JPS61189810A - Shape-controlling method in finish rolling - Google Patents

Shape-controlling method in finish rolling

Info

Publication number
JPS61189810A
JPS61189810A JP60032378A JP3237885A JPS61189810A JP S61189810 A JPS61189810 A JP S61189810A JP 60032378 A JP60032378 A JP 60032378A JP 3237885 A JP3237885 A JP 3237885A JP S61189810 A JPS61189810 A JP S61189810A
Authority
JP
Japan
Prior art keywords
stand
rolling
roll
estimated
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60032378A
Other languages
Japanese (ja)
Inventor
Toru Morita
徹 森田
Masami Konishi
正躬 小西
Takaaki Katayama
片山 登揚
Hiroshi Imamura
弘 今村
Yoshikazu Matsuura
義和 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60032378A priority Critical patent/JPS61189810A/en
Publication of JPS61189810A publication Critical patent/JPS61189810A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/42Control of flatness or profile during rolling of strip, sheets or plates using a combination of roll bending and axial shifting of the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/18Roll crown; roll profile
    • B21B2267/19Thermal crown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/24Roll wear

Abstract

PURPOSE:To obtain reasonably and efficiently a rolling stock having prescribed sheet thickness and sheet shape, by obtaining the amount of offset of a roll gap and the amounts of thermal expansion and wear by performing the learning computation by optimization technique based on the data of actual results, for controlling the shape of stock. CONSTITUTION:The estimated outlet-side sheet thicknesses of all the stands, each of which makes the difference between the ratio, between the computed value and actual value of a rolling load of each stand, and the ratio, between the computed value and actual value of a rolling load of the next stand, into a minimum value, are obtained in series from the outlet-side gauge-meter thicknesses of respective stands by the learning computation by optimization technique based on the actual results, to use the difference between the estimated sheet thickness and said outlet-side gauge sheet-thickness, as the offset amount of the roll gap of said stand. Further, the amounts of thermal expansion and wear are estimated from the variation of said amount of roll gap, varying with the cumulation of the number of rollings. Based on said estimation; the shape control of a rolling stock, such as the computation of roll crown and the operations of roll bending and roll shifting, is performed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、熱間仕上圧延等において、ロールの摩耗や熱
膨張を推定することによって圧延材の形状を制御する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of controlling the shape of a rolled material by estimating wear and thermal expansion of rolls in hot finish rolling or the like.

〈従来の技術〉 一般に、熱間タンデム圧延において、各スタンドのロー
ルの摩耗や熱膨張は圧延材の形状に大きな影響を及ぼす
ため、目標板厚や目標形状を得るには、上記ロールの摩
耗や熱膨張を正確に推定して、それに応じてロールベン
ダーやロールシフトを操作する必要がある。
<Prior art> In general, in hot tandem rolling, the wear and thermal expansion of the rolls of each stand have a large effect on the shape of the rolled material, so in order to obtain the target thickness and shape, it is necessary to It is necessary to accurately estimate thermal expansion and operate roll benders and roll shifts accordingly.

従来、このロールの摩耗や熱膨張は、圧延回数の累加に
伴うロール間隙のオフセット量の変動から推定されてい
る。そして、各スタンドの上記ロール間隙のオフセット
量は、夫々圧延の同時点における下記の(1)式で与え
られるマスフロー板厚と、下記の(2)式で与えられる
出側ゲージメータ板厚との差(下記(3)式)で求めら
れている。
Conventionally, wear and thermal expansion of the rolls have been estimated from changes in the amount of offset between the rolls as the number of rolling cycles increases. The offset amount of the roll gap of each stand is determined by the mass flow plate thickness given by the following equation (1) at the same time of rolling and the outlet gauge meter plate thickness given by the following equation (2). It is determined by the difference (formula (3) below).

