JP3195266B2 - Multi-layer heat insulating material and its manufacturing method - Google Patents

Multi-layer heat insulating material and its manufacturing method

Info

Publication number
JP3195266B2
JP3195266B2 JP04297497A JP4297497A JP3195266B2 JP 3195266 B2 JP3195266 B2 JP 3195266B2 JP 04297497 A JP04297497 A JP 04297497A JP 4297497 A JP4297497 A JP 4297497A JP 3195266 B2 JP3195266 B2 JP 3195266B2
Authority
JP
Japan
Prior art keywords
fiber
weight
heat
layer
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04297497A
Other languages
Japanese (ja)
Other versions
JPH10226582A (en
Inventor
伸一 田上
政之 山下
純一 小川
敏行 安治
美宏 川崎
Original Assignee
三菱重工業株式会社
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, ニチアス株式会社 filed Critical 三菱重工業株式会社
Priority to JP04297497A priority Critical patent/JP3195266B2/en
Publication of JPH10226582A publication Critical patent/JPH10226582A/en
Application granted granted Critical
Publication of JP3195266B2 publication Critical patent/JP3195266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1500℃を超え
るような過酷な温度条件下で使用する断熱材として好適
な、高度の耐熱性と耐熱衝撃性を備えた複層断熱材及び
その製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer heat insulating material having high heat resistance and thermal shock resistance, which is suitable as a heat insulating material to be used under severe temperature conditions exceeding 1500.degree. It is about.

【0002】[0002]

【従来の技術】NASAの宇宙往還機・スペースシャト
ルの表面保護材のように、著しい高温や激しい熱的衝撃
によく耐え、低密度で断熱性に優れる一方、一定水準以
上の強度と機械加工性を備えていることを要求される板
状断熱材の代表的なものとしては、耐熱無機繊維を主材
とする多孔質断熱材が知られている。
2. Description of the Related Art Like surface protection materials for NASA space shuttles and space shuttles, it withstands extremely high temperatures and severe thermal shocks, has low density and excellent heat insulation, but has a certain level of strength and machinability. As a typical example of a plate-like heat insulating material required to have a heat insulating material, a porous heat insulating material mainly composed of heat-resistant inorganic fibers is known.

【0003】この種の材料で最初に用いられたものは、
バインダーとしてのコロイダルシリカと高純度シリカ繊
維との混合物の成形体を約1300℃で焼成して作られ
た、シリカタイルと呼ばれる材料である。しかしなが
ら、この材料は強度が低く、また物性の劣化も早く、使
用時の機械的衝撃によって欠けたり、接着したものが剥
離したりする等の欠点があった。そこで、バインダーを
使用することによるシリカタイルの上述のような欠点を
解消するものとして、例えばシリカ繊維、アルミノシリ
ケート繊維及び酸化ホウ素の混合物又はシリカ繊維及び
アルミノボロシリケート繊維の混合物を成形した後焼成
することにより繊維間融着を生じさせた断熱材(特開昭
55−37500号公報)、特定の繊維径のシリカ繊維
とアルミナ繊維とを酸化ホウ素により融着させた断熱材
(特開昭60−151269号公報)、シリカ繊維、ア
ルミノシリケート繊維及びアルミノボロシリケート繊維
の混合物に有機繊維及び酸化ホウ素を混合し、成形した
のち焼成することにより繊維間融着を生じさせた断熱材
の製造法(特開平4−119958号公報)及びシリカ
繊維65〜85重量%、ムライト繊維15〜35重量
%、セルロースパウダー及びホウ素化合物粉末の混合物
を成形したのち焼成することにより繊維間融着を生じさ
せる断熱材の製造法(特開平6−172010号公報)
等が提案されている。
[0003] The first such materials to be used were:
This is a material called silica tile, which is made by firing a mixture of a mixture of colloidal silica as a binder and high-purity silica fiber at about 1300 ° C. However, this material has disadvantages such as low strength, rapid deterioration of physical properties, chipping due to mechanical impact during use, and peeling off of the adhered material. Therefore, in order to solve the above-mentioned disadvantages of the silica tile by using the binder, for example, a mixture of silica fiber, aluminosilicate fiber and boron oxide or a mixture of silica fiber and aluminoborosilicate fiber is fired after molding. A heat insulating material which causes fusion between fibers (Japanese Patent Application Laid-Open No. 55-37500), and a heat insulating material obtained by fusing silica fiber and alumina fiber having a specific fiber diameter with boron oxide (Japanese Patent Application Laid-Open No. 60-37500). JP-A-151269), a method of manufacturing a heat insulating material in which an organic fiber and boron oxide are mixed with a mixture of silica fiber, aluminosilicate fiber and aluminoborosilicate fiber, molded, and then fired to cause inter-fiber fusion. JP-A-4-119958) and 65 to 85% by weight of silica fiber, 15 to 35 weight of mullite fiber. %, Preparation of heat-insulating material to produce a fiber-to-fiber fusion by firing After molding a mixture of cellulose powder and a boron compound powder (JP-A-6-172010)
Etc. have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
断熱材は既にかなりの高水準の性能を達成しているもの
の、いずれの断熱材も、その断熱材を構成する原材料の
性質上1400℃を超えるような超高温域では断熱材の
収縮が大きくなり、形状が保持できなくなるため使用に
耐えない。しかし、NASAの宇宙往還機においては、
1500℃を超える温度域で使用可能な断熱材も要求さ
れており、現状ではカーボンカーボンと呼ばれる炭素繊
維複合耐熱材を利用した断熱材が唯一存在するのみであ
る。しかしながら、該カーボンカーボンは製造が極めて
難しい。そこで、高性能でかつ容易に製造され1500
℃を超える温度域で使用可能な断熱材の開発が要望され
ている。
However, although the above-mentioned heat insulating materials have already achieved a considerably high level of performance, any heat insulating material has a temperature exceeding 1400 ° C. due to the nature of the raw materials constituting the heat insulating material. In such an ultra-high temperature range, the heat insulating material is greatly shrunk and cannot maintain its shape, so that it cannot be used. However, in NASA spacecraft,
There is also a demand for a heat insulating material that can be used in a temperature range exceeding 1500 ° C., and at present, there is only one heat insulating material using a carbon fiber composite heat resistant material called carbon carbon. However, said carbon is extremely difficult to produce. Therefore, the high-performance and easily manufactured 1500
There is a demand for the development of a heat insulating material that can be used in a temperature range exceeding ℃.

【0005】従って、本発明の目的は、約1500℃の
高温度域まで使用可能であり、かつ簡易な方法で製造で
きる高性能複層断熱材及びその製造法を提供することに
ある。
Accordingly, an object of the present invention is to provide a high-performance multilayer insulation material which can be used up to a high temperature range of about 1500 ° C. and can be manufactured by a simple method, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、従来、繊維間融着が不
十分という理由で配合量が制限されていたムライト繊維
の表面を、予めコロイダルシリカで処理すれば高配合量
としても繊維間融着が強固になり、従って、耐熱性に極
めて優れるとともに高性能な耐熱材が得られること、こ
れを表層とした複層断熱材が機械的特性にも優れること
を見い出し、本発明を完成するに至った。
Under such circumstances, the present inventors have conducted intensive studies and found that the surface of mullite fibers, which had been limited in amount in the past due to insufficient inter-fiber fusion, was previously removed. When treated with colloidal silica, fusion between fibers becomes strong even at a high blending amount, so that a high-performance heat-resistant material having extremely excellent heat resistance and high performance can be obtained. The inventors have also found that the characteristics are excellent, and have completed the present invention.

