JPS6199505A - Optimum sheet-thickness setting method - Google Patents

Optimum sheet-thickness setting method

Info

Publication number
JPS6199505A
JPS6199505A JP59222584A JP22258484A JPS6199505A JP S6199505 A JPS6199505 A JP S6199505A JP 59222584 A JP59222584 A JP 59222584A JP 22258484 A JP22258484 A JP 22258484A JP S6199505 A JPS6199505 A JP S6199505A
Authority
JP
Japan
Prior art keywords
thickness
plate
crown
sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59222584A
Other languages
Japanese (ja)
Inventor
Mikie Tokunaga
徳長 幹恵
Noriyuki Hosomi
細見 紀幸
Masanobu Hongo
本郷 政信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59222584A priority Critical patent/JPS6199505A/en
Publication of JPS6199505A publication Critical patent/JPS6199505A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Abstract

PURPOSE:To restrain an excessive sheet thickness, to improve a yield of product and to eliminate a sheet-thickness change in a longitudinal direction, by using the correcting quantity of sheet crown, obtained by adding a rolling order, a sheet width, a sheet thickness and a deformation resistance to a correcting factor of sheet crown, to set an aimed thickness at every rolling stock. CONSTITUTION:Meters 52 of sheet thickness and temperature are provided to the outlet side of a roughing mill 20, and their outputs are inputted to a controlling computer 50. A sheet-thickness meter 56 is also provided to the outlet side of a finishing mill 30, and its output is also fetched by the computer 50. The computer 50 computes an optimum finished sheet-thickness (aimed thickness) based on these detected values and a separately inputted information such as a kind of steel, a rolling order, a sheet width and a deformation resistance, and performs a finishing mill setting computation by using the aimed thickness, to perform the setting of each stand through a finishing mill setting device 54.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は出側板厚設定値を最適にして歩留り向上を図っ
た最適板厚設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optimum plate thickness setting method for optimizing the outlet side plate thickness setting value to improve yield.

〔従来の技術〕[Conventional technology]

鋼帯などの圧延材料の製品は、該材料の側端がら微小距
離内側へ入った位置の厚みを採用し、該厚みが公差内に
入る製品が規格内とされる(計算重量売り規格)。一方
、鋼帯圧延では一般に自動板厚制御装置(AGC)が採
用され、AC,Cでは中央部の板厚が当該綱帯の板厚と
する(プレスなどの2次加工でもこの方法がとられる)
、そして綱帯にはクラウンがあるから、上記規格が採用
される製品に対しては、上記材料側端から微小距離内側
へ入った位置の厚みが規格内に入るようにし(この厚み
をHlとする)、該厚みHlにクラウンの最大値Cm(
これは6に帯の変形抵抗(堅さ)、幅、クラウンバラツ
キの工程能力その他に応じて予め定めである)を加えて
、H++CmをAGCの目標板厚とし、これで圧延を行
なうようにしている。第2図は狙い厚決定要領を説明す
る図で、公差下限にクラウン補正量を加え、それに更に
酸洗での酸減り量あるいはスキンパスでの圧下量等の適
当値を加えて狙い厚を、公差上限より薄い適当値にする
。クラウン補正量として従来法では、当該圧延スケジュ
ール中の被圧延材の予想されるクラウンの最大値をとる
For products made of rolled materials such as steel strips, the thickness at a position slightly inward from the side edge of the material is adopted, and products whose thickness falls within the tolerance are considered to be within the standard (calculated weight sales standard). On the other hand, automatic plate thickness control (AGC) is generally adopted in steel strip rolling, and in AC and C, the thickness of the central part is the thickness of the steel strip (this method is also used in secondary processing such as pressing). )
, and since the rope belt has a crown, for products to which the above standards are adopted, the thickness at a position a minute distance inward from the material side edge should be within the standard (this thickness is referred to as Hl). ), and the thickness Hl is the maximum value Cm of the crown (
This is determined in advance according to the deformation resistance (hardness) of the strip, width, crown variation process capacity, etc.) to 6), H++Cm is set as the target thickness of AGC, and rolling is performed using this value. There is. Figure 2 is a diagram explaining the procedure for determining the target thickness.The crown correction amount is added to the lower limit of the tolerance, and then an appropriate value such as the amount of acid loss in pickling or the amount of reduction in skin pass is added to determine the target thickness. Set it to an appropriate value that is thinner than the upper limit. In the conventional method, the crown correction amount is the maximum value of the expected crown of the rolled material during the rolling schedule.

