JPS6199269A - Manufacture of positive electrode for alkaline storage battery - Google Patents

Manufacture of positive electrode for alkaline storage battery

Info

Publication number
JPS6199269A
JPS6199269A JP59220066A JP22006684A JPS6199269A JP S6199269 A JPS6199269 A JP S6199269A JP 59220066 A JP59220066 A JP 59220066A JP 22006684 A JP22006684 A JP 22006684A JP S6199269 A JPS6199269 A JP S6199269A
Authority
JP
Japan
Prior art keywords
base plate
nickel
substrate
nickel salt
washed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220066A
Other languages
Japanese (ja)
Inventor
Kazuaki Ozaki
尾崎 和昭
Kensuke Nakatani
中谷 謙助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59220066A priority Critical patent/JPS6199269A/en
Publication of JPS6199269A publication Critical patent/JPS6199269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To effectually prevent the corrosion of porous nickel base plate by immersing the base plate in a wet oxidizer prior to imprenating the base plate with a nickel salt. CONSTITUTION:First, a porous nickel base plate is sufficiently washed with water and then immersed in a 31% H2O2 solution at ordinary temperature for one minute. Then, the base plate is washed with water to remove the residual H2O2 before the washed plate is dried. The thus treated base plate is then immersed in a nickel salt solution to impregnate the base plate with the nickel salt. Next, the impregnated base plate is dried and then immersed in an alkali bath to convert the nickel salt into nickel hydroxide. After that, the base plate is washed with water to clean it and then the cleaned base plate is dried. The above operations are repeated several times. Accordingly, it is possible to form a homogeneous oxidized film over the base plate.

Description

【発明の詳細な説明】 イ産業上の利用分野〉 この発明はアルカリ蓄電池用正性の製法に関し、詳しく
 iJ、1!iにニッケルーカドミウム蓄電池に1史用
される焼情式水らす化ニンケル正極の製法であって、ニ
ツ//’ル13含浸時におi−する多孔性ニッケル基板
の腐食を防]1づるためのT桿を付加した製法に関する
乙のである。
[Detailed Description of the Invention] A. Field of Industrial Use> This invention relates to a method for producing positive polarity for alkaline storage batteries. This is a method for manufacturing a sintering type water-washed nickel positive electrode used in nickel-cadmium storage batteries, which prevents corrosion of a porous nickel substrate during impregnation. This is about the manufacturing method with the addition of a T-bar.

〈従来の技Ki > ニッケル カドミウム蓄電池等のアルカリ蓄電池に用い
られる水酸化ニッ′1ル正恒の形式としてはペースト式
、ポケット式、焼結式等がプ、口られているが、活物質
゛である水酸化ニッケルの利用率が細形式のものに比べ
て高く、しかし侮仮の内部抵抗も小さいことから、最近
では焼結式のものが広く使用される角面にある。焼結式
水酸化ニッケルtE t=ffの製法としては佃々なも
のが実用化されている。例えば、まず、ニッケル多孔薄
板等の多孔性金屈吸に、カーボニルニッケル等の焼結用
金属f力木とカルボキシメチルセルロース等の粘結剤と
水とのスラリー状混合体を塗イEし、それを不活性また
は水素還元雰囲気中で焼結して多孔性ニッケル’J +
ff<をi′7る。次に、この多孔性ニッケル基板を硝
酸ニッケル水溶液等のニラゲル塩溶液中に入れて基板気
孔内にニッケル+aを含浸し、爾後、アルカリ浴中へ浸
漬してニッケル塩を水酸化ニッケルに中ム(ヒさせる製
法。あるいは、同作にして10だ多孔性ニツケル基板を
ニッケル」原石液中に入れてニツノ1ル塩の含浸処理を
行なうと共にニッケル塩溶液中あるいはアルカリ水溶液
中で電解還元して基板に酸化ニッケルを充填する製法な
どである。
<Conventional Techniques> Paste type, pocket type, sintered type, etc. are available as types of nickel hydroxide batteries used in alkaline storage batteries such as nickel cadmium storage batteries. Recently, the sintered type has become widely used because the utilization rate of certain nickel hydroxide is higher than that of the narrow type, but the internal resistance is also lower. An outstanding method for producing sintered nickel hydroxide tE t=ff has been put into practical use. For example, first, a slurry-like mixture of sintering metal strength wood such as carbonyl nickel, a binder such as carboxymethyl cellulose, and water is applied to a porous metal material such as a porous nickel thin plate, and then sintered in an inert or hydrogen-reducing atmosphere to form porous nickel 'J+
ff< i′7. Next, this porous nickel substrate is placed in a nila gel salt solution such as a nickel nitrate aqueous solution to impregnate the pores of the substrate with nickel+a, and then immersed in an alkaline bath to mix the nickel salt into nickel hydroxide ( Alternatively, using the same method, a porous nickel substrate is placed in a nickel solution and impregnated with nickel salt, and then electrolytically reduced in a nickel salt solution or alkaline aqueous solution to form a substrate. This method includes filling with nickel oxide.