【0007】すなわち、本発明は、次の(A)、(B)
及び(C); (A)ムライト繊維75〜95重量%及びシリカ繊維5
〜25重量%を含有する耐熱層、(B)中間層、(C)
ムライト繊維15〜35重量%及びシリカ繊維65〜8
5重量%を含有する断熱層、の3層から成り、かつ該繊
維の交絡点を固定するガラス状ホウ素化合物とを有して
三次元網目構造となっていることを特徴とする複層断熱
材を提供するものである。
That is, the present invention provides the following (A) and (B)
And (C); (A) 75 to 95% by weight of mullite fiber and silica fiber 5
Heat-resistant layer containing 2525% by weight, (B) intermediate layer, (C)
15 to 35% by weight of mullite fiber and 65 to 8 of silica fiber
A heat insulating layer containing 5% by weight, and a three-dimensional network structure comprising a glassy boron compound that fixes the entanglement point of the fiber. Is provided.

【0008】また、本発明は、予め、ムライト繊維75
〜95重量%と酸性コロイダルシリカを水中にて混合
し、次いで該混合体にシリカ繊維5〜25重量%及びホ
ウ素化合物を加えて作製される耐熱層用スラリー、中間
層用スラリー及びムライト繊維15〜35重量%とシリ
カ繊維65〜85重量%及びホウ素化合物を水中にて混
合し作製される断熱層用スラリーを順次加えて一体成形
し、乾燥後焼成することを特徴とする複層断熱材の製造
法を提供するものである。
[0008] Further, the present invention provides a mullite fiber 75 in advance.
9595% by weight and acidic colloidal silica are mixed in water, and then 5-25% by weight of silica fiber and a boron compound are added to the mixture to prepare a slurry for a heat-resistant layer, a slurry for an intermediate layer and a mullite fiber 15- 35% by weight of silica fiber, 65 to 85% by weight of silica fiber and a boron compound are mixed in water, and a slurry for a heat insulating layer is sequentially added, integrally molded, dried and fired, thereby producing a multilayer heat insulating material. It provides the law.

【0009】また、本発明は、前記断熱層用スラリー
が、予め、ムライト繊維15〜35重量%と酸性コロイ
ダルシリカを水中にて混合し、次いで該混合体にシリカ
繊維65〜85重量%及びホウ素化合物を加えて作製さ
れるものである複層断熱材の製造法を提供するものであ
る。
In the present invention, the slurry for the heat insulating layer may be prepared by previously mixing 15 to 35% by weight of mullite fiber and acidic colloidal silica in water, and then adding 65 to 85% by weight of silica fiber and boron to the mixture. An object of the present invention is to provide a method for producing a multilayer insulation material which is produced by adding a compound.

【0010】[0010]

【発明の実施の形態】本発明の複層断熱材(以下、単に
断熱材ともいう)は、耐熱層、中間層及び断熱層の3層
から成り、該耐熱層はムライト繊維とシリカ繊維の無機
繊維混合物(以下、混合繊維ということもある)を基本
組成とするものであり、該ムライト繊維は混合繊維中、
75〜95重量%とすることが耐熱層の熱膨張率を低く
押さえつつ、かつ高耐熱性能を得るために必要である。
上記混合物は、好ましくは78〜92重量%である。該
ムライト繊維の配合量が75重量%未満では耐熱層は加
熱による収縮が大きく1500℃以上の高温での使用に
耐えられなくなり、また、95重量%を超えると強度が
低下し、目的の断熱材としては使用できなくなる。な
お、ムライト繊維はSiO2 /Al2 3 モル比が2/
3の斜方晶結晶からなる繊維であって、十分な断熱性能
を発揮するために平均繊維径が2〜5μm、平均繊維長
が0.2〜10mmとすることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The multi-layer heat insulating material of the present invention (hereinafter also simply referred to as heat insulating material) comprises three layers, a heat-resistant layer, an intermediate layer and a heat-insulating layer. A fiber mixture (hereinafter sometimes referred to as a mixed fiber) having a basic composition, wherein the mullite fiber is
It is necessary that the content be 75 to 95% by weight in order to keep the coefficient of thermal expansion of the heat-resistant layer low and to obtain high heat-resistant performance.
The mixture is preferably 78-92% by weight. When the blending amount of the mullite fiber is less than 75% by weight, the heat-resistant layer is greatly shrunk by heating and cannot withstand use at a high temperature of 1500 ° C. or more, and when it exceeds 95% by weight, the strength is reduced. As it can not be used. The mullite fiber has a SiO 2 / Al 2 O 3 molar ratio of 2 /
It is preferable that the fiber made of the orthorhombic crystal of No. 3 has an average fiber diameter of 2 to 5 μm and an average fiber length of 0.2 to 10 mm in order to exhibit sufficient heat insulating performance.

【0011】耐熱層において、前記シリカ繊維の配合量
は、混合繊維中、5〜25重量%とすることが耐熱層の
熱膨張率を低いレベルに維持し、高い強度を発現させる
ために必要である。上記配合量は、好ましくは8〜28
重量%である。該シリカ繊維の混合物が5重量%未満で
は耐熱層の強度が低下し、使用上の要求レベルを下回
り、また、25重量%を超えると加熱にする収縮が大き
くなり1500℃以上の温度での耐熱性が低下すること
となる。なお、シリカ繊維としては、SiO3 含有率が
95重量%以上の高純度シリカ繊維が好ましく、平均繊
維径が0.3〜3μm、平均繊維長が1〜5mmとするこ
とが好ましい。
In the heat-resistant layer, the amount of the silica fiber is preferably 5 to 25% by weight of the mixed fiber in order to maintain the coefficient of thermal expansion of the heat-resistant layer at a low level and to exhibit high strength. is there. The amount is preferably from 8 to 28.
% By weight. When the mixture of the silica fibers is less than 5% by weight, the strength of the heat-resistant layer is reduced and falls below a required level for use. When the mixture exceeds 25% by weight, heat shrinkage becomes large and heat resistance at a temperature of 1500 ° C. or more is required. Will be reduced. The silica fiber is preferably a high-purity silica fiber having a SiO 3 content of 95% by weight or more, and preferably has an average fiber diameter of 0.3 to 3 μm and an average fiber length of 1 to 5 mm.

【0012】また、前記断熱層は前記耐熱層と同様にム
ライト繊維とシリカ繊維の混合繊維を基本組成とするも
のであり、該シリカ繊維は混合繊維中、65〜85重量
%とすることが高い断熱性能及び低い熱膨張率を得るう
えで必要である。この繊維が65重量%未満では高い断
熱性能を得るために必要な微細構造が乱れて、十分な断
熱性能が得られなくなる。また85重量%を超えると、
目的とする温度での耐熱性が低下し、加熱による収縮が
大きくなる。なお、シリカ繊維としては、前記耐熱層で
使用のシリカ繊維と同様のものが挙げられる。
The heat-insulating layer has a basic composition of a mixed fiber of mullite fiber and silica fiber, similarly to the heat-resistant layer, and the silica fiber is frequently contained in the mixed fiber at 65 to 85% by weight. Necessary for obtaining thermal insulation performance and low coefficient of thermal expansion. If the fiber content is less than 65% by weight, the fine structure required for obtaining high heat insulating performance is disturbed, and sufficient heat insulating performance cannot be obtained. If it exceeds 85% by weight,
The heat resistance at the target temperature decreases, and the shrinkage due to heating increases. In addition, as a silica fiber, the thing similar to the silica fiber used for the said heat-resistant layer is mentioned.