しかしながら、板クラウンはロール研削状態、ロール摩
耗、ロール膨張、および圧延荷重、ロールベンダー力な
ど種々の要因で変化するから、実際のクラウンをCとす
ると、上記方式ではCm −Cだけ厚く圧延している。
However, the plate crown changes depending on various factors such as roll grinding conditions, roll wear, roll expansion, rolling load, roll bender force, etc. Therefore, if the actual crown is C, the above method rolls the plate thicker by Cm - C. There is.

この厚さCm−Cに板幅及び板長さを乗じた(正確には
、Cm−Cは各部で異なるから積分になるが)鋼材量は
販売対象にならず、従ってCm−Cは製品歩留りを低下
させており、可及的に小さいのが望まれる。
The amount of steel material obtained by multiplying this thickness Cm-C by the plate width and plate length (more precisely, since Cm-C is different in each part, it is an integral) is not subject to sales, so Cm-C is the product yield. It is desirable that it be as small as possible.

板クラウンの決定因子は上記のように種々あるが、約言
すれば広義のロールプロフィルと言え、各々はロールプ
ロフィルの静的又は動的決定因子と言える。か〜るロー
ルプロフィル又は板クラウンの決定因子にはまず圧延位
置(圧延スケジュール中の当該鋼帯が圧延される順番)
を挙げることができる。第1図で説明すると(alは同
じ板幅の鋼帯を多数本圧延した後のロールプロフィルを
示す。
As mentioned above, there are various factors that determine the plate crown, but in general, it can be said to be the roll profile in a broad sense, and each can be said to be a static or dynamic determining factor of the roll profile. The determining factor of the roll profile or plate crown is the rolling position (the order in which the steel strip is rolled in the rolling schedule).
can be mentioned. To explain this with reference to FIG. 1, (al indicates the roll profile after rolling a large number of steel strips of the same width.

ワークロール10の鋼帯に当る部分は摩耗して凹部12
を作り、該凹部の隅14は鋼帯の縁に当り、縁は温度が
下って堅さが増しているので特に深い窪みとなっている
。このようなプロフィルになったロールで凹部12の幅
より広幅の鋼帯を圧延すれば当然、該鋼帯の縁部が薄く
、中間部が厚く圧延され、これらの縁部と中間部の境界
は段差を持つようになる。そこで従来圧延スケジュール
は第1図(d)に示すように最初は広幅のものを圧延し
、その後次第に狭幅のものへ移行するように定めている
。しかしこのように圧延順番を定めてしまうと実際操業
上は種々不具合があり、できれば第1図(C1に示すよ
うに板幅は広、狭任意である(スケジュールフリーであ
る)のが望ましい。
The part of the work roll 10 that contacts the steel strip is worn and a recess 12 is formed.
The corner 14 of the recess rests on the edge of the steel strip, which is a particularly deep depression as the temperature decreases and the edge increases in hardness. If a steel strip wider than the width of the recess 12 is rolled with a roll having such a profile, the edge of the steel strip will naturally be thin and the middle part thick, and the boundary between these edges and the middle part will be There will be a difference in level. Therefore, the conventional rolling schedule is such that a wide width is rolled at first, and then the width is gradually shifted to a narrow width, as shown in FIG. 1(d). However, if the rolling order is determined in this way, there will be various problems in actual operation, and if possible, it is desirable that the strip width be wide or narrow (schedule-free) as shown in FIG. 1 (C1).

ワークロールを左右に±αの範囲でシフトして鋼帯の当
る位置が変るようにすると、ロールプロフィルは第1図
(blの如くなり、凹部12の両側型部は拡がって斜面
になり、なだらかになる、このようになると板幅Wに対
しW+2αまでの幅逆転(後から広幅のものを圧延する
)が可能である。
When the work roll is shifted left and right in the range of ±α to change the contact position of the steel strip, the roll profile becomes as shown in Fig. In this case, it is possible to reverse the width of the sheet W to W+2α (rolling a wider sheet later).