ところで、上記のような製法には、多孔性ニッケル基(
aにニッケル塩を含浸する際に基板への腐食が伴う結果
、得られた正極を用いて電池を構成しlζζ会合は(〕
゛イイクル過放電時において正極が膨潤し、膨1司によ
り活物質の剥がれが起こるために電池放電容量が著しく
劣化してしまうという不都合、あるいは、基板の腐食に
よって正極活物質量の増加が起こって正極と負(へとの
容量平衡が破られるため、電池寿命の著しい低下を招く
という不都合があることが知られている。このような多
孔性ニッケル基板の腐食は、ニッケル塩溶液中の水素イ
オンによるニッケルアタックによって基板が浸食される
ことが原因であることがわかっており、このため。
By the way, the above manufacturing method requires a porous nickel base (
As a result of corrosion of the substrate when impregnating a with nickel salt, a battery was constructed using the obtained positive electrode, and the lζζ association was (]
ₛThe positive electrode swells during repeated overdischarge, and the swelling causes the active material to peel off, resulting in a significant deterioration of the battery discharge capacity, or the corrosion of the substrate causes an increase in the amount of positive electrode active material. It is known that this type of corrosion of porous nickel substrates is caused by hydrogen ions in the nickel salt solution. It is known that this is caused by erosion of the substrate due to nickel attack.

竹聞昭58−11264号に開示されているように含浸
処1!II!をメタノール溶液中で11なう方法を用い
たり、持間昭59J6659@のように多孔i生ニッケ
ル’L +Fjを空気中で加熱酸化してその表面、に耐
酸性の酸化膜を形成する工程を付加することで、上記不
都合に対処しているのが現状である。
Impregnation treatment 1 as disclosed in Takemonsho No. 58-11264! II! 11 in a methanol solution, or heat oxidize porous raw nickel 'L+Fj in air to form an acid-resistant oxide film on its surface as in Mochima Sho 59J6659@. At present, the above-mentioned inconvenience is addressed by adding

〈発明が解決しようとする問題点〉 しかしながら、メタノール溶液中で含浸処理をする方法
には次のような問題がある。即ち、メタノール溶液の比
重が低く41りすさ゛るど基板へのニッケル塩の含浸ω
が低下し、一方、比重が高くなりすぎると基板の腐食が
進み易くなることが確認されており、このため、含浸処
理中は溶液を所定の比単に保持する必要がある。しかし
ながら、メタノールの性質上低沸点であるが枚に蒸発性
が大きく、このため上記のように溶液の比重を一定に保
つことが難しく、工f2管理が煩雑且つ困難となる。一
方、基板を空気中で加熱酸化するものは、温度分布など
の影響によって基板表面を一様に酸化できないことから
、     )均一な酸化膜を形成することが困テ1と
なり、信頼性に欠【ノると共に上記方法と同様に工程管
理が勤しいという問題がある。7 (′問題点を1)7決するだめの手段)この発明のアル
カリ蓄電池用正(かの製法は、多孔11−ニッケル基板
へのニッケル塩の含浸処理に先立って基板を湿式の01
2化剤へ浸漬する工程を合んてなることを要旨とするも
のである。湿式の酸化剤としては過酸化水素(11ρ2
)、過マンガン酸カリウム(K\=1nO,)、クロ1
1酸カリウム(K2Or20.)などの乱1′iのう1
3から適宜なものを用いることができるが、酸化処理時
に生成づる不純物除去のための後処理工程が不要である
点などから、]品酸化水、1=:を用い!、:ものが最
)のてあΦ。
<Problems to be Solved by the Invention> However, the method of impregnating in a methanol solution has the following problems. In other words, the specific gravity of the methanol solution is low, and the impregnation of the nickel salt into the substrate is delayed.
On the other hand, it has been confirmed that if the specific gravity becomes too high, corrosion of the substrate tends to proceed. Therefore, it is necessary to maintain the solution at a predetermined ratio during the impregnation process. However, due to the nature of methanol, although it has a low boiling point, it is highly evaporative, and therefore it is difficult to maintain the specific gravity of the solution constant as described above, making the control of the process f2 complicated and difficult. On the other hand, with methods that oxidize the substrate by heating in the air, it is difficult to form a uniform oxide film (1) because the substrate surface cannot be uniformly oxidized due to the influence of temperature distribution, etc., and reliability is lacking. However, like the above method, there is a problem in that process control is difficult. 7 (Means for resolving problem 1) 7) The manufacturing method for the alkaline storage battery of the present invention is to wet-type the substrate with 01-100 nickel prior to impregnating the porous 11-nickel substrate with nickel salt.
The gist of the method is to include a step of immersing it in a diluting agent. As a wet oxidizing agent, hydrogen peroxide (11ρ2
), potassium permanganate (K\=1nO,), chlorine 1
Disturbances such as potassium monate (K2Or20.)
3 can be used as appropriate, but since there is no need for a post-treatment process to remove impurities generated during oxidation treatment, use oxidized water, 1=:! , : thing is the most) thea Φ.

