JPS6210024B2 - - Google Patents

Info

Publication number
JPS6210024B2
JPS6210024B2 JP54081697A JP8169779A JPS6210024B2 JP S6210024 B2 JPS6210024 B2 JP S6210024B2 JP 54081697 A JP54081697 A JP 54081697A JP 8169779 A JP8169779 A JP 8169779A JP S6210024 B2 JPS6210024 B2 JP S6210024B2
Authority
JP
Japan
Prior art keywords
metal
etching
electrode
pattern
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54081697A
Other languages
Japanese (ja)
Other versions
JPS566453A (en
Inventor
Kenji Mitsui
Tooru Ookuma
Morio Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP8169779A priority Critical patent/JPS566453A/en
Publication of JPS566453A publication Critical patent/JPS566453A/en
Publication of JPS6210024B2 publication Critical patent/JPS6210024B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は半導体基板上への金属電極とくにアル
ミニウム電極等の金属パターンの形成方法に関
し、そのパターン形成をドライエツチングによつ
てなす方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a metal pattern such as a metal electrode, particularly an aluminum electrode, on a semiconductor substrate, and relates to a method of forming the pattern by dry etching.

半導体装置たとえば、プレーナ型トランジスタ
の電極あるいは半導体集積回路の相互接続配線を
含む電極の材料としてアルミニウムあるいはアル
ミニウム合金が広く使用される。ところで、電極
の形成に際しては、これらの材料を被着して形成
したアルミニウム膜を所定のパターンとなすため
のエツチング処理が不可決であるが、パターンの
微細化、製造プロセスのドライ化あるいは無公害
化などの目的から、このエツチング処理の方法
は、従来用いられている水溶液を使用するウエツ
トエツチング方法からプラズマ反応等による所謂
ドライエツチング法へと切り換りつつある。
BACKGROUND OF THE INVENTION Aluminum or aluminum alloys are widely used as materials for semiconductor devices, such as electrodes of planar transistors or electrodes including interconnection wiring of semiconductor integrated circuits. By the way, when forming electrodes, it is necessary to perform an etching process to form a predetermined pattern on the aluminum film formed by adhering these materials, but it is necessary to make the pattern finer, make the manufacturing process dryer, or make it non-polluting. For the purpose of improving etching, the etching method is being switched from the conventional wet etching method using an aqueous solution to a so-called dry etching method using a plasma reaction or the like.

ところで、かかるドライエツチング法はパター
ンの微細化の面でウエツトエツチング法に勝るも
のではあるが、エツチングを施す金属膜の組成如
可によつてはサイドエツチが大きくなり微細なパ
ターン形成が困難となる場合がある。
By the way, although such a dry etching method is superior to a wet etching method in terms of pattern miniaturization, depending on the composition of the metal film to be etched, the side etching becomes large and it becomes difficult to form a fine pattern. There are cases.

たとえば、MOS形大規照集積回路
(MOSLSI)のソースならびにドレイン領域ある
いはエミツタを多分割構造とした高周波高出力ト
ランジスタのエミツタ領域などのようにSiO2
をマスクとして形成される選択拡散領域であつ
て、その拡散深さが浅く選定されるものでは、こ
れらの領域の作り込みで形成されるpn接合の
SiO2膜直下のシリコン基板表面に位置するpn接
合端部からSiO2膜に形成した不純物拡散用窓の
開孔端縁までの距離が短くなる。かかる半導体装
置の電極材料としてアルミニウムを用い、しか
も、電極形成領域を前記窓内に位置する拡散領域
表面部分全域とした場合、アルミニウム電極とシ
リコン基板との間に形成される合金層がpn接合
端部にまで達し、この合金層によつてpn接合が
短絡される不都合の生じるおそれがある。このよ
うな不都合を排除するため電極金属として約2%
程度のシリコンを含有するアルミニウム合金が用
いられるに至つている。
For example, selective diffusion regions formed using a SiO 2 film as a mask, such as the source and drain regions of MOS type large-scale integrated circuits (MOSLSI) or the emitter regions of high-frequency, high-output transistors with a multi-divided emitter structure. , if the diffusion depth is selected to be shallow, the p-n junction formed by building these regions
The distance from the pn junction end located on the surface of the silicon substrate directly under the SiO 2 film to the edge of the opening of the impurity diffusion window formed in the SiO 2 film becomes shorter. When aluminum is used as the electrode material of such a semiconductor device, and the electrode formation region is the entire surface portion of the diffusion region located within the window, the alloy layer formed between the aluminum electrode and the silicon substrate forms the p-n junction edge. There is a risk that the p-n junction may be short-circuited by this alloy layer. In order to eliminate this inconvenience, approximately 2% of the electrode metal
Aluminum alloys containing a certain amount of silicon have come into use.

