1000 poise. - Next, a fiber aggregate in which the amorphous ceramic fibers mainly composed of alumina and silica obtained as described above and the precursor fibers are mixed in a three-dimensionally sufficiently intertwined state is heated to contain oxygen. Atmosphere, e.g. 650-1250℃ in air
Fire at a temperature within the range of . This firing burns out the organic polymer constituting the precursor fibers, decomposes and oxidizes the aluminum, zirconylam, magnesium compounds, and silicon compounds into oxides, converting the precursor II fibers into substantially crystalline ceramics. l1I4 Make it sloppy. The reason for limiting the firing temperature to within the range of 650 to 1250°C is
Temperatures below 650°C do not substantially convert the precursor fibers into crystalline ceramic fibers, while temperatures below 1250°C
This is because the thermal deterioration of the amorphous ceramic fiber becomes significant at temperatures exceeding 100 mL.

以下、本発明の実施例について比較例と合わせて説明す
る。
Examples of the present invention will be described below along with comparative examples.

45重量%のアルミナと55重爪弾のケイ砂の混合物を
溶融し、細孔から吐出させ、この吐出流に高圧空気を音
速に近い速度でノズルを介して吹きつけた。
A mixture of 45% by weight alumina and 55% silica sand was melted and discharged through a pore, and the discharge stream was blown with high pressure air through a nozzle at a velocity close to the speed of sound.

一方、塩基性塩化アルミニウム水溶液または塩基性塩化
ジルコニウム水溶液と4重量%のポリビニルアルコール
、ポリエチレンオキシド、ポリシクリルアミドのいずれ
か一種または二種以上の水溶液と必要に応じてフロイダ
ルシ9カ、塩化マグネシウムとを混合後濃縮して粘度が
30ボイスになる様に前駆体水溶液を調製した。このよ
うにして作った前駆体水溶液を前述した高圧空気流中に
導入して繊維化させ、非晶質のセラミック繊維と結晶質
セラミック繊維の前駆体とから成るマット状の複合セラ
ミックm維を製造した。続いてこの複合体を800″C
に昇温された炉を通過させて焼成し、前駆体繊維を結晶
質繊維へと変換させた。
On the other hand, a basic aqueous aluminum chloride solution or a basic aqueous zirconium chloride solution, a 4% by weight aqueous solution of one or more of polyvinyl alcohol, polyethylene oxide, and polycyclylamide, and if necessary, froidal chloride and magnesium chloride are added. After mixing, an aqueous precursor solution was prepared so as to have a viscosity of 30 voices by concentration. The precursor aqueous solution prepared in this manner is introduced into the aforementioned high-pressure air flow and fiberized to produce a mat-like composite ceramic m-fiber consisting of amorphous ceramic fibers and crystalline ceramic fiber precursors. did. This complex was then heated to 800″C.
The precursor fibers were converted into crystalline fibers by passing through a furnace heated to

また、前記前駆体水溶液をあらかじめ繊維化させて得た
結晶質セラミック繊維と前記組成の非晶質セラミック繊
維を水中に分散させてから真空吸引して成形し、乾燥さ
せてマット状の複合体を湿式法によって製造し本発明の
比較例とした。
In addition, crystalline ceramic fibers obtained by previously fiberizing the aqueous precursor solution and amorphous ceramic fibers having the above composition are dispersed in water, vacuum-sucked, molded, and dried to form a mat-like composite. It was produced by a wet method and used as a comparative example of the present invention.

第1表は、本発明の実施例および比較例による複合体の
組成と引張強度および線収縮率を測定するのに使用した
試験片の大きさを示すものである。
Table 1 shows the compositions and sizes of test pieces used to measure the tensile strength and linear shrinkage percentage of composites according to Examples and Comparative Examples of the present invention.

第1図は、各温度で24時間焼成した試験片の長さ方向
における引張強度の値を示し、同様に第2図には厚み方
向における屈曲強度の値を実施例は実線で比較例は破線
1示した。ここで屈曲強度は試 ゛験片の両端を固定し
て一定時間間隔で屈曲させ、中央部が裂けて切離される
までの屈曲回数で比較した。
Figure 1 shows the tensile strength values in the longitudinal direction of the test specimens fired for 24 hours at each temperature, and similarly, Figure 2 shows the values of the bending strength in the thickness direction, with the solid line for Examples and the broken line for Comparative Examples. 1 shown. Here, the bending strength was compared by fixing both ends of the test piece and bending it at regular intervals, and calculating the number of bends until the center part split and was cut off.