しかしクラウンが大になるのは避けられない、11!1
1ちワークロールシフトを行ない、圧延鋼板の幅を第1
図(C1のように広、狭に変えると第1図(21に示す
ように狭幅材のクラウン変化は格別ないが、広幅材は圧
延順番が後になるにつれてクラウンが例えば51 gm
、  84 μm、  108 μm、 ・・・・・・
と大きくなってくる。
However, it is inevitable that the crown will become larger, 11!1
1. Perform a work roll shift and change the width of the rolled steel plate to the first
When the width is changed from wide to narrow as shown in Figure 1 (C1), the crown of the narrow material does not change significantly as shown in Figure 1 (21), but the crown of the wide material changes to 51 gm as the rolling order becomes later.
, 84 μm, 108 μm, ...
It's getting bigger.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このようにクラウンに大なるものが出れば、上記Cmに
は当然これらのクラウンの最大のものを採用せねばなら
ず、歩留り低下を招く。
If some of the crowns are large in this way, the largest of these crowns must of course be adopted as the Cm, resulting in a decrease in yield.

このような問題に対処するため、材料先端部で複数回ク
ラウンを実測し、その平均値CRを当該材料のクラウン
と見做して該CRを目標板厚計算部へ送り、適正目標厚
みを計算させてその結果によりAGCを行なう方式があ
る(特開昭58−187210)、Lかしこの方式では
適正厚みが計算される迄の間は目標板・厚が不適正値で
あり、従ってこの期間中の歩留り低下は避けられず、ま
た目標板厚が適正値に変更されると板厚が、最初の板厚
と該適正厚みとの差だけ変化することになる。
To deal with this problem, we measure the crown multiple times at the tip of the material, treat the average value CR as the crown of the material, and send the CR to the target plate thickness calculator to calculate the appropriate target thickness. There is a method in which AGC is performed based on the result (Japanese Patent Laid-Open No. 58-187210). However, in this method, the target plate/thickness is an inappropriate value until the appropriate thickness is calculated, and therefore, during this period, A decrease in yield is unavoidable, and if the target plate thickness is changed to an appropriate value, the plate thickness will change by the difference between the initial plate thickness and the appropriate thickness.

本発明はか−る点を改善し、歩留りを可及的に向上させ
ることができ、板厚が途中で変るようなことがない最適
板厚設定方法を提供しようとするものである。
The present invention aims to improve these points and provide an optimum plate thickness setting method that can improve the yield as much as possible and prevent the plate thickness from changing midway.

c問題点を解決するための手段〕 本発明は、ワークロールシフト及び自動板厚制御を行な
い、該板厚制御の狙い厚は製品板厚の公差下限に板クラ
ウン補正量を加えて決定する圧延設備における最適板厚
設定方法において、該板クラウン補正量の決定因子に、
圧延スケジュール中の当該被圧延材の圧延順番およびF
j、@、板厚、変形抵抗を加え、こうして求めた板クラ
ウン補正量を用いて被圧延材毎に前記狙い厚を定めるこ
とを特徴とするものである。
Means for Solving Problem c] The present invention performs work roll shift and automatic plate thickness control, and the target thickness of the plate thickness control is determined by adding a plate crown correction amount to the lower limit of tolerance of product plate thickness. In the optimum plate thickness setting method for equipment, the determining factors for the plate crown correction amount are:
The rolling order and F of the material to be rolled in the rolling schedule
The method is characterized in that the target thickness is determined for each material to be rolled by adding j, @, plate thickness, and deformation resistance, and using the plate crown correction amount obtained in this way.

ワークロールシフトを行なう圧延機のロールプロフィル
は第1図(blに示すように凹部12がなだらかになり
、幅逆転が可能で、スケジュールフリー化が図れる。し
かし板クラウンは圧延順番及び板幅、板厚、材料の変形
抵抗で変る。板クラウンはロールプロフィル、具体的に
ぼロール研削曲線、その後のロール摩耗、ロール熱膨張
、圧延荷重、ロールベンダーカ等により定まるから、こ
れらについてのデータおよび、圧延対象の板材の板幅及
び当該パススケジュール内圧延順番を針算機に投入し、
当該板材の圧延後板クラウンCを推測することが可能で
ある。板クラウシの推測方法としてはたとえば以下のよ
うなモデルを使用する。
As shown in Figure 1 (bl), the roll profile of a rolling mill that performs work roll shifting is such that the concave portion 12 is gentle, the width can be reversed, and schedule freedom can be achieved. It changes depending on the thickness and deformation resistance of the material.The plate crown is determined by the roll profile, specifically the roll grinding curve, subsequent roll wear, roll thermal expansion, rolling load, roll bending force, etc. Input the width of the target plate material and the rolling order within the relevant pass schedule into a needle counter,
It is possible to estimate the plate crown C of the plate after rolling. For example, the following model is used to estimate the plateau.