作 用゛7 」記した19式の酸化剤は作宅環境湿1臭にajいて成
分が安定し′CJ′3つ、また、阜(反表面を均一に(
ン偵りるのて基板表面を一様に酸化できる。
The oxidizing agent of formula 19, which is described as ``7'', has a stable component in the humidity of the residential environment, 1 odor, 3 ``CJ'', and a uniform coating on the opposite surface (
The surface of the substrate can be uniformly oxidized by scanning the surface of the substrate.

このため、8易な工程管理で均一な酸化膜を形成′C−
き、基板の賭食をイ1効に防止でさる。
Therefore, a uniform oxide film can be formed with easy process control.
This effectively prevents gambling on the board.

〈実施例〉 公知の方法によって多孔性ニラ/フル基板を作り、この
W 、tffiを十分水洗いした後、31%H2O2溶
液への常温1分間浸漬を行なつl;。尚、H,02への
浸漬の前処理として水洗いをするのは、基板上の不純物
を除去して均一な酸化膜を’&IC実に形成させるため
である。ト1.02浸直後は基板を水洗いして残存する
l−1,02を洗い流し、乾、歴をiテなった。その後
、基板をニッケル塩溶液中にi2潰して基板内にニッケ
ル塩を含浸し、含没後は基板を乾燥し、乾燥1多に基板
をアルカリδ中へ侵イ責してニッケル塩を水酸化ニッケ
ルに転°1ヒし、その後は水洗いして基板を清?p化し
、水洗1狡は基板の乾燥を行なうという一連の操作を数
回光り返して焼結式水酸化ニラグル正面を作成した。
<Example> A porous chive/full substrate was prepared by a known method, and after thoroughly washing the W and TFFI with water, it was immersed in a 31% H2O2 solution at room temperature for 1 minute. The purpose of washing with water as a pretreatment before dipping in H,02 is to remove impurities on the substrate and form a uniform oxide film on the substrate. Immediately after dipping, the substrate was washed with water to wash away the remaining l-1,02, dried, and washed. After that, the substrate is crushed in a nickel salt solution to impregnate the inside of the substrate with nickel salt. After impregnation, the substrate is dried, and after drying, the substrate is immersed in an alkali δ solution to remove the nickel salt from nickel hydroxide. After that, wash the board with water to clean it. A sintered Nilaglu hydroxide front surface was created by repeating the series of operations several times, including washing with water, drying the substrate, and then drying the substrate.

モして、こうして1りだ正極を公知の負極と組合せて公
称容日1,2Ahのアルカリ蓄電池を作り、充tJ9.
電サイクルを行なっていった時の電池の放電容量の変化
(初期サイクル時を100%とした時の変化)を調べた
。尚、比較のため、H20エヘのa潰m理工程を行なわ
ない以外は上記と同じ方法によって1また焼結式水酸化
ニッケル正(かを用いて同様のアルカリ蓄電池を作り、
同じ方法によって放電容置の変化を調べた。これらの結
末(充放電サイクル特性)を誰何図面に示づ。
Thus, by combining the single positive electrode with a known negative electrode, an alkaline storage battery with a nominal capacity of 1.2 Ah per day was made, and the charging time was J9.
Changes in the discharge capacity of the battery as the battery was cycled (change when the initial cycle was taken as 100%) were investigated. For comparison, a similar alkaline storage battery was made using sintered nickel hydroxide (1) and sintered nickel hydroxide positive (1) by the same method as above, except that the crushing process of H20E was not performed.
The changes in the discharge chamber were investigated by the same method. These results (charge/discharge cycle characteristics) are shown in the drawing.