また第3図は、各温度で24時間焼成した試験片の長さ
方向における線収縮率の値を、同様に第4図には厚み方
向における線収縮率の値を実施例は実線で比較例は破線
で示した。
In addition, Figure 3 shows the values of the linear shrinkage percentage in the length direction of the test pieces fired for 24 hours at each temperature, and similarly, Figure 4 shows the values of the linear shrinkage percentage in the thickness direction. is indicated by a broken line.

なお引張強度の測定は、島津製作所製の引張強度試験機
を用い、引張速度を10□とし、つかみ具間隔を60f
lとして測定した。
The tensile strength was measured using a tensile strength tester manufactured by Shimadzu Corporation, with a tensile speed of 10□ and a grip interval of 60 f.
It was measured as l.

第1図〜第4図の結果から比較例に比べて実施例はいず
れも、特に高温において高強度と低収縮率を維持してい
ることが明らかであり、厚み方向での改善が著しいこと
から繊維が三次元的に効率よく絡み合っていることがわ
かる。
From the results shown in Figures 1 to 4, it is clear that the Examples maintain high strength and low shrinkage, especially at high temperatures, compared to the Comparative Examples, and the improvement in the thickness direction is remarkable. It can be seen that the fibers are efficiently intertwined three-dimensionally.

第 1 表 以上のように、本発明の製造方法によれば、高温におい
ても高強度と低収縮率を維持できる複合セラミック繊維
を容易にしかも廉価で製造できるものである。
As shown in Table 1, according to the manufacturing method of the present invention, composite ceramic fibers that can maintain high strength and low shrinkage even at high temperatures can be manufactured easily and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

゛第1図は本発明の実施例の引張強度を比較例と対比し
たグラフ、第2図は屈曲強度第3図および第4図は加熱
線収縮率の値を本発明の実施例と比較例について示した
グラフである。 特許出願人 イビデン株式会社 代表者多賀潤一部 にυo l1oo tzoo 1joo tqoυ1 
pL(#す
゛Figure 1 is a graph comparing the tensile strength of the example of the present invention with the comparative example, Figure 2 is the flexural strength, Figure 3 and Figure 4 are the graphs of the heating linear shrinkage ratio of the example of the present invention and the comparative example. It is a graph shown about. Patent applicant IBIDEN Co., Ltd. Representative Jun Taga Partially υo l1oo tzoo 1joo tqoυ1
pL(#s

Claims (1)

【特許請求の範囲】 1、アルミナ、シリカを主体とする融体を細孔ノズルを
介して細流となし、前記細流に高速気流を吹きつけてア
ルミナ、シリカを主体とする非晶質セラミックm維を製
造するに際して、前記高速気流の中へアルミニウム、ジ
ルフニウム、マグネシウムの何れか1種または2種以上
の水溶性金属3゜ 化合物と水溶性有機重合体と必要に応じてケイ素化合物
を加えてなる粘稠な水溶液を導入して前駆体繊維となし
、前記前駆体繊維とアルミナ、シリカを主体とする非晶
質セラミック繊維とが混在してなる繊維集合体を650
°C−1260℃の温度範囲で焼成することを特徴とす
る複合セラミック繊維の製造方法。 2、高速気流の中へ導入する粘稠な水溶液が塩化アルミ
ニウム、塩基性塩化アルミニウム、塩基性乳酸アルミニ
ウムの何れか1種または2種以上の水溶性アルミニウム
化合物とポリビニルアルコール、ポリエチレンオキサイ
ド、ポリアクリルアミドの何れか1挿または2穆以上の
水溶性有機重合体とコロイダルシリカとから成る水溶液
であることを特徴とする特許請求の範囲第1項記載の製
造方法。 3、高速気流の中へ導入する粘稠な水溶液の粘度が10
〜1000ポイズの範囲内であることを特徴とする特許
請求の範囲第1〜2項記載の製造方法。
[Claims] 1. Amorphous ceramic m-fibers mainly composed of alumina and silica are formed by forming a molten material mainly composed of alumina and silica into a thin stream through a fine-hole nozzle, and blowing a high-speed air stream onto the thin stream. When producing a viscous material, a water-soluble metal compound of one or more of aluminum, zirfnium, and magnesium, a water-soluble organic polymer, and optionally a silicon compound are added to the high-speed air stream. A viscous aqueous solution is introduced to obtain precursor fibers, and a fiber aggregate consisting of a mixture of the precursor fibers and amorphous ceramic fibers mainly composed of alumina and silica is produced at 650.
A method for producing a composite ceramic fiber, characterized by firing at a temperature range of 1260°C. 2. The viscous aqueous solution introduced into the high-speed airflow contains one or more water-soluble aluminum compounds such as aluminum chloride, basic aluminum chloride, and basic aluminum lactate, and polyvinyl alcohol, polyethylene oxide, and polyacrylamide. 2. The method according to claim 1, wherein the aqueous solution comprises one or more water-soluble organic polymers and colloidal silica. 3. The viscosity of the viscous aqueous solution introduced into the high-speed airflow is 10
3. The manufacturing method according to claim 1, wherein the poise is within the range of 1000 to 1000 poise.
JP6451984A 1984-03-31 1984-03-31 Preparation of composite ceramic fiber Pending JPS60209016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6451984A JPS60209016A (en) 1984-03-31 1984-03-31 Preparation of composite ceramic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6451984A JPS60209016A (en) 1984-03-31 1984-03-31 Preparation of composite ceramic fiber