ただし、 i:スタンド番号(i=1〜7)h’:iス
タンドの同時点出側マスフ (i) ロー板厚 r(i) : iスタンドの先進率 N”(i): iスタンドの同時点ロール回転数D(i
):iスタンドのロール半径 hxニア番スタンド出側のX線厚さ計 による同時点実測板厚 J(i): iスタンドの同一点出側ゲージメータ板厚 5P(i) : iスタンドの同一点実測ロール間隙値 Fjl’(i) : i 7.乞ノドの同一点実績荷重
Mi : iスタンドのミル定数 So:定数 OF’(i): iスタンドのロール間隙オフセット量 〈発明が解決しようとする問題点〉 しかしながら、上記(1)式即ちマスフロー一定則で用
いる各スタンドの先進率f(i) [=(出側圧延材速
度−ロール周速度)/ロール周速度コが正確でないこと
に起因して、上記(3)式で算出される従来のロール間
隙オフセット量OF’(i)は、実例として第6図、第
7図に示す如く、圧延回数の累加に伴って不規則かつ幅
広く変動している。従って、このような不規則な変動か
らロールの摩耗や熱膨張を正確に推定することは不可能
である。
However, i: Stand number (i = 1 to 7) h': Simultaneous exit side mass of i-stand (i) Low plate thickness r(i): Advance rate N'' of i-stand (i): Simultaneous exit-side mass of i-stand Point roll rotation speed D(i
): Roll radius hx of i-stand Actual plate thickness measured at the same time using the X-ray thickness meter on the exit side of the near stand J(i): Plate thickness 5P (i) on the same point exit side of the i-stand: Same-point thickness of the i-stand Single point actual measured roll gap value Fjl'(i): i7. Actual load at the same point Mi: Mill constant of i-stand So: Constant OF'(i): Roll gap offset amount of i-stand <Problem to be solved by the invention> However, the above formula (1), that is, constant mass flow The advance rate f(i) of each stand used in the formula is As shown in FIGS. 6 and 7 as examples, the roll gap offset amount OF'(i) fluctuates irregularly and widely as the number of rolling operations increases. Therefore, it is impossible to accurately estimate roll wear and thermal expansion from such irregular fluctuations.

また、通常、熱間タンデム仕上圧延では、圧延が行なわ
れる度に、終了した圧延での板厚、板温度、圧延荷重な
どの実績値を用いて、圧延荷重モデルによって計算荷重
を算出し、この計算荷重Fcと実積荷重FAの差をチェ
ックし、この差をなくすように圧延荷重モデルを最適化
手法による学習計算方法によって修正するようになって
いる。ところが、従来の圧延荷重モデルの修正は、圧延
材の変形抵抗の誤差についてのみなされ、板厚誤差につ
いては全くなされていなかった。そのため、実績荷重F
Aと計算荷重Fcの比は、実例として第8図に示す如く
、各回圧延ごとに著しく変動し、次回の圧延条件を精度
良く設定できないうえ、スタンド間の圧延荷重のバラン
スが崩れて、圧延された板にそりや歪を生ずる等の欠点
があった。
In addition, normally, in hot tandem finish rolling, each time rolling is performed, the calculated load is calculated using a rolling load model using the actual values of plate thickness, plate temperature, rolling load, etc. in the finished rolling. The difference between the calculated load Fc and the actual load FA is checked, and the rolling load model is corrected by a learning calculation method using an optimization method so as to eliminate this difference. However, the conventional rolling load model has been modified only for errors in the deformation resistance of rolled materials, and has not been corrected at all for sheet thickness errors. Therefore, the actual load F
As shown in Fig. 8 as an example, the ratio of A to the calculated load Fc fluctuates significantly for each round of rolling, making it impossible to set the next rolling conditions with precision, and the balance of rolling loads between stands is disrupted, resulting in poor rolling. There were drawbacks such as warping and distortion of the plate.

本発明者らの一人は、最近、上記欠点を解消し得る新規
な最適化手法を用いた学習計算方法を提案した(特開昭
57−4312号)。この学習計算方法は、初段より終
段まで順次前段のスタンドにおける圧延荷重の計算値と
実績値(FA)の比と、次段のスタンドにおける圧延荷
重の計算値と実績値の比との差がより最小値となるよう
な全スタンドにおける真に近い出側板厚を、各スタンド
の出側ゲージメータ板厚から過去の圧延実績に基づいて
最適化手法を用いた学習計算によって一連に求めてのち
、この真に近い出側板厚を用いて今−変容スタンドの圧
延荷重(Fc)を算出するよ、うにしたものである。こ
うして得られた実績荷重FAと計算荷重Fcの比は、第
9図に示す如く、上記従来例(第8図参照)と比較して
標準偏差が略1/3という変動の少ないものであり、次
回圧延の設定値の予測精度は著しく向上する。また、発
明者らは、上記真に近い出側板厚が前述の誤差の多い出
側マスフロー板厚hIll(iX(1)式参照)よりも
はるかに正確であって、X線厚さ計等による実測板厚に
略一致することを実際に確認している。
One of the inventors of the present invention has recently proposed a learning calculation method using a novel optimization method that can eliminate the above-mentioned drawbacks (Japanese Patent Laid-Open No. 57-4312). This learning calculation method sequentially calculates the difference between the ratio of the calculated value of the rolling force and the actual value (FA) in the stand of the previous stage and the ratio of the calculated value of the rolling load and the actual value (FA) of the stand of the next stage, from the first stage to the last stage. After successively finding the true outlet plate thickness for all stands that will minimize the value from the outlet gauge meter plate thickness of each stand through learning calculations using an optimization method based on past rolling results, The rolling load (Fc) of the current transformation stand is calculated using this near-true exit side plate thickness. As shown in FIG. 9, the ratio between the actual load FA and the calculated load Fc obtained in this way has a standard deviation of approximately 1/3, which shows little fluctuation compared to the conventional example (see FIG. 8). The accuracy of predicting the set values for the next rolling is significantly improved. In addition, the inventors have found that the above-mentioned true outlet side plate thickness is much more accurate than the above-mentioned outlet side mass flow plate thickness hIll (see iX (1) formula), which has many errors, and that it is measured by an X-ray thickness meter etc. We have actually confirmed that it approximately matches the measured plate thickness.

そこで、本発明の目的は、上記学習計算方法によって求
めた真に近い出側板厚を用いて、ロールの摩耗や熱膨張
を推定して、圧延材の形状を制御する方法を提供するこ
とである。
Therefore, an object of the present invention is to provide a method for controlling the shape of a rolled material by estimating the wear and thermal expansion of the rolls using the true outlet plate thickness obtained by the learning calculation method described above. .

く問題点を解決するための手段〉 本発明の仕上圧延における形状制御方法は、各スタンド
の出側ゲージメータ板厚から過去の圧延実績に基づいて
上記学習計算によって、初段より終段まで順次前段のス
タンドにおける圧延荷重の計算値と実績値の比と、次段
のスタンドにおける圧延荷重の計算値と実績値の比との
差がより最小値となるような全スタンドにおける出側推
定板厚を一連に求めてのち、各スタンドの上記出側ゲー
ジメータ板厚と真の板厚とみなされる上記出側推定板厚
との差をそのスタンドのロール間隙オフセット量とし、
圧延回数の累加に伴う上記ロール間隙オフセット量の変
動からロールの熱膨張量や摩耗量を推定し、これらの推
定量に基づいて圧延材の形状制御を行なうことを特徴と
する。
Means for Solving the Problems> The shape control method in finish rolling of the present invention uses the learning calculations described above based on the past rolling results from the exit side gauge meter plate thickness of each stand to sequentially change the shape from the first stage to the last stage. The estimated plate thickness at the exit side of all stands is determined so that the difference between the calculated value and actual value of the rolling load in the stand and the ratio of the calculated value and actual value of the rolling load in the next stand is minimized. After calculating the thickness in series, the difference between the outlet gauge meter plate thickness of each stand and the estimated outlet plate thickness, which is considered to be the true plate thickness, is determined as the roll gap offset amount for that stand.
The present invention is characterized in that the thermal expansion amount and wear amount of the rolls are estimated from the variation in the roll gap offset amount as the number of rolling operations increases, and the shape of the rolled material is controlled based on these estimated amounts.

〈発明の効果〉 本発明によれば、ロールの摩耗や熱膨張が圧延材の形状
に及ぼす悪影響を正確かつ完全に除去でき、所期の板厚
や板形状を有する圧延材を合理的かつ能率的に得ること
ができる。    。
<Effects of the Invention> According to the present invention, it is possible to accurately and completely eliminate the adverse effects of roll wear and thermal expansion on the shape of the rolled material, and to rationally and efficiently produce the rolled material having the desired thickness and shape. can be obtained. .

〈実施例〉 以下、本発明を実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to Examples.

今回圧延の各スタンドのロール間隙オフセッ°ト量OF
 (i)は、下記の(4)式および(5)式で求める。
Roll gap offset amount OF of each stand for this rolling
(i) is determined by the following equations (4) and (5).

op(i)=  J(f)−h*(D   ・・・・・
・(5)ただし、hに(i) : iスタンドの同一点
出側ゲージメータ板厚 5P(i) : iスタンドの同一点実測ロール間隙値 FK(t) : tスタンドの同一点実績荷重Mi :
 iスタンドのミル定数 So:定数 0F(f): iスタンドのロール間隙オフセット量 h*(i): iスタンドの出側推定板厚上記出側推定
板厚h*(i)は、発明者らの一人が最近提案した前述
の最適化手法を用いた学習計算方法(特開昭57−43
12号)によって得られるiスタンドの真に近い出側板
厚である。
op(i)=J(f)-h*(D...
・(5) However, in h(i): Gauge meter plate thickness 5P on the exit side at the same point of the i stand (i): Actual roll gap value FK (t) at the same point on the i stand: Actual load Mi at the same point on the t stand :
Mill constant So of i-stand: Constant 0F(f): Roll gap offset amount h*(i) of i-stand: Estimated exit side plate thickness of i-stand The above estimated exit side plate thickness h*(i) was calculated by the inventors. A learning calculation method using the above-mentioned optimization method recently proposed by one of
This is the thickness of the exit side of the i-stand that is close to the true thickness obtained by No. 12).

上記(5)式で算出されたロール間隙オフセット量0F
(i)の−例を、第1図、第2図に示す。これらの図は
、横軸に圧延回数nを、縦軸にロール間隙オフセット量
OFnをとって、圧延回数の累加に伴うオフセット量の
変動を示している。図から明らかなように、オフセット
量の変動は、0Fn=0を中心に小幅で、かつ従来例の
もの(第6゜7図参照)に比べてはるかに連続的で滑ら
かであり、オフセット量が最大値に向かって略単調増加
している部分はロールの熱膨張に、最大値から略単調減
少している部分はロールの摩耗に量的にも夫々対応する
ことが確認された。即ち、第1図。
Roll gap offset amount 0F calculated using formula (5) above
Examples of (i) are shown in FIGS. 1 and 2. In these figures, the horizontal axis represents the rolling number n, and the vertical axis represents the roll gap offset amount OFn, and shows the variation in the offset amount as the number of rolling times increases. As is clear from the figure, the offset amount fluctuates in a small range around 0Fn=0, and is much more continuous and smooth than the conventional example (see Figures 6-7). It was confirmed that the portion that increases substantially monotonically toward the maximum value corresponds to the thermal expansion of the roll, and the portion that decreases approximately monotonically from the maximum value quantitatively corresponds to wear of the roll. That is, FIG.

第2図の縦軸の特定のオフセット量変動に対するロール
の摩耗や熱膨張による表面形状を実測し、このロール表
面形状を第3図に示すように2次曲線やサインカーブで
近似して、ロールクラウン量(x=0でのyの値)を求
めた。その結果、オフセット量変動とロールクラウン量
の関係は、第4図に示す如き単調増加凸曲線となり、オ
フセット量変動からロールの摩耗や熱膨張を表わすロー
ルクラウン量が求まることになる。換言すれば、本実施
例によって圧延回数の1加に伴うロールの摩耗や熱膨張
によるロール形状が正確に推定できる。なお、短時間例
えば1本のコイルの圧延中のロールの摩耗や熱膨張も同
様にして推定できる。
We actually measured the surface shape of the roll due to wear and thermal expansion for a specific offset amount variation on the vertical axis in Figure 2, and approximated the roll surface shape with a quadratic curve or a sine curve as shown in Figure 3. The amount of crown (value of y at x=0) was determined. As a result, the relationship between the offset amount variation and the roll crown amount becomes a monotonically increasing convex curve as shown in FIG. 4, and the roll crown amount, which represents roll wear and thermal expansion, can be determined from the offset amount variation. In other words, according to this embodiment, it is possible to accurately estimate the roll shape due to wear and thermal expansion of the roll as the number of rolling cycles increases. Note that wear and thermal expansion of the roll during rolling of one coil for a short period of time, for example, can be similarly estimated.

第5図は、前述の手順を含む本発明による形状制御方法
を例示したフローチャートである。まず、ステップ(イ
)で今回圧延の各スタンドの実績荷重。
FIG. 5 is a flowchart illustrating a shape control method according to the present invention including the steps described above. First, in step (a), the actual load of each stand for this rolling.

実測ロール間隙値等の実績データを入力し、ステップ(
ロ)で各スタンドの出側ゲージメータ板厚((4)式)
を算出するとともに最適化手法を用いた学習計算で出側
推定板厚を算出して、ロール間隙のオフセット量((5
)式)を求める。次いで、ステップ(ハ)、(ニ)で上
記ロール間隙オフセット量から各スタンドのロールの摩
耗や熱膨張を推定し、ロールクラウン量を算出する(第
3.4図参照)。最後に、ステップ(ホ)で、次回圧延
において圧延材の形状を制御すべく上記ロールクラウン
量等に基づいて圧延条件の設定を行なう。即ち、ロール
の摩耗や熱膨張によるワークロールのロールクラウンを
解消するようにロールベンダーまたはロールシフトを操
作したり、各スタンドのロールの摩耗や熱膨張を考慮し
て、周知の板クラウン比率一定則に基づいて各スタンド
の板厚配分をバランス良く修正する。 このようなタン
デム仕上圧延における形状制御方法によって、ロールの
摩耗や熱膨張の悪影響を完全に除去して、目標板厚や目
標板形状を有する圧延材を得ることができる。
Enter the actual data such as the measured roll gap value, and proceed to step (
(b) Output side gauge meter plate thickness of each stand (formula (4))
At the same time, the estimated outlet thickness is calculated by learning calculation using an optimization method, and the roll gap offset amount ((5
) formula). Next, in steps (c) and (d), the wear and thermal expansion of the rolls of each stand are estimated from the roll gap offset amount, and the roll crown amount is calculated (see Fig. 3.4). Finally, in step (E), rolling conditions are set based on the roll crown amount and the like in order to control the shape of the rolled material in the next rolling. In other words, the roll bender or roll shift is operated to eliminate the roll crown of the work roll due to roll wear and thermal expansion, and the well-known plate crown ratio constant rule is used to take into account the roll wear and thermal expansion of each stand. Based on this, the plate thickness distribution of each stand will be corrected in a well-balanced manner. By such a shape control method in tandem finish rolling, it is possible to completely eliminate the adverse effects of roll wear and thermal expansion and obtain a rolled material having a target thickness and shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例によるロール間隙オ
フセット量の変動を示す図、第3図は摩耗や熱膨張によ
るロール形状を示す図、第4図はオフセット量変動とロ
ールクラウン量の関係を示す図、第5図は本発明の一実
施例による形状制御方法のフローチャート、第6図、第
7図は従来例によるロール間隙オフセット量の変動を示
す図、第8図は従来の学習計算による実績荷重/計算荷
重比を示す図、第9図は本発明の最適化手法を用いた学
習計算による実績荷重/計算荷重比を示す図である。
Figures 1 and 2 are diagrams showing variations in the amount of roll gap offset according to an embodiment of the present invention, Figure 3 is a diagram showing the roll shape due to wear and thermal expansion, and Figure 4 is a diagram showing variations in the amount of offset and roll crown. 5 is a flowchart of a shape control method according to an embodiment of the present invention, FIGS. 6 and 7 are diagrams showing variations in roll gap offset amount according to a conventional example, and FIG. 8 is a diagram showing a conventional method. FIG. 9 is a diagram showing the actual load/calculated load ratio obtained by the learning calculation using the optimization method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)各スタンドの出側ゲージメータ板厚から過去の圧
延実績に基づいた最適化手法による学習計算によって、
初段より終段まで順次前段のスタンドにおける圧延荷重
の計算値と実績値の比と、次段のスタンドにおける圧延
荷重の計算値と実績値の比との差がより最小値となるよ
うな全スタンドにおける出側推定板厚を一連に求めての
ち、各スタンドの上記出側ゲージメータ板厚と真の板厚
とみなされる上記出側推定板厚との差をそのスタンドの
ロール間隙オフセット量とし、圧延回数の累加に伴う上
記ロール間隙オフセット量の変動からロールの熱膨張量
や摩耗量を推定し、これらの推定量に基づいて圧延材の
形状制御を行なうことを特徴とする仕上圧延における形
状制御方法。
(1) Through learning calculations using an optimization method based on past rolling results from the exit side gauge meter plate thickness of each stand,
From the first stage to the last stage, all stands are selected so that the difference between the ratio of the calculated value and actual value of the rolling load in the previous stage stand and the ratio of the calculated value and actual value of the rolling load in the next stage stand becomes the minimum value. After finding a series of estimated outlet plate thicknesses at , the difference between the outlet gauge meter plate thickness of each stand and the estimated outlet plate thickness, which is considered to be the true plate thickness, is taken as the roll gap offset amount for that stand, Shape control in finish rolling, characterized in that the amount of thermal expansion and wear of the rolls is estimated from the variation in the roll gap offset amount as the number of rolling cycles increases, and the shape of the rolled material is controlled based on these estimated amounts. Method.
JP60032378A 1985-02-19 1985-02-19 Shape-controlling method in finish rolling Pending JPS61189810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032378A JPS61189810A (en) 1985-02-19 1985-02-19 Shape-controlling method in finish rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032378A JPS61189810A (en) 1985-02-19 1985-02-19 Shape-controlling method in finish rolling

Publications (1)

Publication Number Publication Date
JPS61189810A true JPS61189810A (en) 1986-08-23

Family

ID=12357287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032378A Pending JPS61189810A (en) 1985-02-19 1985-02-19 Shape-controlling method in finish rolling

Country Status (1)

Country Link
JP (1) JPS61189810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010053712A (en) * 1999-12-01 2001-07-02 이구택 Method For Manufacturing Steel Plate
KR100437639B1 (en) * 1999-12-28 2004-06-26 주식회사 포스코 Mill modules compensation for roll diameter in plate mill
JP2008249031A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Variable damping force damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010053712A (en) * 1999-12-01 2001-07-02 이구택 Method For Manufacturing Steel Plate
KR100437639B1 (en) * 1999-12-28 2004-06-26 주식회사 포스코 Mill modules compensation for roll diameter in plate mill
JP2008249031A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Variable damping force damper

Similar Documents

Publication Publication Date Title
JPS58500556A (en) Control method for one rolling mill for strip material rolling
JPH11104721A (en) Plate crown/shape controlling method in hot rolling
JPS61189810A (en) Shape-controlling method in finish rolling
JPS6029563B2 (en) How to control the shape of the workpiece
JP3067879B2 (en) Shape control method in strip rolling
JP2000135506A (en) Method of rolling plate with reversible rolling mill
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JPS6224809A (en) Method for controlling sheet width in hot rolling
JP3821665B2 (en) Sheet crown prediction method and hot rolling method in hot rolling
JP2867885B2 (en) Roll gap setting method in rolling mill
JP2005111546A (en) Method for controlling plate thickness and crown
JP2001347308A (en) Method and device for setting pass schedule of rolling mill
JP3396774B2 (en) Shape control method
JPH07265927A (en) Method for correcting predictive model for plate crown
JPH08243614A (en) Reversing rolling method excellent in accuracy of shape and thickness
JP2000140920A (en) Method for controlling looperless rolling
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JP2661497B2 (en) Strip crown control device and strip crown control method during hot rolling
JP3664151B2 (en) Sheet width control method, cold rolled metal sheet manufacturing method, and cold rolling apparatus
JPH11104718A (en) Rolling method of reversible rolling mill
JP3908702B2 (en) Sheet width control method for continuous rolling mill
JPH05293516A (en) Method for estimating rolling load of rolling mill
JPH10263658A (en) Flatness control method of rolled stock in hot finishing mill
JPH01130806A (en) Method for control of work roll crown
JPS6390309A (en) Plane shape control method for sheet stock rolling mill