基礎方程式 %式%】 (2)式は均−荷重板クラウンと呼ばれるもので、圧m
荷重p 、ロールペンディングカF、ロールプローフィ
ル項から成り立っている。
Basic equation % formula %] Equation (2) is called the uniform load plate crown, and the pressure m
It consists of a load p, a roll pending force F, and a roll profile term.

→2 ・・・・・・(5) CRO=−2(1+α) CR ここで b:板中、  11:ロール胴長。→2 ・・・・・・(5) CRO=-2(1+α)CR Here, b: middle plate, 11: roll body length.

12:モーメントアーム長。12: Moment arm length.

E:ヤング率、  G:剛性率。E: Young's modulus, G: rigidity modulus.

ct:ロール間ギャップ補正係数。ct: inter-roll gap correction coefficient.

CR二ロールプロフィル(サーマルクラウン十ロール摩
耗+イニシャルカーブ) (1)式は、即ち(2)式で定まる均一荷重板クラウン
がある割合で板にプリントされ、さらに前段スタンド出
側クラウンの向割かが遺伝して次スタンド以降の出側に
影響するといったものである。
CR two-roll profile (thermal crown 10 roll wear + initial curve) Equation (1) means that the uniform load plate crown determined by Equation (2) is printed on the plate at a certain rate, and furthermore, the front side of the front stand exit crown is printed on the plate. It is said to be inherited and affect the outcome from the next stand onward.

また−、ロール摩耗およびロール膨張については、第5
図に示すようなモデルを使用する。このようにして求め
た板クラウンCを前記Cmの代りに用いてH++C1第
2図で言えば公差下限+クラウン補正量子所定値を狙い
厚とすれば、C<Cmであるから歩留り向上を図ること
ができる。該板クラウンCは被圧延材の個々に従って定
まる値であるから狙い厚は個々の被圧延材に対して設定
され、被圧延材毎に変るが、個々の被圧延材の圧延中は
変更されないから、坂長さ方向において板厚が変化する
ことはない。
Also, regarding roll wear and roll expansion, see Section 5.
Use a model like the one shown in the figure. If the plate crown C obtained in this way is used in place of the above-mentioned Cm and the target thickness is H++C1 in Figure 2, the lower limit of tolerance + the predetermined value of the crown correction quantum, C<Cm, so the yield can be improved. Can be done. Since the plate crown C is a value determined according to each material to be rolled, the target thickness is set for each material to be rolled and changes for each material to be rolled, but it does not change while the individual material to be rolled is being rolled. , the plate thickness does not change in the slope length direction.

上記のように板クラウンを推測する他に、実ll値を利
用する又は実測値で学習する方式も有効である。
In addition to estimating the plate crown as described above, it is also effective to use actual values or to learn from actually measured values.

クラウン推定計算の学習についてはたとえば以下の方法
がある。金臭測板クラウンをCT’ 1計算値をCiと
するとΔC1−C″″ −Ciが学習で修正すべき板ク
ラウン量になる。
For example, the following methods are available for learning the crown estimation calculation. Letting the calculated value of CT' 1 be Ci for the metallic odor test plate crown, ΔC1-C''''-Ci becomes the plate crown amount to be corrected by learning.

ΔCiから均一荷重板クラウンの制御量ΔCiを求める
のは前述の基本式(1)を逆に解いた次式による。
The control amount ΔCi of the uniform load plate crown is determined from ΔCi using the following equation, which is obtained by reversing the above-mentioned basic equation (1).

(6)式で求まる均一荷重板クラウンの修正量を、以下
の手続で学習する。
The amount of modification of the uniform load plate crown determined by equation (6) is learned by the following procedure.

Ciミcp ” Pi  +CF ” F+  ”CR
” CP、+Cp、cF、cR学習係数、で表わされる
からすべての推定誤差をロールプロフィルの項によるも
のとして最も簡単に整理すれば このΔCRi  を学習項とすれば良い。
Ci Mi cp ” Pi +CF ” F+ ”CR
”Since it is expressed as CP, +Cp, cF, and cR learning coefficients, if all the estimation errors can be summarized as being based on the roll profile term, then this ΔCRi can be used as the learning term.