【0013】前記断熱層に配合されるムライト繊維は断
熱層の混合繊維中、15〜35重量%とすることが、耐
熱性を向上させ、かつ熱膨張率を低いレベルに維持する
ために必要である。この繊維が15重量%未満では、相
対的にシリカ繊維の比率が過大になり、前述のように耐
熱性が低下する。また35重量%を超えると相対的にシ
リカ繊維が不足することとなり、断熱性能が低下するこ
ととなる。なお、ムライト繊維としては、前記耐熱層で
使用のムライト繊維と同様のものが挙げられる。
It is necessary that the mullite fiber blended in the heat insulating layer be 15 to 35% by weight of the mixed fiber of the heat insulating layer in order to improve heat resistance and maintain a low coefficient of thermal expansion. is there. If this fiber is less than 15% by weight, the ratio of silica fiber becomes relatively excessive, and the heat resistance is reduced as described above. On the other hand, if it exceeds 35% by weight, the silica fiber becomes relatively short and the heat insulation performance is reduced. The mullite fibers include the same mullite fibers as used in the heat-resistant layer.

【0014】また、前記中間層は前記耐熱層と前記断熱
層を両面で接着するもので、断熱材の焼成時及び使用時
の加熱による歪みの緩和や強度を維持するのに不可欠の
ものであり、その組成は前記耐熱層と前記断熱層の中間
的組成のものが好ましく、具体的には、ムライト繊維2
0〜80重量%、シリカ繊維20〜80重量%のものが
好ましい。20重量%未満及び80重量%を超える配合
量のものでは、両面での接着性を共に満足することがで
きにくい。なお、ムライト繊維及びシリカ繊維として
は、共に、前記耐熱層で使用のものと同様のものが挙げ
られる。
The intermediate layer bonds the heat-resistant layer and the heat-insulating layer on both sides, and is indispensable for alleviating distortion and maintaining strength due to heating during firing and use of the heat-insulating material. The composition is preferably an intermediate composition between the heat-resistant layer and the heat-insulating layer.
Those having 0 to 80% by weight and 20 to 80% by weight of silica fiber are preferred. When the amount is less than 20% by weight or more than 80% by weight, it is difficult to satisfy both the adhesiveness on both sides. As the mullite fiber and the silica fiber, the same as those used in the heat-resistant layer can be used.

【0015】本発明の複層断熱材の概略図を図1に示
す。耐熱層、中間層及び断熱層の相対的な厚みとして
は、用途により異なるが、耐熱層と中間層と断熱層が
1:1:1程度が好ましい。具体的には耐熱層及び断熱
層の厚みはそれぞれ10〜20mm、中間層の厚みは10
〜20mmとするのが好ましい。中間層の厚みが薄すぎる
と焼成時等の加熱による歪みを吸収できず反りや割れの
原因となり、厚すぎると耐熱層及び断熱層が薄くなり性
能が劣ることとなる。
FIG. 1 is a schematic view of the multilayer heat insulating material of the present invention. The relative thickness of the heat-resistant layer, the intermediate layer, and the heat-insulating layer varies depending on the application, but the heat-resistant layer, the intermediate layer, and the heat-insulating layer are preferably about 1: 1: 1. Specifically, the thickness of each of the heat-resistant layer and the heat-insulating layer is 10 to 20 mm, and the thickness of the intermediate layer is 10
Preferably, it is set to と す る 20 mm. If the thickness of the intermediate layer is too thin, distortion due to heating during baking or the like cannot be absorbed, causing warpage or cracking. If too thick, the heat-resistant layer and the heat-insulating layer become thin, resulting in inferior performance.

【0016】本発明において、3層のそれぞれで使用さ
れるムライト繊維とシリカ繊維の交絡点を固定するガラ
ス状ホウ素化合物は、後述の酸性コロイダルシリカ処理
又は非処理ムライト繊維、シリカ繊維及びホウ素化合物
粉末を含有する原料混合物(スラリー)を成形し、焼成
したときに該ホウ素化合物が酸化溶融し、次いで繊維の
酸化ケイ素成分と反応してホウ珪酸化合物として生成し
たものであり、冷却過程でガラス状化し、無機繊維の交
絡点を固定するものである。
In the present invention, the glassy boron compound used to fix the entanglement point between the mullite fiber and the silica fiber used in each of the three layers is a mullite fiber treated or not to be treated with acidic colloidal silica, a silica fiber and a boron compound powder as described below. When the raw material mixture (slurry) containing is molded and baked, the boron compound is oxidized and melted, and then reacts with the silicon oxide component of the fiber to form a borosilicate compound. , To fix the entanglement points of the inorganic fibers.

【0017】本発明の複層断熱材は、上記特定配合割合
のムライト繊維とシリカ繊維が該繊維の交絡点でガラス
状ホウ素化合物で固定され、かつ三次元網目構造を示す
ものであり、その物性としては、嵩密度が0.08〜
0.4g/cm3 、好ましくは0.1〜0.3g/cm3 、熱伝
導率が0.07〜0.15w/mK、層間引張強さが常態で
2.0〜4.0kgf/cm2 、1500℃加熱後で1.5〜
3.0kgf/cm2 、加熱収縮率が面方向で0.0〜1.0
%、厚さ方法で0.3〜1.0%である。
The multi-layer heat insulating material of the present invention is one in which the mullite fiber and the silica fiber having the above specified mixing ratio are fixed with a glassy boron compound at the point where the fibers are entangled, and exhibit a three-dimensional network structure. The bulk density is 0.08 to
0.4 g / cm 3, preferably 0.1 to 0.3 g / cm 3, the thermal conductivity of 0.07~0.15w / mK, inter tensile strength in ordinary state 2.0~4.0kgf / cm 2 , 1.5 ~ after heating at 1500 ℃
3.0 kgf / cm 2 , the heat shrinkage is 0.0 to 1.0 in the plane direction
%, 0.3 to 1.0% by thickness method.