Publications (1)

Publication Number Publication Date
JPS60209016A true JPS60209016A (en) 1985-10-21

Family

ID=13260540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6451984A Pending JPS60209016A (en) 1984-03-31 1984-03-31 Preparation of composite ceramic fiber

Country Status (1)

Country Link
JP (1) JPS60209016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165522A (en) * 1986-12-27 1988-07-08 Nippon Steel Corp Production of alumina fiber
JPS646121A (en) * 1987-06-23 1989-01-10 Toshiba Monofrax High-strength ceramic fiber and production thereof
JP2016160541A (en) * 2015-02-27 2016-09-05 イビデン株式会社 Method for producing alumina fiber, spinning solution, and alumina fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414832A (en) * 1977-07-06 1979-02-03 Sofuia Kk Television image display system pinball game device
JPS5423727A (en) * 1977-07-22 1979-02-22 Toshiba Monofrax Production of polycrystalline oxidized fiber
JPS553347A (en) * 1978-06-23 1980-01-11 Nat Res Inst Metals Surface treatment for carbon formed article like carbon fiber
JPS5747972A (en) * 1980-07-18 1982-03-19 Detrick M H Co Ceramic fiber composite material and method
JPS5953782A (en) * 1982-09-14 1984-03-28 株式会社日軽化工 Production of fiber material for composite reinforcing material improved in surface wettability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414832A (en) * 1977-07-06 1979-02-03 Sofuia Kk Television image display system pinball game device
JPS5423727A (en) * 1977-07-22 1979-02-22 Toshiba Monofrax Production of polycrystalline oxidized fiber
JPS553347A (en) * 1978-06-23 1980-01-11 Nat Res Inst Metals Surface treatment for carbon formed article like carbon fiber
JPS5747972A (en) * 1980-07-18 1982-03-19 Detrick M H Co Ceramic fiber composite material and method
JPS5953782A (en) * 1982-09-14 1984-03-28 株式会社日軽化工 Production of fiber material for composite reinforcing material improved in surface wettability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165522A (en) * 1986-12-27 1988-07-08 Nippon Steel Corp Production of alumina fiber
JPS646121A (en) * 1987-06-23 1989-01-10 Toshiba Monofrax High-strength ceramic fiber and production thereof
JP2016160541A (en) * 2015-02-27 2016-09-05 イビデン株式会社 Method for producing alumina fiber, spinning solution, and alumina fiber

Similar Documents

Publication Publication Date Title
JP3227586B2 (en) Inorganic fiber
JPS62256776A (en) Whisker reinforced cordierite ceramic product and manufacture
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JP2020063760A (en) Heat insulating material and manufacturing method thereof
JPH0351819B2 (en)
JPS60209016A (en) Preparation of composite ceramic fiber
EP2640878B1 (en) Inorganic fiber
JP6598961B1 (en) Inorganic fiber molded body
JPS63297267A (en) Zirconia composite refractory
JP3195266B2 (en) Multi-layer heat insulating material and its manufacturing method
JPS6278216A (en) Production of formed article of composite ceramic fiber
JP2015038365A (en) Heat insulation material and manufacturing method thereof
JPS61124626A (en) Aluminum nitride fiber and production thereof
JP2000191363A (en) Spalling resistant spinel brick
JP2015036587A (en) Heat insulation material and manufacturing method thereof
JP3302595B2 (en) Insulation method
JPH045770B2 (en)
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPH06316467A (en) Production of incombustible molding
JPS60224814A (en) Inorganic fiber
JP3186993B2 (en) Insulation
JP2614800B2 (en) Inorganic fiber refractory brick
JPS60173151A (en) Production of ceramic fiber blanket
JPH08132196A (en) Nozzle for casting
JPS60167925A (en) Heat-resistant inorganic fiber