学習により推定誤差が0に近づけば前述の(2)式より
ロールプロフィルCRO4が導出できる。
If the estimation error approaches 0 through learning, the roll profile CRO4 can be derived from the above-mentioned equation (2).

即ち板圧延中に出側でプロフィルメータにより板クラウ
ンを実測して例えば平均板クラウンを求めると、これは
当該圧延における静的、動的ロールプロフィルを反映し
ているから、被圧延材と板材の変形抵FC(堅さ)、板
幅などの板材側クラウン影響因子側に上記推定ロールプ
ロフィルをグルーピングして格納しておくと、板材の圧
延に際してその格納ロールプロフィル群より、今回板材
と同種の板材の前回(直近)圧延で得られた推定ロール
プロフィルを取り出し、それに今回の圧延荷重及びロー
ルベンダー力などのロール弾性変形によるロールプロフ
ィル変化分による修正を加えて正確に板クラウンを推定
し、狙い厚を決定することができる。この場合前記の圧
延位置による修正は、直近データ採用するので省略して
も大きな誤差は生じない、特に板の変形抵抗(堅さ)及
び板幅が同じ又は徐々に変る場合はそうである。これが
大幅に変る場合は、今までの圧延結果のうちの同種のも
のを採用する(なるべく最新のもの)、又はその同種の
ものにその傾向的変化を加えて今回分を推定して使用す
る等の方法をとるとよい。
In other words, if the plate crown is actually measured using a profilometer on the exit side during plate rolling and, for example, the average plate crown is determined, this reflects the static and dynamic roll profiles during the rolling process, and therefore the difference between the rolled material and the plate material. If the above estimated roll profiles are grouped and stored on the plate side crown influence factors such as deformation resistance FC (hardness) and plate width, then when rolling a plate, the same type of plate as the current plate is selected from the stored roll profile group. The estimated roll profile obtained from the previous (most recent) rolling is taken out and corrected by the roll profile change due to roll elastic deformation such as the current rolling load and roll bender force to accurately estimate the plate crown and calculate the target thickness. can be determined. In this case, since the most recent data is used for the correction based on the rolling position, omitting it will not cause a large error, especially when the deformation resistance (hardness) and width of the plate are the same or gradually change. If this changes significantly, use the same type of rolling results so far (preferably the latest one), or add the trend changes to the same type of results to estimate and use the current result. It is best to take the following method.

また格納しておく実績データは板クラウンそのものとし
てよい、即ちロールプロフィルは、弾性変形分も加える
と、板クラウンと同種のものである。
Furthermore, the actual performance data to be stored may be the plate crown itself; that is, the roll profile is of the same type as the plate crown, including the elastic deformation.

第3図は圧延実績を利用して狙い厚を定める場合の処理
要領を示す0図示のように、曲材までの圧延実績による
ロールプロフィルの推定計算を行ない、結果を板の種別
毎に格納してお(、圧延する板に対する狙い厚算出に当
っては、仕上圧延設備の入側圧延材料のデータ、具体的
にはm種、粗圧延設備の出側板幅、板厚、温度を取込み
、パススケジュールから定まる仕上圧延段の圧延荷重お
よびロールベンダー力によるロール弾性変形を計算し、
この計算結果を用いて前記格納しておいたロールプロフ
ィルの該当するものを修正し、仕上出側クラウンを推定
算出する。このクラウン値が求まれば前述のように公差
下限などより板幅方向中心における適正な目標板厚(狙
い厚)を計算し、これで自動板厚制御を行なう、圧延中
にクラウン測定を行ない、得られたクラウン実測値と上
記推定算出したクラウン予測値との偏差を求め、クラウ
ン推定計算に対する学習を行なう、圧延位置によるクラ
ウン変化は、この学習で相当程度盛り込むごとができる
Figure 3 shows the processing procedure when determining the target thickness using the rolling results.As shown in Figure 3, the roll profile is estimated and calculated based on the rolling results up to the bent material, and the results are stored for each type of plate. (When calculating the target thickness for the plate to be rolled, data on the rolled material on the inlet side of the finishing rolling equipment, specifically M type, outlet side plate width, plate thickness, and temperature of the rough rolling equipment, are taken in and the pass Calculate the rolling load of the finish rolling stage determined from the schedule and the roll elastic deformation due to the roll bender force,
Using this calculation result, the stored roll profile is corrected, and the finished exit crown is estimated. Once this crown value has been determined, the appropriate target thickness (target thickness) at the center of the strip in the width direction is calculated from the lower tolerance limit, etc., as described above, and automatic strip thickness control is performed using this. Crown measurement is performed during rolling. The deviation between the obtained measured crown value and the predicted crown value estimated and calculated is determined, and learning for the crown estimation calculation is performed. Crown changes due to the rolling position can be incorporated to a considerable extent in this learning.

第4図は圧延機及びその制御装置の構成を示し、図示の
ように20は粗圧延機でR6はその最終スタンド、30
は仕上圧延機でF1〜F7はその第1〜第7スタンド、
40はコイラーである。粗圧延設備の出側には板厚針及
び温度計52が設けられ、これらの出力は制御用計算機
50に取込まれる。仕上圧延設備の出側にも板厚計56
が設けられ、その出力は制御用計算機50に取込まれる
FIG. 4 shows the configuration of a rolling mill and its control device, and as shown in the figure, 20 is a rough rolling mill, R6 is its final stand, and 30
is the finishing rolling mill, F1 to F7 are its 1st to 7th stands,
40 is a coiler. A plate thickness needle and a thermometer 52 are provided on the outlet side of the rough rolling equipment, and their outputs are taken into a control computer 50. There is also a plate thickness gauge of 56 on the exit side of the finishing rolling equipment.
is provided, and its output is taken into the control computer 50.

計算機50はこれら及び別途入力されるsli!種など
の情報から最適仕上板厚(狙い厚)を計算し、これを用
いて仕上圧延機設定計算を行ない、仕上圧延機設定装置
54を介して各々スタンドの設定を行なう。
The calculator 50 inputs these and the separately inputted sli! The optimum finished plate thickness (target thickness) is calculated from the information such as the seed, and this is used to calculate the finishing mill settings, and the settings for each stand are performed via the finishing mill setting device 54.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では狙い厚決定にクラウン最
大値でなく、個々の圧延材料に対して推定したクラウン
値を用い、個々の材料に対しそれぞれの狙い厚を定めて
それにより自動板厚制御をするので過大板厚を可及的に
抑えることができ、従って歩留を向上させることができ
、板先端から該狙い厚で圧延し、途中で変更することは
ないので、板厚が長手方向で変化するようなことがない
利点が得られる。
As explained above, in the present invention, the crown value estimated for each rolled material is used instead of the maximum crown value to determine the target thickness, and the target thickness is determined for each material, thereby automatically controlling the plate thickness. This makes it possible to suppress excessive plate thickness as much as possible, thereby improving yield.Since the plate is rolled at the target thickness from the tip of the plate and is not changed mid-way, the plate thickness is reduced in the longitudinal direction. This has the advantage that it does not change with time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワークロールシフトの説明図、第2図は狙い厚
決定要領の説明図、第3図は実績データによる板クラウ
ン決定要領の説明図、第4図は圧延設備の説明図、第5
図はロール膨張モデルおよび摩耗モデルの説明図である
。 図面で10はワークロール、12は圧延により生じた凹
部である。 出 願 人   新日本製鐵株式会社 代理人弁理士  青  柳    稔 (リ             (d)−ML福→  
       φ帆板幅→第1図
Figure 1 is an explanatory diagram of the work roll shift, Figure 2 is an explanatory diagram of the procedure for determining the target thickness, Figure 3 is an explanatory diagram of the procedure for determining the sheet crown based on actual data, Figure 4 is an explanatory diagram of the rolling equipment, and Figure 5 is an explanatory diagram of the procedure for determining the plate crown based on actual data.
The figure is an explanatory diagram of a roll expansion model and a wear model. In the drawing, 10 is a work roll, and 12 is a concave portion produced by rolling. Applicant Nippon Steel Corporation Representative Patent Attorney Minoru Aoyagi (Re (d) - ML Fuku→
φ Sail width → Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)ワークロールシフト及び自動板厚制御を行ない、
該板厚制御の狙い厚は製品板厚の公差下限に板クラウン
補正量を加えて決定する圧延設備における最適板厚設定
方法において、 該板クラウン補正量の決定因子に、圧延スケジュール中
の当該被圧延材の圧延順番および板幅、板厚、変形抵抗
を加え、こうして求めた板クラウン補正量を用いて被圧
延材毎に前記狙い厚を定めることを特徴とする最適板厚
設定方法。
(1) Perform work roll shift and automatic plate thickness control,
The target thickness of the plate thickness control is determined by adding the plate crown correction amount to the lower limit of tolerance of the product plate thickness. In the optimum plate thickness setting method for rolling equipment, the determining factor of the plate crown correction amount is An optimal plate thickness setting method, comprising adding the rolling order, plate width, plate thickness, and deformation resistance of the rolled material, and determining the target thickness for each rolled material using the plate crown correction amount obtained in this way.
(2)ワークロールシフト及び自動板厚制御を行ない、
該板厚制御の狙い厚は製品板厚の公差下限に板クラウン
補正量を加えて決定する圧延設備における最適板厚設定
方法において、 圧延中に圧延設備の出側で板クラウンを実測してその結
果を変形抵抗(板の堅さ)及び板幅、板厚別にグルーピ
ングして格納しておき、狙い厚決定に用いる板クラウン
補正量を、該格納した板クラウン補正量群中の当該被圧
延材と同種のものから取出し、該板クラウン補正量を用
いて被圧延材毎に前記狙い厚を定めることを特徴とする
最適板厚設定方法。
(2) Perform work roll shift and automatic plate thickness control,
The target thickness of the plate thickness control is determined by adding the plate crown correction amount to the lower limit of tolerance of the product plate thickness. The results are grouped and stored according to deformation resistance (stiffness of the plate), plate width, and plate thickness, and the plate crown correction amount used for determining the target thickness is applied to the rolled material in the stored plate crown correction amount group. An optimum plate thickness setting method, characterized in that the target thickness is determined for each material to be rolled using the plate crown correction amount obtained from the same type of material.
JP59222584A 1984-10-23 1984-10-23 Optimum sheet-thickness setting method Pending JPS6199505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222584A JPS6199505A (en) 1984-10-23 1984-10-23 Optimum sheet-thickness setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222584A JPS6199505A (en) 1984-10-23 1984-10-23 Optimum sheet-thickness setting method