【0018】上記層間引張強さは、一般的な層間はく離
試験により求められる。具体的には、適当な大きさで正
方形の試験片を1試験体に対し数個、通常3個以上用意
する。試験用の治具としては試験片と同じかそれ以上の
面積を有し、試験により変形しない十分な強度を持つも
ので、通常鋼製の治具を用いる。試験片の対向する2面
に治具を接着し試験体とする。接着剤は例えば常温硬化
エポキシ樹脂を用い、接着剤の所用硬化時間以上に養生
する。このようにして用意された試験体を引張試験機で
所定の速度で引張り、最大荷重Wを測定する。層間引張
強さNは最大荷重Wと試験片の面積S(引張方向と垂直
な面の面積)から次の式で求められる。 N(kgf/cm2 ) =W(kgf) /S(cm 2 ) 上記加熱収縮率は、一般的な繊維質断熱材の加熱試験に
より求められる。具体的には、適当な大きさ(通常40
〜50mm)で立方体の試験片を用意し端面から約10mm
内側にアルミナピンを埋め込む。アルミナピンは頭部の
高さが試験片の表面と同一となるように埋め込む。試験
片の加熱は通常徐熱徐冷法で行われ、例えば電気炉で約
200℃/時間の速度で昇温、所定温度を所定時間保持
し、その後炉内で自然冷却させる。加熱前のアルミナピ
ン間の長さl1 と加熱後のアルミナピン間の長さl2
ノギス等で測定する。加熱収縮率は以下の式で求められ
る。 加熱収縮率=(l1 −l2 )/l1 ×100(%)
The tensile strength between layers is determined by a general delamination test. Specifically, several square test pieces of an appropriate size are prepared for one specimen, usually three or more. As a jig for the test, a jig made of steel having an area equal to or larger than the test piece and having sufficient strength so as not to be deformed by the test is used. A jig is bonded to two opposing surfaces of the test piece to form a test body. The adhesive is, for example, an epoxy resin cured at room temperature, and is cured for at least the required curing time of the adhesive. The test specimen prepared in this manner is pulled at a predetermined speed by a tensile tester, and the maximum load W is measured. The interlaminar tensile strength N is obtained from the maximum load W and the area S of the test piece (the area of the surface perpendicular to the tensile direction) by the following equation. N (kgf / cm 2 ) = W (kgf) / S (cm 2 ) The above-mentioned heat shrinkage can be obtained by a heating test of a general fibrous heat insulating material. Specifically, an appropriate size (usually 40
5050 mm) and prepare a cubic test piece, about 10 mm from the end face
Embed alumina pins inside. The alumina pin is embedded so that the height of the head is the same as the surface of the test piece. The heating of the test piece is usually performed by a slow heating and slow cooling method. For example, the temperature is raised in an electric furnace at a rate of about 200 ° C./hour, a predetermined temperature is maintained for a predetermined time, and then the furnace is naturally cooled. The length l 1 between the alumina pins before heating and the length l 2 between the alumina pins after heating are measured with a caliper or the like. The heat shrinkage is determined by the following equation. Heat shrinkage = (l 1 -l 2 ) / l 1 × 100 (%)

【0019】本発明の複層断熱材の用途としては、宇宙
往還機に限らず、各種工業用断熱材が挙げられる。特
に、最高使用温度が1500℃を超える温度、例えば1
600℃の温度下で使用することが有用である。
The application of the multi-layer heat insulating material of the present invention is not limited to the spacecraft, but includes various industrial heat insulating materials. In particular, temperatures where the maximum operating temperature exceeds 1500 ° C., for example 1
It is useful to use at a temperature of 600 ° C.

【0020】本発明の複層断熱材の製造は、予め耐熱層
用スラリー、中間層スラリー及び断熱層用スラリーを作
製し、これを順次加えて一体成形し、乾燥後焼成するこ
とにより行われる。
The production of the multi-layer heat insulating material of the present invention is carried out by preparing a slurry for a heat-resistant layer, a slurry for an intermediate layer and a slurry for a heat insulating layer in advance, sequentially adding them, integrally forming, drying and firing.

【0021】耐熱層用スラリーの作製法は、予め混合繊
維基準で75〜95重量%のムライト繊維と酸性コロイ
ダルシリカを水中にて混合し、酸性コロイダルシリカを
ムライト繊維表面に吸着させる。次に、この混合体に混
合繊維基準で5〜25重量%のシリカ繊維及びホウ素化
合物を加え耐熱層用スラリーとすればよい。
A method for preparing a slurry for a heat-resistant layer is to mix 75 to 95% by weight of mullite fiber and acidic colloidal silica in water in advance in water, and to adsorb the acidic colloidal silica to the surface of the mullite fiber. Next, 5 to 25% by weight of silica fiber and boron compound based on the mixed fiber may be added to the mixture to form a slurry for a heat-resistant layer.

【0022】前記ムライト繊維に酸性コロイダルシリカ
を吸着させる際、該酸性コロイダルシリカの配合量とし
ては、混合繊維重量に対して10〜30重量%とするの
がよい。10重量%より少ないと、十分な補強効果が得
られず、結果的に強度が不足することとなる。また、3
0重量%を超えると、原材料混合時の凝集状態が悪くな
り、品質にバラツキを生じやすくなる。コロイダルシリ
カの含有量が多すぎると、相対的にシリカ成分が過大と
なり、耐熱層としての耐熱性を悪くする。また、酸性コ
ロイダルシリカとしては、原料繊維の有する耐熱性が損
なわれないようソーダ成分の少ないものを使用すること
が好ましい。
When the acidic colloidal silica is adsorbed on the mullite fiber, the amount of the acidic colloidal silica is preferably 10 to 30% by weight based on the weight of the mixed fiber. If it is less than 10% by weight, a sufficient reinforcing effect cannot be obtained, resulting in insufficient strength. Also, 3
If the content exceeds 0% by weight, the cohesion state at the time of mixing the raw materials is deteriorated, and the quality tends to vary. If the content of the colloidal silica is too large, the silica component becomes relatively excessive, and the heat resistance of the heat-resistant layer deteriorates. As the acidic colloidal silica, it is preferable to use an acidic colloidal silica having a small soda component so that the heat resistance of the raw fiber is not impaired.

【0023】また、上記酸性コロイダルシリカをムライ
ト繊維表面に吸着させる際に、界面活性剤を添加するこ
とが好ましい。該界面活性剤としては、特に制限され
ず、ノニオン性界面活性剤、カチオン性界面活性剤及び
両性界面活性剤等が挙げられ、このうち、ノニオン性界
面活性剤を用いることが、均一かつ十分に吸着できるこ
とから好ましい。
When the acidic colloidal silica is adsorbed on the surface of the mullite fiber, it is preferable to add a surfactant. The surfactant is not particularly limited, and includes a nonionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like. Among them, it is uniform and sufficient to use a nonionic surfactant. It is preferable because it can be adsorbed.

【0024】上記の如く吸着処理された水中スラリー
に、シリカ繊維及びホウ素化合物を加える際に、該ホウ
素化合物としては、特に制限されないが、例えば酸化ホ
ウ素、窒化ホウ素及び炭化ホウ素等を用いればよい。ま
た、該ホウ素化合物の配合量としては、混合繊維重量に
対しB23 換算で3〜5重量%とするのがよい。3重
量%よりも少ないと、後述の交絡点におけるガラス化融
着ポイントが少なくなり、強度の低下を招く。また、5
重量%を超えると、成形体焼成時の収縮が大きくなり、
耐熱層が高密度のものとなる。さらに含有量が多すぎる
とそこから生じるガラス繊維を被覆し、断熱性を悪くす
るばかりか各無機繊維がそれらの特性を最高度に発揮す
るのを妨げて、耐熱性を悪くする。
When the silica fiber and the boron compound are added to the water slurry subjected to the adsorption treatment as described above, the boron compound is not particularly limited. For example, boron oxide, boron nitride, boron carbide, or the like may be used. The amount of the boron compound is preferably 3 to 5% by weight in terms of B 2 O 3 based on the weight of the mixed fiber. If the amount is less than 3% by weight, the number of vitrification and fusion points at the entanglement point described below decreases, resulting in a decrease in strength. Also, 5
If it exceeds 10% by weight, shrinkage at the time of firing the molded body increases,
The heat-resistant layer has a high density. Further, when the content is too large, it covers the glass fiber generated therefrom, and not only deteriorates the heat insulating property but also prevents each inorganic fiber from exhibiting their properties to the highest degree, thereby deteriorating the heat resistance.

【0025】また、前記吸着処理された水中スラリー
に、炭化ケイ素質熱輻射材、有機バインダー及び軽質化
添加剤を配合することが好ましい。
Further, it is preferable that a silicon carbide-based heat radiation material, an organic binder and a lightening additive are blended with the slurry of the water subjected to the adsorption treatment.