しかしながら、このアルミニウム合金よりなる
電極層にガスプラズマエツチングを施し電極パタ
ーンを形成した場合、サイドエツチングが大きく
なり、ガスプラズマエツチング時のマスクとなる
レジスト膜の下部にまでエツチングが進行する。
このため、形成される電極に細りが生じ、レジス
トパターンに忠実な電極形成が得難くなること、
あるいは断線事故が発生し易くなることなどの不
都合をきたす。
However, when gas plasma etching is applied to the electrode layer made of this aluminum alloy to form an electrode pattern, side etching becomes large and the etching progresses to the lower part of the resist film that serves as a mask during gas plasma etching.
As a result, the formed electrode becomes thinner, making it difficult to form an electrode that is faithful to the resist pattern.
Alternatively, this may cause inconveniences such as wire breakage accidents becoming more likely to occur.

本発明はこれらの問題の検討に鑑みてなされた
もので、ハロゲン系ガスを用いてドライエツチン
グを行なうに際し、電極金属として主成分の金属
よりもハロゲン化物としての蒸気圧の小さい金属
を含有した金属合金を用いることによつてサイド
エツチを抑制し、マスクパターンに忠実な電極形
成を行なおうとするものである。
The present invention was made in consideration of these problems, and when performing dry etching using a halogen-based gas, a metal containing a metal whose vapor pressure is lower as a halide than the main component metal is used as an electrode metal. By using an alloy, it is possible to suppress side etching and form electrodes that are faithful to the mask pattern.

次に本発明の実施例について図面を参照しつつ
説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

通常の方法で、所定の領域形成のなされたシリ
コン基板表面全体に、重量比でSiを2%、Cuを
1.5%含有するアルミニウム合金膜を形成し、さ
らに、この膜上に、フオトレジストパターンを形
成したのち、平行平板電極構造を有する反応室に
移し、ガス分圧が0.2torrの四塩化炭素と、
0.15torrのヘリウムの混合ガス中で、5分間ガス
プラズマエツチングを行う。こののち、フオトレ
ジストを除去し電極形成が完了する。
Using a normal method, 2% Si and Cu are applied to the entire surface of the silicon substrate where a predetermined area has been formed.
After forming an aluminum alloy film containing 1.5% and further forming a photoresist pattern on this film, the film was transferred to a reaction chamber having a parallel plate electrode structure, and carbon tetrachloride with a gas partial pressure of 0.2 torr,
Gas plasma etching is performed for 5 minutes in a helium mixed gas of 0.15 torr. After this, the photoresist is removed and the electrode formation is completed.

このようにして形成されるアルミニウム電極で
は、ドライエツチングにおいて従来の金属層を用
いた場合よりもサイドエツチ量が大幅に減少し、
電極パターン形状はマスクパターンに忠実なもの
となる。
In the aluminum electrode formed in this way, the amount of side etching during dry etching is significantly reduced compared to when a conventional metal layer is used.
The electrode pattern shape is faithful to the mask pattern.

すなわち、ハロゲン系ガスによるエツチングに
おいて、主成分金属であるAlがAlのハロゲン化
物として除去される。このとき、本発明によれば
Alよりもハロゲン化物としての蒸気圧が少ない
他の金属を添加しているため、エツチングが行わ
れにくくなり、したがつてサイドエツチング量も
少なくなるものと思われる。
That is, in etching with halogen-based gas, Al, which is the main component metal, is removed as Al halide. At this time, according to the present invention
Since other metals having a lower vapor pressure as halides than Al are added, etching becomes difficult and the amount of side etching is thought to be reduced.

次に、電極金属の組成を変化させたものについ
て、サイドエツチング量(たて軸a)―エツチン
グ深さ(横軸b)の関係を実験によつて測定した
結果を図面に示す。線イは重量比でSiを2%含有
する通常のAl―Si合金、ロは純Al、ハは重量比
でSiを0.3%とCuを0.2%含有するAl―Si―Cu合
金、ニは重量比でSiを2%とCuを1.5%含有する
Al―Si―Cu合金を示すもので、a/bすなわ
ち、直線の傾きが小さなもの程、サイドエツチン
グが少ないということが示されている。これら4
つの直線から明らかなように、Siの添加はサイド
エツチングを大きくする傾向をもたらし、一方
Cuの添加はサイドエツチングを小さくする傾向
をもたらしている。この傾向は、エツチング条件
により多少異なるが、おしなべて同じ傾向を示
し、Si、金(以下Auと称す)等のハロゲン化合
物となつたときの蒸気圧がAlよりも高いものを
混入させると、エツチングされ易く、Cu、亜鉛
(Zn)、(カルシウム(Ca)、)マグネシウム
(Mg)、ベリリウム、鉄、ニツケル等のハロゲン
化合物としての蒸気圧の低いものはハロゲン系の
ガスによるエツチングが行われにくい為であると
考えられる。
Next, the results of experimental measurements of the relationship between side etching amount (vertical axis a) and etching depth (horizontal axis b) for electrode metals with different compositions are shown in the drawings. Line A is a normal Al-Si alloy containing 2% Si by weight, B is pure Al, C is an Al-Si-Cu alloy containing 0.3% Si and 0.2% Cu by weight, D is weight Contains 2% Si and 1.5% Cu
This indicates an Al--Si--Cu alloy, and shows that the smaller the slope of the straight line, a/b, is, the less side etching occurs. these 4
As is clear from the two straight lines, the addition of Si tends to increase side etching, while
Addition of Cu tends to reduce side etching. Although this tendency differs somewhat depending on the etching conditions, it shows the same tendency across the board, and when halogen compounds such as Si and gold (hereinafter referred to as Au) are mixed in, which has a higher vapor pressure than Al, etching is reduced. This is because halogen compounds with low vapor pressure such as Cu, zinc (Zn), (calcium (Ca),) magnesium (Mg), beryllium, iron, and nickel are difficult to be etched by halogen gases. It is believed that there is.

従つて、Si,Au等の含有量を多くする必要の
ある場合は、これらがサイドエツチング量を増大
させる方向に働くためCu等の添加量を多くし
て、サイドエツチングを抑制する等必要に応じて
調節すればよく、サイドエツチング量と深さの関
係を容易に調整することができる。
Therefore, if it is necessary to increase the content of Si, Au, etc., these will work in the direction of increasing the amount of side etching, so increase the amount of added Cu, etc. to suppress side etching, etc. as necessary. The relationship between side etching amount and depth can be easily adjusted.

なお、Cuなどのハロゲン化物としての蒸気圧
が低い金属の添加量については、重量比で3%以
下が適当であり、5%を越えるとエツチング速度
が著るしく低下し作業性の面で支障をきたす。
Regarding the amount of metals with low vapor pressure such as halides such as Cu, it is appropriate to keep the weight ratio at 3% or less; if it exceeds 5%, the etching rate will drop significantly and workability will be affected. cause

また、主成分となる金属は実施例で示したAl
に限られるものではなく、タングステン(W)、
モリブデン(MO)(等、他の金属)についても
同様のことがいえる。
In addition, the main component metal is Al as shown in the example.
Not limited to, tungsten (W),
The same can be said for molybdenum (MO) (and other metals).

以上説明してきたように、本発明の方法によれ
ば、ライン幅2〜3μm程度の微細電極パターン
が、マスクパターンに忠実に精度良く形成され、
高密度な半導体装置の製造に大きく寄与するもの
である。
As explained above, according to the method of the present invention, a fine electrode pattern with a line width of about 2 to 3 μm can be formed accurately and faithfully to a mask pattern.
This will greatly contribute to the production of high-density semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図は電極金属の組成を変化させたときの、サイ
ドエツチング量とエツチング深さの関係の変化を
示す図である。
The figure shows the change in the relationship between side etching amount and etching depth when the composition of the electrode metal is changed.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の領域の作り込まれた半導体基板の表面
に、アルミニウム、タングステンもしくはモリブ
デンのいずれかにシリコンまたは金を含有させた
第1の金属に、同第1の金属よりもハロゲン化物
としての蒸気圧が小さい銅、ベリリウム、マグネ
シウム、鉄、ニツケルおよび亜鉛のうちの少くと
も1種からなる第2の金属が含有され、同第2の
金属の含有量が3重量パーセント以下とされた金
属層を形成し、こののち、ハロゲン系ガスによる
ドライエツチング処理を施し、前記金属層からな
る金属パターンを形成することを特徴とする半導
体基板への金属パターンの形成方法。
1. A first metal containing silicon or gold in aluminum, tungsten, or molybdenum on the surface of a semiconductor substrate formed in a predetermined region has a vapor pressure higher than that of the first metal as a halide. Forming a metal layer containing a second metal consisting of at least one of copper, beryllium, magnesium, iron, nickel and zinc with a small content of the second metal of 3% by weight or less A method for forming a metal pattern on a semiconductor substrate, characterized in that, after this, a dry etching process is performed using a halogen-based gas to form a metal pattern made of the metal layer.
JP8169779A 1979-06-28 1979-06-28 Formation of metal pattern for semiconductor substrate Granted JPS566453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8169779A JPS566453A (en) 1979-06-28 1979-06-28 Formation of metal pattern for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8169779A JPS566453A (en) 1979-06-28 1979-06-28 Formation of metal pattern for semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS566453A JPS566453A (en) 1981-01-23
JPS6210024B2 true JPS6210024B2 (en) 1987-03-04

Family

ID=13753557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8169779A Granted JPS566453A (en) 1979-06-28 1979-06-28 Formation of metal pattern for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS566453A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141741A (en) * 1975-05-22 1976-12-06 Ibm Method of selectively removing aluminum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141741A (en) * 1975-05-22 1976-12-06 Ibm Method of selectively removing aluminum

Also Published As

Publication number Publication date
JPS566453A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
CA1282188C (en) Multilayer metallization method for integrated circuits
EP0075085B1 (en) Method of fabricating a conductive metal silicide structure
JPS59134833A (en) Material and method for plasma etching aluminum and aluminumalloy
US6855638B2 (en) Process to pattern thick TiW metal layers using uniform and selective etching
EP0113522A2 (en) The manufacture of semiconductor devices
JPH0738442B2 (en) Manufacturing method of semiconductor device
JPS6210024B2 (en)
JPH0471334B2 (en)
JPS61263130A (en) Manufacture of semiconductor device
US5633207A (en) Method of forming a wiring layer for a semiconductor device
JPS62133713A (en) Formation of electrode and electrode thereof
JP2629721B2 (en) Dry etching method
KR100826964B1 (en) Method for fabricating semiconductor device
JPH07106327A (en) Semiconductor device and its manufacture
JP2000038659A (en) Sputtering target, wiring film and electronic part
JPH079893B2 (en) Method for manufacturing semiconductor device
KR20020000431A (en) method for manufacturing semiconductor devices
KR20030002942A (en) Method for forming metal interconnection in semiconductor device
JPS5933253B2 (en) Method for forming electrodes in semiconductor devices
KR930000195B1 (en) Metal wiring method of semiconductor device
KR0167243B1 (en) Semiconductor device & its manufacturing method
KR19990005470A (en) Aluminum alloy etching method
JPH04356923A (en) Etching method
JPS61121455A (en) Semiconductor device
JPS5972138A (en) Manufacture of semiconductor device