Publications (1)

Publication Number Publication Date
JPS6199505A true JPS6199505A (en) 1986-05-17

Family

ID=16784755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222584A Pending JPS6199505A (en) 1984-10-23 1984-10-23 Optimum sheet-thickness setting method

Country Status (1)

Country Link
JP (1) JPS6199505A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108862A (en) * 1977-03-07 1978-09-22 Nippon Steel Corp Controlling method for plate crown of strip or the like
JPS5592221A (en) * 1978-12-29 1980-07-12 Sumitomo Metal Ind Ltd Automatic plate thickness control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108862A (en) * 1977-03-07 1978-09-22 Nippon Steel Corp Controlling method for plate crown of strip or the like
JPS5592221A (en) * 1978-12-29 1980-07-12 Sumitomo Metal Ind Ltd Automatic plate thickness control method

Similar Documents

Publication Publication Date Title
JP5131270B2 (en) Thickness control device for reverse rolling mill
JP7128127B2 (en) Straightening method of steel plate by roller leveler
JPS6199505A (en) Optimum sheet-thickness setting method
JP6870359B2 (en) Arithmetic logic unit and arithmetic method
JP4623738B2 (en) Shape control method in cold rolling
JP2019055415A (en) Plate crown control method, plate crown control device, and steel plate manufacturing method
JP3067879B2 (en) Shape control method in strip rolling
JPS6029563B2 (en) How to control the shape of the workpiece
JP4227686B2 (en) Edge drop control method during cold rolling
JP4086120B2 (en) Cold rolling method for hot rolled steel strip before pickling
JP4671555B2 (en) Shape control method in multi-high mill
JP2000135506A (en) Method of rolling plate with reversible rolling mill
JP2002292414A (en) Shape control method in cold rolling
JP4086119B2 (en) Shape control method in cold rolling of hot rolled steel strip before pickling
JP3664151B2 (en) Sheet width control method, cold rolled metal sheet manufacturing method, and cold rolling apparatus
JP2576916B2 (en) Thick plate rolling method in pair cloth rolling mill
JPH0698366B2 (en) Plate shape control method
JPH07265927A (en) Method for correcting predictive model for plate crown
JPH0261847B2 (en)
JPS61189810A (en) Shape-controlling method in finish rolling
JPS61222619A (en) Controlling method for work roll shifting position of rolling mill
JP3396774B2 (en) Shape control method
JPH0866709A (en) Method for estimating rolling load in hot rolling
JPH11104718A (en) Rolling method of reversible rolling mill
JPS5939410A (en) Rolling method