【0026】該炭化ケイ素質熱輻射材は輻射熱の透過を
妨げて断熱性能を一層向上させるが、過度の配合は密度
を高くしてしまい好ましくない。したがって、その配合
量としては、混合繊維重量に対し20重量%以下、特に
10〜20重量%とすることが耐熱層の熱伝導率低減効
果と密度への影響の観点から好ましい。該炭化ケイ素質
熱輻射材としては、例えば炭化ケイ素粉体及び炭化ケイ
素ウィスカ等が挙げられる。
Although the silicon carbide heat radiation material hinders the transmission of radiant heat to further improve the heat insulation performance, excessive mixing increases the density, which is not preferable. Therefore, the amount is preferably 20% by weight or less, especially 10 to 20% by weight based on the weight of the mixed fiber, from the viewpoint of the effect of reducing the thermal conductivity of the heat-resistant layer and affecting the density. Examples of the silicon carbide heat radiation material include silicon carbide powder and silicon carbide whiskers.

【0027】該有機バインダーは乾燥後断熱材にハンド
リング性を付与する目的で添加する。添加する配合量と
しては、混合繊維重量に対し1〜10重量%程度とする
ことが好ましい。該有機バインダーとしては、例えば澱
粉、変性デンプン、有機高分子エマルジョン等が挙げら
れる。
The organic binder is added after drying for the purpose of imparting handleability to the heat insulating material. The amount added is preferably about 1 to 10% by weight based on the weight of the mixed fiber. Examples of the organic binder include starch, modified starch, and organic polymer emulsion.

【0028】該軽質化添加剤は所望する耐熱層の密度に
より任意の配合量とすることができ、その配合量として
は、混合繊維重量に対し5〜40重量%とするのが好ま
しい。該軽質化添加剤としては、脱水成形の過程で無機
繊維が自然な配置をとろうとする動きを妨げないことが
必要であり、例えば、高度漂白パルプを酸加水分解処理
し高純度のセルロース結晶として取り出したセルロース
パウダー、市販品としては「KCフロック」(新日本製
紙社製);機械的粉砕により精選パルプを微粉末化した
セルロースパウダー、市販品としては「パルプフロッ
ク」(新日本製紙社製)及び水溶液として供給される高
分子飽和共重合体樹脂、市販品として「ニチゴーポリエ
スター」(日本合成化学工業社製)等が挙げられる。
The lightening additive can be used in an optional amount depending on the desired density of the heat-resistant layer, and the amount is preferably 5 to 40% by weight based on the weight of the mixed fiber. As the lightening additive, it is necessary that the inorganic fibers do not hinder the movement to take a natural arrangement in the process of dehydration molding.For example, highly bleached pulp is subjected to an acid hydrolysis treatment to produce high-purity cellulose crystals. Cellulose powder taken out, commercially available as "KC Floc" (manufactured by Nippon Paper Industries); cellulose powder obtained by pulverizing selected pulp by mechanical pulverization, and "pulp floc" (manufactured by Nippon Paper Industries) as a commercial product And a polymer saturated copolymer resin supplied as an aqueous solution, and "Nichigo Polyester" (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) as a commercial product.

【0029】原料の全てを配合した後、十分に混合した
耐熱層用スラリー中の固形分濃度は0.5〜1.5重量
%とするのが好ましい。
After all of the raw materials have been blended, it is preferable that the solid content concentration in the slurry for the heat-resistant layer that is sufficiently mixed is 0.5 to 1.5% by weight.

【0030】断熱層用スラリーの製法としては、シリカ
繊維が65〜85重量%、ムライト繊維が15〜35重
量%の混合物を混合繊維重量に対しB2 3 換算で2〜
5重量%のホウ素化合物と必要ならば混合繊維重量に対
し5〜40重量%のセルロースパウダーを水中に分散さ
せて断熱用スラリーとすればよい。ホウ素化合物の配合
量が2重量%未満であると、繊維の交絡点におけるガラ
ス化融着ポイントが少なくなり、強度の低下を招く。ま
た、5重量%を超えると、成形体焼成時の収縮が大きく
なり、断熱層が高密度のものとなる。さらに含有量が多
すぎるとそこから生じるガラスが繊維を被覆し、断熱性
を悪くするばかりか各無機繊維がそれらの特性を最高度
に発揮するのを妨げて、耐熱性を悪くする。
The slurry for the heat insulating layer is prepared by mixing a mixture of 65 to 85% by weight of silica fiber and 15 to 35% by weight of mullite fiber with respect to the weight of the mixed fiber in the range of 2 to 3 in terms of B 2 O 3 .
5% by weight of boron compound and, if necessary, 5 to 40% by weight of cellulose powder based on the weight of the mixed fiber may be dispersed in water to form a slurry for heat insulation. When the compounding amount of the boron compound is less than 2% by weight, the vitrification and fusion points at the entanglement point of the fibers are reduced, and the strength is reduced. On the other hand, when the content exceeds 5% by weight, the shrinkage during firing of the molded article becomes large, and the heat insulating layer becomes dense. If the content is too high, the glass produced therefrom coats the fibers, not only deteriorating the heat insulation properties, but also hindering each inorganic fiber from exerting their properties to the highest degree, deteriorating the heat resistance.

【0031】また、断熱層用スラリーの他の製法は、予
め、ムライト繊維と酸性コロイダルシリカを水中にて混
合して作製される前述の耐熱層用スラリーの製法と同様
に行えばよい。この場合、ムライト繊維とシリカ繊維の
配合重量比は15〜35:65〜85であり、酸性コロ
イダルシリカの配合量は混合繊維重量に対し5重量%以
下、好ましくは1〜4重量%とするのがよい。酸性コロ
イダルシリカの配合量が少なすぎると十分な補強効果が
得られず、結果的に強度が不足することとなる。また、
5重量%を超えると成形体焼成時の収縮が大きくなり断
熱層の密度が大きくなる。また、コロイダルシリカの含
有量が多すぎると、相対的にシリカ成分が過大となり、
断熱層としての耐熱性を悪くする。
Further, another method for preparing the slurry for the heat insulating layer may be performed in the same manner as the above-mentioned method for preparing the slurry for the heat-resistant layer prepared by mixing mullite fiber and acidic colloidal silica in water in advance. In this case, the compounding weight ratio of the mullite fiber and the silica fiber is 15 to 35:65 to 85, and the compounding amount of the acidic colloidal silica is 5% by weight or less, preferably 1 to 4% by weight based on the weight of the mixed fiber. Is good. If the amount of the acidic colloidal silica is too small, a sufficient reinforcing effect cannot be obtained, resulting in insufficient strength. Also,
If it exceeds 5% by weight, the shrinkage during firing of the molded body increases, and the density of the heat insulating layer increases. Also, if the content of colloidal silica is too large, the silica component becomes relatively excessive,
Poor heat resistance as a heat insulating layer.

【0032】中間層用スラリーの作製方法としては、前
記耐熱層用スラリー及び断熱層用スラリーの作製方法と
同様の方法が挙げられるが、予め作製された耐熱層用ス
ラリーと断熱層用スラリーを単に混ぜ合わせるだけでも
よい。この場合の配合割合としては1:1が好ましい。
The method for preparing the slurry for the intermediate layer may be the same as the method for preparing the slurry for the heat-resistant layer and the slurry for the heat-insulating layer. You can just mix them. In this case, the mixing ratio is preferably 1: 1.