図中△はH2,02への浸漬を11なった正極を用いた
電池の、Bは浸漬を行なわない正極を用いた電池の1ノ
”イクル持性を、それぞれ示したものである。図面から
明らかなように、例えば300サイクル時においては、
ト1□oLへの浸漬を行なったAの放電容置が約93%
であるのに対し、浸漬をしないBは約83%であり、△
の方が1割強Bより勝っている。そして、本発明による
電池は充放電サイクルの経過に1゛トう容量劣化が小さ
く、容量の安定によってlf命が長くなることがわかる
In the figure, △ indicates the 1-cycle durability of a battery using a positive electrode that has been immersed in H2. As is clear, for example, at 300 cycles,
The discharge container A, which was immersed in 1□oL, was approximately 93%
In contrast, B without immersion is about 83%, △
is more than 10% better than B. It can also be seen that the battery according to the present invention suffers less capacity deterioration by 1% over the course of charging and discharging cycles, and has a longer lf life due to stable capacity.

7.(発明の効果) この発明のアルカリ蓄電池用正性の製法は、ニッケル塩
のa浸氾埋に先立って多孔性ニッケル尺板を湿式の酸化
剤へ浸漬する工程を含んでなるものであるから、上記し
たように容易な工程管理で均一な酸化膜を阜仮に形成で
き、ニッケル塩含浸処理1.+1のり仮の195食をイ
」−効に防ぐことができてザイクルh命が向上り゛ると
いう効果を秦する。
7. (Effects of the Invention) The method for producing a positive alkaline storage battery according to the present invention includes the step of immersing a porous nickel plate in a wet oxidizing agent prior to immersion in a nickel salt a. As mentioned above, a uniform oxide film can be formed temporarily with easy process control, and nickel salt impregnation treatment 1. It has the effect of being able to effectively prevent the temporary 195 meals of +1 and improving the cycle's life.

【図面の簡単な説明】[Brief explanation of drawings]

図面は充放電サイクル1h性を示したグラフである。 The drawing is a graph showing charge/discharge cycle characteristics for 1 hour.

Claims (1)

【特許請求の範囲】 1、ニッケル塩の含浸処理に先立って多孔性ニッケル基
板を湿式の酸化剤へ浸漬する工程を含んでなることとす
るアルカリ蓄電池用正極の製法。 2、該湿式の酸化剤が過酸化水素(H_2O_2)を用
いたものであることを特徴とする特許請求の範囲第1項
記載の製法。
[Claims] 1. A method for producing a positive electrode for an alkaline storage battery, which includes the step of immersing a porous nickel substrate in a wet oxidizing agent prior to impregnation treatment with a nickel salt. 2. The manufacturing method according to claim 1, wherein the wet oxidizing agent uses hydrogen peroxide (H_2O_2).
JP59220066A 1984-10-19 1984-10-19 Manufacture of positive electrode for alkaline storage battery Pending JPS6199269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220066A JPS6199269A (en) 1984-10-19 1984-10-19 Manufacture of positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220066A JPS6199269A (en) 1984-10-19 1984-10-19 Manufacture of positive electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS6199269A true JPS6199269A (en) 1986-05-17

Family

ID=16745403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220066A Pending JPS6199269A (en) 1984-10-19 1984-10-19 Manufacture of positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6199269A (en)

Similar Documents

Publication Publication Date Title
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JPS6199269A (en) Manufacture of positive electrode for alkaline storage battery
JPS5916269A (en) Manufacture of positive plate for alkaline battery
US4906539A (en) Sintered type negative cadmium electrode for an alkaline storage cell and method of manufacturing the same
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2564843B2 (en) Alkaline storage battery
JPH0259587B2 (en)
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPS6237874A (en) Manufacture of nickel hydroxide electrode of alkaline storage battery
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JPH0410181B2 (en)
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
JPH031442A (en) Paste form cadmium negative electrode for alkaline storage battery
JPH08203515A (en) Manufacture of nickel electrode
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPS63128555A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH0348617B2 (en)
JPH0320860B2 (en)
JPH0773048B2 (en) Method for manufacturing sintered cadmium cathode
JPH041992B2 (en)
JPS60216449A (en) Manufacture of paste type cadmium negative plate