【0033】次に、上記方法で作製された耐熱層用スラ
リー、中間層用スラリー及び断熱層用スラリーを順次加
えて一体成形を行う。加える順序は、これに限らず断熱
層用スラリー、中間層用スラリー及び耐熱層用スラリー
の順でもよい。また、中間層スラリーはムライト繊維と
シリカ繊維の配合比率を変えた2種類以上を作製し、配
合比率が急激に変わることのないよう作製し用いてもよ
い。
Next, the slurry for the heat-resistant layer, the slurry for the intermediate layer, and the slurry for the heat-insulating layer produced by the above-described method are sequentially added to perform integral molding. The order of addition is not limited thereto, and the order of the slurry for the heat insulating layer, the slurry for the intermediate layer, and the slurry for the heat-resistant layer may be used. In addition, two or more kinds of intermediate layer slurries in which the mixing ratio of mullite fiber and silica fiber is changed may be prepared and used so that the mixing ratio does not change abruptly.

【0034】該3種のスラリーは常法により所望の形状
に脱水成形する。脱水成形はプレスを用いて真空下で行
えばよく、得られた成形体は乾燥後、温度を上げて焼成
する。乾燥温度は120℃以下で行い、焼成温度はホウ
素化合物と酸性コロイダルシリカがムライト繊維及びシ
リカ繊維と反応する温度であればよく通常約1100℃
〜1400℃の範囲である。焼成後の成形物は、冷却後
必要に応じて切削加工を施し目的とする断熱材を得る。
The three slurries are dewatered and formed into a desired shape by a conventional method. The dehydration molding may be performed under vacuum using a press, and the obtained molded body is dried and then fired at an increased temperature. The drying temperature is 120 ° C. or less, and the firing temperature may be a temperature at which the boron compound and the acidic colloidal silica react with the mullite fiber and the silica fiber, and usually about 1100 ° C.
〜1400 ° C. The molded product after firing is subjected to a cutting process as necessary after cooling to obtain a desired heat insulating material.

【0035】上記スラリーを成形し、乾燥後焼成する
際、ホウ素化合物は酸化溶融し、次いで繊維の酸化ケイ
素分と反応しホウ珪酸化合物となり、次いで冷却過程に
おいてガラス化し無機繊維の交絡点を固定するものであ
る。本発明の耐熱層は、繊維中ケイ素分が少ないため上
記反応が弱く固定化され難いムライト繊維を予め酸性コ
ロイダルシリカにより、該ムライト繊維の表面を酸化ケ
イ素リッチに処理したため、その混合割合を75〜95
重量%に増加させても繊維の交絡点を確実に固定でき、
強度を発現することができる。また、これによりムライ
ト繊維が有する高耐熱性を十分生かすことができる。ま
た、焼成時には、上記有機バインダー及び軽量化添加材
は焼失するため、これにより断熱材には微細な空隙が多
量かつ均一な分布で存在する。
When the above slurry is formed, dried and calcined, the boron compound is oxidized and melted, then reacts with the silicon oxide of the fiber to form a borosilicate compound, and then vitrifies in the cooling process to fix the entanglement point of the inorganic fiber. Things. The heat-resistant layer of the present invention, the mullite fiber, which has a low silicon content in the fiber and is hardly fixed because of the above reaction, is previously treated with acidic colloidal silica to make the surface of the mullite fiber rich in silicon oxide. 95
Even if it is increased to weight%, the entanglement point of the fiber can be fixed securely,
Strength can be developed. In addition, the high heat resistance of the mullite fiber can be fully utilized. In addition, at the time of firing, the organic binder and the lightening additive are burned off, so that a large number of fine voids are present in the heat insulating material in a uniform distribution.

【0036】[0036]

【発明の効果】本発明によれば、断熱材を耐熱層、中間
層及び断熱層の3層とし、各層それぞれムライト繊維と
シリカ繊維との特定比率の混合物とし、かつ繊維間の交
絡点をホウ珪酸化合物で強固に固定するため、0.1〜
0.3kg/cm2 の密度の製品としても断熱性、耐熱性及
び機械的特性に極めて優れる断熱材を得ることができ
た。
According to the present invention, the heat insulating material comprises three layers of a heat-resistant layer, an intermediate layer and a heat-insulating layer, each layer being a mixture of a mullite fiber and a silica fiber in a specific ratio, and a entanglement point between the fibers. 0.1 ~ to fix firmly with silicate compound
As a product having a density of 0.3 kg / cm 2 , a heat insulating material having extremely excellent heat insulating properties, heat resistance and mechanical properties could be obtained.

【0037】[0037]

【実施例】【Example】

実施例1及び2 下記原料を表1に示した比率で耐熱層用スラリー及び断
熱層用スラリーを個別に製造した。まず多量の水中にム
ライト繊維と酸性コロイダルシリカを投入し、十分混合
した。次いで活性剤(ノニオン性界面活性剤;ポリオキ
シエチレンモノオレート)を投入して酸性コロイダルシ
リカをムライト繊維に吸着させた。その後、順次その他
の原材料を投入し、十分に混合してスラリー状にした。
ここで、スラリーの固形分濃度は1%であった。中間層
用スラリーは、耐熱層用スラリーと断熱層用スラリーを
それぞれ50重量%ずつ混合して得た。得られたスラリ
ーを断熱層、中間層、耐熱層の順序で脱水プレス成形に
より一体成形で板状に成形し、得られた成形物を105
℃で16時間乾燥した。成形物はさらに大気中に130
0℃で2時間焼成し、有機バインダおよび軽量化添加材
を焼失させるとともに、ホウ素化合物が酸化溶融した結
果、ガラス状となったB2 3 による繊維間融着を生じ
させた。冷却後、焼成処理品に切削加工を施して、厚さ
50mm(耐熱層及び断熱層が各々20mm、中間層10m
m)、1辺が200mmの板状断熱材を得た。得られた断
熱材の物性値を表1に示した。
Examples 1 and 2 The following raw materials were separately manufactured at the ratios shown in Table 1 to prepare a slurry for a heat-resistant layer and a slurry for a heat-insulating layer. First, mullite fiber and acidic colloidal silica were charged into a large amount of water and mixed well. Then, an activator (nonionic surfactant; polyoxyethylene monooleate) was added to adsorb the acidic colloidal silica to the mullite fiber. Thereafter, other raw materials were sequentially charged and mixed well to form a slurry.
Here, the solid content concentration of the slurry was 1%. The slurry for the intermediate layer was obtained by mixing each of the slurry for the heat-resistant layer and the slurry for the heat-insulating layer by 50% by weight. The obtained slurry is integrally formed into a plate shape by dehydration press molding in the order of a heat insulating layer, an intermediate layer, and a heat-resistant layer.
Dry at 16 ° C. for 16 hours. The molding is further exposed to air at 130
The resultant was baked at 0 ° C. for 2 hours to burn off the organic binder and the lightening additive and to cause oxidative melting of the boron compound, thereby causing inter-fiber fusion with glassy B 2 O 3 . After cooling, the calcined product is cut to a thickness of 50 mm (a heat-resistant layer and a heat-insulating layer each have a thickness of 20 mm, and an intermediate layer has a thickness of 10 m).
m) A plate-like heat insulating material having a side of 200 mm was obtained. Table 1 shows the physical property values of the obtained heat insulating material.

【0038】(原料) ムライト繊維;Al2 3 :SiO2 =72:28、平
均繊維径2.7μm、平均繊維長2mm シリカ繊維 ;SiO2 99.5%以上、平均繊維径
0.9μm、平均繊維長2mm ホウ素化合物;窒化ホウ素粉末、平均粒子径4μm 酸性コロイダルシリカ;平均粒子径10〜20nm、含有
Na2 O分0.01〜0.04重量% 炭化ケイ素質熱輻射材;炭化ケイ素ウイスカ、平均粒子
径0.26μm 有機バインダ及び軽量化添加材;飽和ポリエステル樹
脂、SO3 Na高分子量型分子量16,000、Tg=
34
(Material) Mullite fiber; Al 2 O 3 : SiO 2 = 72: 28, average fiber diameter 2.7 μm, average fiber length 2 mm Silica fiber; SiO 2 99.5% or more, average fiber diameter 0.9 μm, Boron compound; average fiber length: 2 mm; boron nitride powder; average particle size: 4 μm; acidic colloidal silica; average particle size: 10 to 20 nm; content of Na 2 O: 0.01 to 0.04% by weight; silicon carbide heat radiation material; silicon carbide whisker , Average particle size 0.26 μm organic binder and lightening additive; saturated polyester resin, SO 3 Na high molecular weight type molecular weight 16,000, Tg =
34

【0039】比較例1 上記原料及び表1に示す配合割合で、中間層を設けない
ようにした以外は実施例1と同様の方法により板状断熱
材を製造した。得られた断熱材の物性値を表1に示し
た。
Comparative Example 1 A plate-like heat insulating material was produced in the same manner as in Example 1 except that the above-mentioned raw materials and the mixing ratio shown in Table 1 were not provided with an intermediate layer. Table 1 shows the physical property values of the obtained heat insulating material.

【0040】比較例2 上記原料及び表1に示す配合割合で、ムライト繊維に代
えてアルミナ繊維(Al2 3 95重量%、平均真繊維
径3μm、平均繊維長2mm)を用いた以外は実施例1と
同様にして板状断熱材を製造した。得られた断熱材の物
性値を表1に示した。
Comparative Example 2 The procedure was carried out except that alumina fibers (95% by weight of Al 2 O 3 , an average true fiber diameter of 3 μm, and an average fiber length of 2 mm) were used in place of the mullite fibers in the above raw materials and the mixing ratios shown in Table 1. A plate-like heat insulating material was produced in the same manner as in Example 1. Table 1 shows the physical property values of the obtained heat insulating material.

【0041】表1に示すとおり、本実施例は1500℃
を超える過酷な環境にさらされても非常に収縮率が小さ
い。宇宙機器の表面材としては1%以下の収縮率である
ことが要求されるが、本実施例のみが要求をクリアして
いる。また、引張強さは機体への接着強度を維持するた
め、高温加熱後において1.5kgf/cm2 以上を要求され
るが本実施例はその要求をクリアしている。熱伝導率に
関しても、従来のものと同等以上の性能で、十分に小さ
い。
As shown in Table 1, this example was performed at 1500 ° C.
Very low shrinkage even when exposed to harsh environments exceeding Although the surface material of the space equipment is required to have a shrinkage ratio of 1% or less, only the present embodiment satisfies the requirement. The tensile strength is required to be 1.5 kgf / cm 2 or more after heating at a high temperature in order to maintain the adhesive strength to the fuselage, but the present embodiment has satisfied the requirement. The thermal conductivity is equal to or higher than that of the conventional one and is sufficiently small.

【0042】顕微鏡による組織観察の結果、本発明の実
施例1及び実施例2の断熱材は、ムライト繊維とシリカ
繊維の交絡点がガラス状のホウ珪酸により固定され、断
熱材中に一様に微細かつ均一な大きさの空隙とが形成さ
れた三次元網目構造となっている。本断熱材は、耐熱層
においてムライト繊維を相当量配合したことにより高い
耐熱性を示し、酸性コロイダルシリカを優先的にムライ
ト繊維に作用させたことが十分な強度を示し、優れた特
性として得られたものと考えられる。また、中間層を設
けたことで配合の異なる層に歪みを生じさせることなく
一体成形ができ、優れた複層断熱材を得ることができ
た。
As a result of microscopic observation of the structure, the heat-insulating materials of Examples 1 and 2 of the present invention showed that the entanglement point between the mullite fiber and the silica fiber was fixed by vitreous borosilicate, and the heat-insulating material was evenly distributed in the heat insulating material. It has a three-dimensional network structure in which voids of fine and uniform size are formed. This heat insulating material shows high heat resistance by adding a considerable amount of mullite fiber in the heat-resistant layer, shows sufficient strength that acid colloidal silica preferentially acts on mullite fiber, and is obtained as excellent characteristics It is thought that it was. Further, by providing the intermediate layer, it was possible to integrally mold the layers having different compositions without causing distortion, and it was possible to obtain an excellent multilayer heat insulating material.

【0043】[0043]

【表1】 [Table 1]

【0044】表1中、窒化ホウ素粉末の配合量はB2
3 換算値であり、熱伝導率は真空10-2Torr下、100
0℃における値であり、層間引張強さ及び加熱収縮率は
前述の方法及び条件により求めた値である。
In Table 1, the compounding amount of the boron nitride powder is B 2 O
The thermal conductivity is 100 under a vacuum of 10 -2 Torr.
The values are at 0 ° C., and the interlaminar tensile strength and the heat shrinkage are values obtained by the above-described method and conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複層断熱材の模形図を示す。FIG. 1 shows a schematic view of a multilayer insulation material of the present invention.

【符号の説明】[Explanation of symbols]

1 複層断熱材 2 耐熱層 3 中間層 4 断熱層 DESCRIPTION OF SYMBOLS 1 Multi-layer heat insulating material 2 Heat-resistant layer 3 Middle layer 4 Heat insulating layer

フロントページの続き (72)発明者 山下 政之 名古屋市港区大江町10番地 三菱重工業 株式会社名古屋航空 宇宙システム製作 所内 (72)発明者 小川 純一 横浜市瀬谷区阿久和西1−2−3 (72)発明者 安治 敏行 横浜市戸塚区平戸3−6−10−302 (72)発明者 川崎 美宏 横浜市神奈川区松見町4−1000 ニチア ス株式会社妙蓮寺寮3−H (56)参考文献 特開 昭55−37500(JP,A) 特開 昭60−151269(JP,A) 特開 平4−119958(JP,A) 特開 平4−154677(JP,A) 特開 平10−226567(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/80 B32B 5/26,18/00 Continuation of the front page (72) Inventor Masayuki Yamashita 10 Oecho, Minato-ku, Nagoya-shi Mitsubishi Heavy Industries, Ltd. Nagoya Aviation Space System Works (72) Inventor Junichi Ogawa 1-2-3 Akuwa Nishi, Seya-ku, Yokohama-shi (72) Inventor Toshiyuki Aji 3-6-10-302 Hirado, Totsuka-ku, Yokohama-shi (72) Inventor Mihiro Kawasaki 4-1000, Matsumicho, Kanagawa-ku, Yokohama Nichiasu Corporation Myorenji dormitory 3-H (56) References Special JP-A-55-37500 (JP, A) JP-A-60-151269 (JP, A) JP-A-4-119958 (JP, A) JP-A-4-154677 (JP, A) JP-A-10-226567 ( JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/80 B32B 5 / 26,18 / 00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 次の(A)、(B)及び(C); (A)ムライト繊維75〜95重量%及びシリカ繊維5
〜25重量%を含有する耐熱層、(B)中間層、(C)
ムライト繊維15〜35重量%及びシリカ繊維65〜8
5重量%を含有する断熱層、の3層から成り、かつ該繊
維の交絡点を固定するガラス状ホウ素化合物とを有して
三次元網目構造となっていることを特徴とする複層断熱
材。
1. The following (A), (B) and (C): (A) 75 to 95% by weight of mullite fiber and silica fiber 5
Heat-resistant layer containing 2525% by weight, (B) intermediate layer, (C)
15 to 35% by weight of mullite fiber and 65 to 8 of silica fiber
A heat insulating layer containing 5% by weight, and a three-dimensional network structure comprising a glassy boron compound that fixes the entanglement point of the fiber. .
【請求項2】 内部にムライト繊維とシリカ繊維の合計
量に対し20重量%以下の炭化ケイ素質熱輻射材を有す
る請求項1記載の複層断熱材。
2. The multilayer heat insulating material according to claim 1, further comprising a silicon carbide heat radiation material in an amount of 20% by weight or less based on the total amount of the mullite fiber and the silica fiber.
【請求項3】 嵩密度が0.1〜0.3g/cm3 、加熱収
縮率が1.0%以下及び1500℃加熱後の層間引張強
さが1.5kgf/cm2 以上である請求項1又は請求項2記
載の複層断熱材。
3. The bulk density is 0.1 to 0.3 g / cm 3 , the heat shrinkage is 1.0% or less, and the interlayer tensile strength after heating at 1500 ° C. is 1.5 kgf / cm 2 or more. The multilayer heat insulating material according to claim 1 or 2.
【請求項4】 予め、ムライト繊維75〜95重量%と
酸性コロイダルシリカを水中にて混合し、次いで該混合
体にシリカ繊維5〜25重量%及びホウ素化合物を加え
て作製される耐熱層用スラリー、中間層用スラリー及び
ムライト繊維15〜35重量%とシリカ繊維65〜85
重量%及びホウ素化合物を水中にて混合し作製される断
熱層用スラリーを順次加えて一体成形し、乾燥後焼成す
ることを特徴とする複層断熱材の製造法。
4. A slurry for a heat-resistant layer prepared by previously mixing 75 to 95% by weight of mullite fibers and acidic colloidal silica in water, and then adding 5 to 25% by weight of silica fibers and a boron compound to the mixture. 15 to 35% by weight of slurry for intermediate layer and mullite fiber and 65 to 85 of silica fiber
A method for producing a multi-layer heat insulating material, wherein a slurry for a heat insulating layer, which is prepared by mixing weight% and a boron compound in water, is sequentially added, integrally molded, dried and fired.
【請求項5】 予め、ムライト繊維75〜95重量%と
酸性コロイダルシリカを水中にて混合し、次いで該混合
体にシリカ繊維5〜25重量%及びホウ素化合物を加え
て作製される耐熱層用スラリー、中間層用スラリー及び
予め、ムライト繊維15〜35重量%と酸性コロイダル
シリカを水中にて混合し、次いで該混合体にシリカ繊維
65〜85重量%及びホウ素化合物を加えて作製される
断熱層用スラリーを順次加えて一体成形し、乾燥後焼成
することを特徴とする複層断熱材の製造法。
5. A slurry for a heat-resistant layer prepared by previously mixing 75 to 95% by weight of mullite fiber and acidic colloidal silica in water, and then adding 5 to 25% by weight of silica fiber and a boron compound to the mixture. And a slurry for an intermediate layer and 15 to 35% by weight of mullite fiber and acidic colloidal silica previously mixed in water, and then 65 to 85% by weight of silica fiber and a boron compound are added to the mixture to form a heat insulating layer. A method for producing a multi-layer heat insulating material, wherein a slurry is sequentially added, molded integrally, dried and fired.
JP04297497A 1997-02-12 1997-02-12 Multi-layer heat insulating material and its manufacturing method Expired - Fee Related JP3195266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04297497A JP3195266B2 (en) 1997-02-12 1997-02-12 Multi-layer heat insulating material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04297497A JP3195266B2 (en) 1997-02-12 1997-02-12 Multi-layer heat insulating material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10226582A JPH10226582A (en) 1998-08-25
JP3195266B2 true JP3195266B2 (en) 2001-08-06

Family

ID=12651023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04297497A Expired - Fee Related JP3195266B2 (en) 1997-02-12 1997-02-12 Multi-layer heat insulating material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3195266B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155269A (en) * 2008-12-27 2010-07-15 Senju Metal Ind Co Ltd Solder bath and method of heating solder contained in the solder bath
JP5876668B2 (en) * 2011-05-17 2016-03-02 旭化成ケミカルズ株式会社 Manufacturing method of molded body and manufacturing method of cutting body
JP6253871B2 (en) * 2012-01-17 2017-12-27 三菱重工業株式会社 Insulating material, spacecraft equipped with the same, and method of manufacturing the insulating material
CN103372346A (en) * 2012-04-23 2013-10-30 东丽纤维研究所(中国)有限公司 High-strength filtering material and application thereof
FR3022885B1 (en) * 2014-06-25 2016-10-21 Mbda France STRUCTURING WALL OF MISSILE, ESPECIALLY FOR THERMAL PROTECTION COFFEE
US9784403B2 (en) 2014-07-02 2017-10-10 Coorstek Kk Heat insulator

Also Published As

Publication number Publication date
JPH10226582A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
CA2047294C (en) Oxidation resistant ceramic matrix composites
US7094285B2 (en) Inorganic matrix compositions, composites incorporating the matrix, and process of making the same
US6309994B1 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
US20080063875A1 (en) High heat distortion resistant inorganic laminate
IE61849B1 (en) Method of manufacturing a composite material with vitro-ceramic or ceramic matrix using a sol-gel process and a composite material thus obtained
CN102976710A (en) Nano miroporous heat-insulating material
CN106626581A (en) Method for improving strain performance of thermal insulation material used for high-temperature-resistant sandwich structure, and material prepared by using same
JP3195266B2 (en) Multi-layer heat insulating material and its manufacturing method
KR20070081745A (en) Inorganic fiber article
US20060070403A1 (en) Sol-gel method for producing a composite material provided with an lithium aluminosilicate vitroceramic matrix
US4859525A (en) Method for low temperature processing of lightweight SiC/SiO2 composites and products
KR101744455B1 (en) Unshaped refractory material composite using inorganic fiber
JP3302595B2 (en) Insulation method
JP3186993B2 (en) Insulation
Musil Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders
EP0404631B1 (en) Composites based on a reinforced glass matrix and its method of preparation
Leutbecher et al. Oxide fiber reinforced glass: a challenge to new composites
JP2000247745A (en) Ceramics-base fiber composite material, its production and gas turbine part
US5652188A (en) Fiber-reinforced composite with sheet silicate interlayer
JP4607384B2 (en) Oxide fiber composite material and method for producing the same
JP6598961B1 (en) Inorganic fiber molded body
JP2990320B2 (en) Insulation material and its manufacturing method
Xue et al. A New SiC‐Whisker‐Reinforced Lithium Aluminosilicate Composite
CN112125649B (en) Preparation method of three-phase ceramic fiber composite heat insulation tile
JP2819352B2 (en) Manufacturing method of low-density insulation structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees