JPS6196724A - Capacity coupling type plasma chemical vapor deposition device - Google Patents

Capacity coupling type plasma chemical vapor deposition device

Info

Publication number
JPS6196724A
JPS6196724A JP59217568A JP21756884A JPS6196724A JP S6196724 A JPS6196724 A JP S6196724A JP 59217568 A JP59217568 A JP 59217568A JP 21756884 A JP21756884 A JP 21756884A JP S6196724 A JPS6196724 A JP S6196724A
Authority
JP
Japan
Prior art keywords
electrodes
barrier member
plasma
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59217568A
Other languages
Japanese (ja)
Inventor
Yutaka Hayashi
豊 林
Satoshi Okazaki
智 岡崎
Mitsuyuki Yamanaka
光之 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59217568A priority Critical patent/JPS6196724A/en
Publication of JPS6196724A publication Critical patent/JPS6196724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To prevent the generation of various abnormal modes of plasma by a method wherein the plasma is confined in the expected vacant space. CONSTITUTION:An insulative barrier member 10 is provided surrounding a pair of electrodes 3 and 3. The height L (the length along the direction astriding both electrodes 3 and 3) of the barrier member 10 exceeds the distance H between the two electrodes, the inside diameter R of the barrier member 10 is larger than the electrode diameter W, and the two electrodes 3 and 3 are housed therein. Also, the gap (d) between the circumferential part of the two electrodes 3 and 3 and the corresponding inner face part of the barrier member 10 is provided to let out raw gas as shown by the arrow (fr) in the diagram, but the actual measurements can be set at an experimentally suitable value. The gap (d) is 50mm or less in general, but desirably, it is 20mm or less, and an aperture or a part to be used for evacuation of air is provided separately on the barrier member 10 and the electrode 3. However, in the case where the length L of the barrier member 10 is shorter than the distance H between the electrodes, it is better to have D=0 without having the gap.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、基板上に薄膜を成長させる場合に用いる容量
結合型のプラズマCVD (プラズマ・ケミカル・つ゛
エイパー・ディポジション)装置に関し、殊に、減圧チ
ャンバ内の一対の電極間で発生する原料ガスのプラズマ
を、予め定めた所定の空間領域内に閉じ込めるための曖
良に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a capacitively coupled plasma CVD (plasma chemical vapor deposition) apparatus used for growing a thin film on a substrate, and in particular to , relates to a mechanism for confining a source gas plasma generated between a pair of electrodes in a reduced pressure chamber within a predetermined spatial region.

〈従来の技術〉 プラズマCVD法にも幾つか種類があり、供給電源の如
何に即して大別すると、■直流法、■高周波法、■マイ
クロ波法、■電磁界双方を利用する方法の四つになる。
<Conventional technology> There are several types of plasma CVD methods, and they can be roughly classified according to the power supply: ■ Direct current method, ■ High frequency method, ■ Microwave method, and ■ Method using both electromagnetic fields. There will be four.

その中でも、基板上にアモルファス・シリコン(a−9
i)Mを堆積させる場合等には高周波法が最も有効とさ
れている。
Among them, amorphous silicon (a-9
i) The high frequency method is considered to be the most effective when depositing M.

しかしまた、この高周波法にも二通りあり、減圧チャン
バの周囲に配した高周波コイルを介して当該チャンバ内
の原料ガスに励起エネルギを与える誘導結合型の方法と
、減圧チャンバ内に対向して配された一対の平行平板電
極間に直接に高周波エネルギを印加する容量結合型の方
法とがある。
However, there are also two types of high-frequency methods: an inductively coupled method in which excitation energy is applied to the raw material gas in the chamber via high-frequency coils placed around the chamber, and There is a capacitive coupling method in which high frequency energy is applied directly between a pair of parallel plate electrodes.

が、現在の所、アモルファス・シリコン膜等の作成に関
しては、殆ど、後者の方法に即した容量結合型の装置が
用いられている。
However, at present, for the production of amorphous silicon films, etc., capacitively coupled devices conforming to the latter method are mostly used.

こうした容量結合型プラズマCVD装置の概略構成は、
第7図に示すようなものである。
The schematic configuration of such a capacitively coupled plasma CVD apparatus is as follows:
It is as shown in FIG.

適当なハウジングlにて画された減圧チャンバ2内には
、対向して一対の平行平板電極3,3が設けられており
、その一方の側から原料ガスが供給され、他方には目的
の薄膜を作成すべき基板7が保持される。
A pair of parallel plate electrodes 3, 3 are provided in a decompression chamber 2 defined by a suitable housing 1, and a raw material gas is supplied from one side of the electrodes, and a target thin film is supplied to the other side. The substrate 7 on which the image is to be produced is held.

そして一般に、原事ガス供給側の電極3はその周囲がシ
ールド板5により囲まれ、基板7の保持側の電極内には
薄膜作成時の基板温度を決定するヒータ4が組込まれる
In general, the electrode 3 on the gas supply side is surrounded by a shield plate 5, and the heater 4 for determining the substrate temperature during thin film formation is incorporated into the electrode on the holding side of the substrate 7.

原料ガスは減圧チャンバ内から適当な排気ボート9を介
して排気される0図中ではその流れを矢印frで模式的
に示している。
The raw material gas is exhausted from the decompression chamber through a suitable exhaust boat 9, and its flow is schematically indicated by an arrow fr in FIG.

原料ガスを減圧チャンバ2内においてプラズマ化するた
めのエネルギは1両電極3,3間にその両端を接続した
高周波電源6かも高周波電力として供給される。
Energy for converting the raw material gas into plasma in the decompression chamber 2 is also supplied as high-frequency power by a high-frequency power source 6 whose both ends are connected between the two electrodes 3, 3.

この高周波電源6のホット側が接続される方の電極3は
カソード、他方の接地側の電極3は77       
   ノードとも呼ばれ、またこうした装置自体、一対
の′:rL極の形状及びその相互の配置関係から、平行
平板型プラズマCVD装置とも呼ばれる。
The electrode 3 to which the hot side of this high frequency power source 6 is connected is the cathode, and the other electrode 3 on the ground side is 77
Also called a node, this device itself is also called a parallel plate plasma CVD device due to the shape of the pair of ′:rL poles and their mutual arrangement.

こうした基本構成に基いての装置的な細かな改良とか1
’lE源の印加力法等に関しては、これまでにも様々な
提案がなされてきたが、そのいづれにおいても、その基
本構成は変わることなく、この第7図示の構成に帰着す
る。
Minor improvements to the device based on this basic configuration 1
Various proposals have been made regarding the method of applying force to the '1E source, but in all of them, the basic configuration remains the same, resulting in the configuration shown in Figure 7.

〈発明が解決しようとする問題点) こうした従来例装置の最も大きな問題点は、成膜速度を
高めるために高周波型l116から大電力を供給する等
した場合、往々にして異常なプラズマ放電を起こし易い
ということである。これが起きると、作成された薄膜の
H買乃至電気的特性は確実に劣化し、場合によっては薄
膜の作成それ自体が不能となる。
(Problems to be Solved by the Invention) The biggest problem with these conventional devices is that when a large amount of power is supplied from the high-frequency type 116 to increase the deposition rate, abnormal plasma discharge often occurs. This means that it is easy. When this occurs, the electrical characteristics of the produced thin film will definitely deteriorate, and in some cases, the production of the thin film itself will become impossible.

第7図に示した従来のプラズマCVD装置において、プ
ラズマ放電が正常なモードで生起しているならば、それ
は一対の電極3,3間にあって、当該電極3の断面幅W
と両電極3.3間の距jllI(とで規定される円柱状
の空間領域内にのみ、留まるものとなる。換言すれば、
従来装置においても一応は、このWXHの断面積で定め
られる空間部分をして正常なプラズマ放電を生起させる
べき予定の空間領域と看做すことができる。
In the conventional plasma CVD apparatus shown in FIG.
It stays only within the cylindrical spatial region defined by and the distance between both electrodes 3.3.
Even in the conventional device, the space defined by the cross-sectional area of WXH can be regarded as the space region in which normal plasma discharge is to be generated.

しかし、電極3.3間に印加する高周波電力を増大して
いく等すると、上記したように異常プラズマ放電が生起
し易く、そうした場合、その発生モードは第8各図に示
されるように、御し難いものとなる。
However, if the high-frequency power applied between the electrodes 3 and 3 is increased, abnormal plasma discharge is likely to occur as described above, and in such a case, the generation mode will be controlled as shown in Figs. It becomes difficult.

第8UgJ(A)に示す異常モード例においては、上記
予定の円柱状空flit領域(WXU)から三角形状に
はみ出した斜線部分で示されるように、ハウジング壁面
に対しての寄生放電が起きている。
In the abnormal mode example shown in No. 8 UgJ (A), parasitic discharge is occurring against the housing wall surface, as shown by the hatched area protruding from the planned cylindrical empty flit area (WXU) in a triangular shape. .

また同図(B)では、−心は正規の予定空間領域内での
み、プラズマ放電が生起しているものの。
In addition, in the same figure (B), although the plasma discharge is occurring only within the regular planned space area in the - center.

斜線と縦線の重なりで示したように、局部的にプラズマ
発光種の濃度が他とは著しく異なる部分が生じており、
逆に同図(C)では、予定の空間領域内どころか、減圧
チャンバ2内の略ず全空間内でプラズマ放電が生起して
いる。
As shown by the overlapping diagonal lines and vertical lines, there are localized areas where the concentration of plasma emitting species is significantly different from other areas.
On the contrary, in FIG. 2C, plasma discharge is occurring not only within the planned spatial region but also within substantially the entire space within the decompression chamber 2.

しかるに、上記してきたような従来JA置を使用するに
際し、こうした異常プラズマ放電の発生を防ぎ1作成さ
れた薄膜の膜質を良好に保つには、供給する高周波電力
を成る程度低い値に制限して使用するという極めて消極
的な方法を採るしかない、異常プラズマ放電の発生確率
は供給電力が大きくなる程、高くなるからである。
However, when using the conventional JA equipment as described above, in order to prevent the occurrence of such abnormal plasma discharge and maintain good film quality of the thin film produced, the supplied high-frequency power must be limited to a reasonably low value. This is because the probability of occurrence of abnormal plasma discharge increases as the supplied power increases.

しかし一方、先にも少し述べたように、成膜速度は供給
電力を増す程、速くなるから、結局、こうした消極的な
手法は、成膜速度を犠牲にした上で成り立っているもの
と言わざるを得ない。
However, as mentioned earlier, the film formation speed increases as the power supply increases, so in the end, these passive methods are based on sacrificing the film formation speed. I have no choice but to.

実際にも例えば、太陽電池を作るための7モル、ファス
・シリコン膜作成等の場合には、従来、その成膜速度は
たかだか2〜3人/seeで既に限界とされていた。こ
れは例えば、5000λ程度の膜厚のアモルファス・シ
リコン膜を得るには30分程度を要するということであ
る。こうした時間は未だ十分に満足の行く程、短い時間
ではない。
In fact, for example, in the case of forming a 7 mol, FAS silicon film for making a solar cell, the film forming rate has conventionally been considered to be at most 2 to 3 people/see, which is already the limit. This means, for example, that it takes about 30 minutes to obtain an amorphous silicon film with a thickness of about 5000λ. This amount of time is still not short enough to give us full satisfaction.

本発明はこうした実情に鑑みて成されたもので、第8各
図に示したような各種異常モードを伴うことなく、予定
の空間領域内にプラズマを閉じ込め、正常なプラズマ放
電を維持するようにし。
The present invention has been made in view of these circumstances, and is designed to confine plasma within a predetermined spatial region and maintain normal plasma discharge without causing various abnormal modes as shown in each figure 8. .

その結果、成膜速度を高めるためにも不都合なく供給高
周波電力を増大することのできる容量結合型プラズマC
VD装置を提供せんとするものである。
As a result, the capacitively coupled plasma C can increase the supplied high-frequency power without any inconvenience in order to increase the deposition rate.
The aim is to provide a VD device.

勿論、成膜精度を高めたがために膜質の劣化を伴っては
意味がない、従って上記目的はまた、少なくとも膜質の
劣化を伴うことなく、成膜速度を高め得る装置を提供す
ること、と言い換えることもできる。
Of course, there is no point in increasing the film deposition accuracy if the film quality deteriorates, so the above objective is also to provide an apparatus that can increase the film deposition rate without at least deteriorating the film quality. You can also paraphrase it.

く問題点を解決するための手段) 上記した目的を達成するため、本発明においては、 減圧チャンバ内に対向配置した一対の電極間に原料ガス
を導入し、該一対の電極間に印加する高周波電力により
原料ガスをプラズマ化し、該プラズマ雰囲気中に置いた
基板上に薄膜を堆積させる容量結合型プラズマCVD装
置であって、上記一対の電極間に跨る空間領域内におい
て、上記プラズマを発生させるべき予定空間領域を囲み
、該予定空間領域内に上記プラズマを閉じ込める絶縁物
性の障壁部材を設けたことを特徴とする容量結合型プラ
ズマCVD装置を提供する。
In order to achieve the above-mentioned object, in the present invention, a raw material gas is introduced between a pair of electrodes arranged oppositely in a decompression chamber, and a high frequency wave is applied between the pair of electrodes. A capacitively coupled plasma CVD apparatus that converts source gas into plasma using electric power and deposits a thin film on a substrate placed in the plasma atmosphere, wherein the plasma is generated in a spatial region spanning between the pair of electrodes. A capacitively coupled plasma CVD apparatus is provided, characterized in that an insulating barrier member is provided that surrounds a predetermined spatial region and confines the plasma within the predetermined spatial region.

〈作 用〉 冒頭に述べたこの種既存の容量結合型プラズマCVD装
置の基本的な装置構成に対し、上記のように本発明によ
り新たに絶縁物性障壁部材を導入すると、一対の電極間
に発生するプラズマは当該障壁部材の内部空間内に意図
的に閉じ込められ。
<Function> When an insulating material barrier member is newly introduced according to the present invention as described above to the basic equipment configuration of the existing capacitively coupled plasma CVD equipment of this kind described at the beginning, the problem that occurs between a pair of electrodes The resulting plasma is intentionally confined within the interior space of the barrier member.

従って平面的に見て電極端縁を大きくはみ出すような異
常プラズマ・モードの発生確率は十分に低く抑え込むこ
とができる。
Therefore, the probability of occurrence of an abnormal plasma mode that largely extends beyond the edge of the electrode in plan view can be suppressed to a sufficiently low level.

また従来は、既述したように、一対の電極面積で規定さ
れるWXHの断面空間領域を大体にしてプラズマの予定
発生領域とするという程度の概念しか持てなかったのに
対し、本発明によれば、プラズマを発生させるべき予定
空間領域を障壁部材の内部空間の大きさに合せて意図的
に画することができ、従って1作成する薄膜の種類や各
種作成パラメータに応じ、その時々に最適なプラズマ発
生領域の空間寸法を予め設計的に選択したりもすること
ができる。
Furthermore, as previously mentioned, in the past, it was only possible to have the concept that the WXH cross-sectional spatial region defined by the area of a pair of electrodes was roughly the expected plasma generation region, but with the present invention, For example, the planned spatial region in which plasma is to be generated can be intentionally defined to match the size of the internal space of the barrier member. The spatial dimensions of the plasma generation region can also be selected in advance in terms of design.

いづれにしても、絶縁物性の障壁部材により意図した予
定の空間領域内にプラズマを閉じ込め、異常プラズマ・
モードの発生を防いだ結果は、成膜速度の高速化を図る
ための大電力の印加を許容できる装置の提供を生み、現
に、下記の実施例にて証明されるように、こうした本発
明装置では、膜質の劣化を伴わず、場合によっては向上
すらしながら、極めて高い成膜速度が得られるものとな
る0例えば既述のように、従来例装置では30分程度も
要していた5000人のアモルファス・シリコン膜も1
本発明を適用すれば、膜質の劣化を伴わず、寧ろ向上し
ながら、僅か1分以内で作成し得るようになる。
In any case, an insulating barrier member confines the plasma within the intended spatial region, preventing abnormal plasma and
As a result of preventing the mode from occurring, it has become possible to provide an apparatus that can tolerate the application of large amounts of power in order to increase the film formation speed. In this case, an extremely high film formation rate can be obtained without deterioration of the film quality, and in some cases even improvement.For example, as mentioned above, the conventional equipment required about 30 minutes to process 5,000 people. The amorphous silicon film of 1
By applying the present invention, it becomes possible to create the film in just one minute or less without deteriorating the film quality, but rather improving it.

く実  施  例〉 第1図には本発明の容量結合型プラズマCVD装置の基
本的実施例の概略構成が示されている。
Embodiments FIG. 1 shows a schematic configuration of a basic embodiment of a capacitively coupled plasma CVD apparatus of the present invention.

第7図中と対応する符号は対応する同一乃至同様の構成
子を示し、またこうした構成子は原則として従来例通り
で良いので、先の説明を援用し、本積での説明を省略す
るものもある。    一本実施例において本発明の特
徴が、現れた構成子は、一対の電極3,3の周りを囲む
絶縁物性障壁部材lOである。
Symbols corresponding to those in FIG. 7 indicate corresponding identical or similar constructors, and since these constructors can, in principle, be used as in the conventional example, the previous explanation will be used and the explanation in this article will be omitted. There is also. In this embodiment, the feature of the present invention is manifested in the insulating material barrier member lO surrounding the pair of electrodes 3, 3.

一般に両電極3.3は第1図(B)に示されるように円
形であることが多いので、この実施例でもひとまず、そ
のようなものを想定しており、、そのため、障壁部材1
0にも、その横断面が環状をなした全体として中空筒状
のものを使用している。
In general, both electrodes 3.3 are often circular as shown in FIG.
0 also uses a hollow cylinder with an annular cross section.

従ってまた、先に第7図及び第8図に即して述べた電極
3の断面幅Wは当該電極径ともなり、第1図(A)の断
面図における障壁部材IOの内部空間幅Rは当該障壁部
材lOの内径と読んで良い。
Therefore, the cross-sectional width W of the electrode 3 previously described with reference to FIGS. 7 and 8 also becomes the electrode diameter, and the internal space width R of the barrier member IO in the cross-sectional view of FIG. 1(A) is It may be read as the inner diameter of the barrier member IO.

障壁部材lOの具体的な材質は、本発明における当該障
壁部材1Gの本質的な機能であるプラズマの閉じ込め機
能を満たす上からは絶縁物でありさえすれば良く、特に
限定されるものではない。
The specific material of the barrier member 1O is not particularly limited as long as it is an insulator that satisfies the plasma confinement function, which is the essential function of the barrier member 1G in the present invention.

しかし、長い間に亘って交換の要なく、安定に使用する
ことを考えると、プラズマ状態下では正負イオン種や中
性ラジカル種、電子が存在して非常に活性が高いため1
石英管、パイレックス管、アルミナ管等、耐プラズマ性
を有する材質が好ましい。
However, considering that it can be used stably over a long period of time without the need for exchange, it is necessary to use 1
A material having plasma resistance, such as a quartz tube, a Pyrex tube, or an alumina tube, is preferable.

また、作成されるべき薄膜がアモルファス・シリコンの
ように、主として電子材料として使用されるものの場合
には、不純物の混入に関しても特に神経質にならねばな
らないが、上記のような材質であればこの点に就いても
満足が行く。
Furthermore, if the thin film to be created is made of amorphous silicon, which is mainly used as an electronic material, one must be particularly careful about contamination with impurities; I am satisfied even if I get a job.

この第1図示の実施例では、障壁部材10の高さC両電
極3.3に跨る方向に沿う長さ)Lは、当該両電極間距
離Hを越え、従って障壁部材10の内径Rが電極径Wよ
り大きくなっていて、内部に両電極3.3を共に収め込
むようになっている。
In the first illustrated embodiment, the height C (length in the direction spanning both electrodes 3.3) of the barrier member 10 exceeds the distance H between the two electrodes, and therefore the inner diameter R of the barrier member 10 is greater than the distance H between the two electrodes. It is larger than the diameter W, and both electrodes 3.3 are housed inside.

また、両電極3,3の周縁部と障壁部材10の対応する
内面部との隙間dは、矢印frで示すように、原料ガス
の抜けを必要とするため設けられているのであるが、実
際の寸法は実験的に適当な値弁         に定
めて良い、一般には、後述の実験例からも顕かなように
、50■■以下、更に好ましくは20mm以下にし、排
気のための開口乃至ボートをpa壁部材10または電極
3の部分に別個に設けるか、電極間距離Hよりも障壁部
材10の長さLを短くした場合(いづれも後述)には、
隙間を採らず、d=oとした方が良い。
Furthermore, the gap d between the peripheral edges of both electrodes 3 and the corresponding inner surface of the barrier member 10 is provided because it is necessary for raw material gas to escape, as shown by the arrow fr, but in reality The dimensions of the vessel may be determined experimentally to an appropriate value; in general, as will be apparent from the experimental examples described below, the dimensions should be 50 mm or less, more preferably 20 mm or less, and the opening for exhaust or the boat should be paved. If it is provided separately on the wall member 10 or the electrode 3, or if the length L of the barrier member 10 is made shorter than the inter-electrode distance H (both will be described later),
It is better to set d=o without taking a gap.

以下、こうした本発明装置を用いてアモルファス・シリ
コン膜を作成した実験例を三例程、挙げて考察する。
Below, three experimental examples in which amorphous silicon films were created using the apparatus of the present invention will be listed and discussed.

実験例(1)から実験例CIII)までの各実験例に関
し、夫々の実験結果は本実施例の項の末尾に第1表〜第
3表としてまとめである。
Regarding each of the experimental examples from Experimental Example (1) to Experimental Example CIII), the respective experimental results are summarized in Tables 1 to 3 at the end of this Example section.

また、各実験例において、本発明を適用した場合と、そ
うでな〈従来例のままの場合との比較を採る意味から、
実験番号が奇数のものは第7図に示したような従来の装
置構成によった場合とし。
In addition, in each experimental example, in order to compare the case where the present invention is applied and the case where the conventional example is unchanged,
Experiments with odd numbers were conducted using the conventional apparatus configuration as shown in FIG.

偶数のものを第1図に示したような本発明の装置構成を
採用した場合としである。
The case where the apparatus configuration of the present invention as shown in FIG. 1 is adopted is for an even number.

そして、いづれの実験例においても、実験番号奇数のも
ののために使用する第7図示の従来装置としては、直径
W = 200■腸、電極間隔H==20x重の平行平
板円形電極対を有する日型アネルバ製の型番PED−3
01なる容量結合型プラズマCVD装置を用い、一方、
実験番号偶数のもののために使用した本発明装置例とし
ては、この市販装置に対し、各実験例において適当なる
障壁部材10を組込んだ装置を用いた。
In any of the experimental examples, the conventional device shown in Figure 7 used for odd-numbered experiments has a parallel plate circular electrode pair with a diameter W = 200mm and an electrode spacing H = 20x. Model number PED-3 made by model ANELVA
Using a capacitively coupled plasma CVD apparatus named 01, on the other hand,
As an example of the apparatus of the present invention used for the even-numbered experiments, an apparatus was used in which an appropriate barrier member 10 was incorporated in each experiment with respect to this commercially available apparatus.

□ 実験例(I) □ この実験例CI)は、その実験結果が本積末尾に挙げら
れた第1表に対応するが、実験番号tlからI4までは
基板温度を300℃、15から尋8までは基板温度を 
350℃とした。
□ Experimental Example (I) □ This Experimental Example CI) corresponds to Table 1 whose experimental results are listed at the end of this article, but for experiment numbers tl to I4, the substrate temperature was set at 300°C and from 15 to 8 Keep the board temperature up to
The temperature was 350°C.

いづれの偶数実験番号における実験でも、未発明に関す
る絶縁物性の障壁部材10としては、長さL = 50
mm、内径R= 220mm、従って電極周縁部との■ (スタンダードcc per m1nute)とし、減
圧チャ?バ内の圧力が概ね1.000sTorrから約
2.OOOmTorrとなるようにメイン・バルブを調
整した上で、 240Wから260Wに及ぶ高周波電力
を投入してa−9i :H115jの作成を試みた。
In any experiment with an even number of experiments, the length L = 50 for the uninvented insulating barrier member 10.
mm, inner diameter R = 220 mm, therefore, with the electrode peripheral part (standard cc per m1nute), reduce pressure cha? The pressure inside the bar is approximately 1.000 sTorr to approximately 2.00 sTorr. After adjusting the main valve to obtain OOOmTorr, I tried to create a-9i:H115j by applying high frequency power ranging from 240W to 260W.

成膜時間は3分であり、換算した水素濃度は各実験番号
毎に第1表中に記載の通りである。
The film-forming time was 3 minutes, and the converted hydrogen concentration was as listed in Table 1 for each experiment number.

ところが、従来の装置構成によった奇数実験番号m1.
s3.@5.暑?の実験では、当該第1表に示すように
、高周波電力を印加するに際し、反射波が進行波より大
きくなり過ぎ、実質的に上記オーダの高周波電力は印加
することができず、a−5i:H1t5jの作成は実買
上、ことごとく不能であった。
However, with the conventional apparatus configuration, odd number experiment number m1.
s3. @5. Heat? In the experiment, as shown in Table 1, when applying high frequency power, the reflected wave became too large than the traveling wave, and high frequency power of the above order could not be applied, and a-5i: Creating H1t5j was completely impossible in actual purchase.

対するに、偶数実験番号−2〜参Bによる本発明装置構
成によったものの場合は、反射波は殆ど生じず、a−5
i:)![を所期通り作成できただけでなく、その成膜
速度は、実に、最高93.5λ/secにも及んだ。
On the other hand, in the case of even-numbered experiments number-2 to part-B using the device configuration of the present invention, almost no reflected waves were generated, and a-5
i:)! Not only was it possible to form [[] as expected, but the film formation rate reached a maximum of 93.5λ/sec.

この値は、冒頭に述べた従来における常識的な成膜速度
2〜3λ/secに比すと、何と30倍から40倍以上
にも及ぶ驚異的な値である。
This value is an astonishing value, which is 30 to 40 times or more compared to the conventional common-sense film formation rate of 2 to 3 λ/sec mentioned at the beginning.

この実験例(I)は、従って、比較的多量の原料ガスを
減圧チャンバ2内に流し、しかもチャンバ内圧を1,0
OOsTorr −2,000sTorr程度にした場
合、従来411成ではプラズマCVDを行なうための高
周波電力を掛けられなかったものが、本発明を適用する
と、同条件下で当該プラズマCVDを可能とし得るだけ
でなく、その成膜速度も極めて大きくできることを示す
ものとなった。
Therefore, in this experimental example (I), a relatively large amount of raw material gas is caused to flow into the decompression chamber 2, and the chamber internal pressure is reduced to 1.0.
When setting the OOsTorr to about -2,000sTorr, it was not possible to apply high frequency power to perform plasma CVD in the conventional 411 formation, but by applying the present invention, it is not only possible to perform the plasma CVD under the same conditions. This shows that the film formation rate can be extremely high.

これは、障壁部材10の内側という限定された狭い空間
領域内にのみ、プラズマのエネルギを集中して掛けるこ
とができ、たため、反射波の少ない条件下で安定なプラ
ズマを得ることができたことの結果と考えられる。
This means that plasma energy can be concentrated and applied only within a limited narrow spatial area inside the barrier member 10, and therefore stable plasma can be obtained under conditions with few reflected waves. This is thought to be the result of

尚、第1表中、 Eg aptは1作成されたa−Si
:Hlllの光学的バンド・ギャップであり、σphは
光導電率、σdは暗導電率である。この実験例CI)で
得られた本発明によるa−5i :H@のこれら電気的
特性は、後述の他の実験例からも−分かるように、成膜
速度の遅い従来例に比しても決して悪い値ではない。
In addition, in Table 1, Eg apt is 1 created a-Si
: Hllll optical band gap, σph is photoconductivity, and σd is dark conductivity. As can be seen from other experimental examples described later, these electrical properties of a-5i :H@ according to the present invention obtained in this experimental example CI) are even better than those of the conventional example, which has a slow film formation rate. Not a bad value at all.

寧ろ、実験例@8に見られるように、83.5人/se
eにも及ぶ驚異的な高速成膜速度を実現した場合ですら
、その光導電率σphは?、5X 1G′5Q / c
腸程度も得ることができ、これは従来例に比しても相当
に優れた値である。
Rather, as seen in Experimental Example @8, 83.5 people/se
What is the photoconductivity σph even if we achieve an astonishingly high deposition rate of e. , 5X 1G'5Q/c
It is also possible to obtain a value similar to that of the intestine, which is a considerably superior value compared to conventional examples.

こうした点を更に押し延べて考えると、従来は、この実
験例(1)におけるように、比較的多量の原料ガスを流
した場合、生成された膜の電気的特性は劣化する傾向に
あるとされていたのに対し、本発明におけるようにプラ
ズマの閉じ込めに成功した場合には必ずしもそうとは言
えず、逆に好ましいことに、プラズマを所定領域内に閉
じ込めた結果、印加高周波電力を効率良く利用できるよ
うになり、そのため原料ガスの分解も促進されることに
なって、できた膜の電気的特性も改善されるようになる
と言うこともできる。
Taking this point further, it has been conventionally thought that when a relatively large amount of raw material gas is flowed, as in this experimental example (1), the electrical characteristics of the produced film tend to deteriorate. On the other hand, this is not necessarily the case when the plasma is successfully confined as in the present invention; on the contrary, it is preferable that as a result of confining the plasma within a predetermined area, the applied high-frequency power can be used efficiently. Therefore, it can be said that the decomposition of the raw material gas is promoted, and the electrical characteristics of the resulting film are also improved.

□ 実験例(■) □ この実験例(n)は1本項末尾の第2表に対応するが、
基板温度は全ての実験番号@3〜@14において一律に
300℃とした。
□ Experimental example (■) □ This experimental example (n) corresponds to Table 2 at the end of this section, but
The substrate temperature was uniformly set to 300°C in all experiment numbers @3 to @14.

また1本発明に関する絶縁物性の障壁部材lOとしては
、いづれの偶数実験番号における実験でも、長さL=5
0會識、内径R= 240mm、従って電極周縁部との
隙間d = 20m5となるパイレックス管を用いた。
In addition, the insulating barrier member lO according to the present invention has a length L=5 in any experiment with an even number of experiments.
A Pyrex tube with an inner diameter R of 240 mm and a gap d with the electrode peripheral portion of 20 m5 was used.

流した原料ガスは5izHsで、その流量は5oscc
x(スタンダードcc per m1nuts)とし、
減圧チャンバ内の圧力はメイン・バルブを全開にしてか
なり低くし、概ね300mTorrから400mTor
rの範囲内に設定した。
The raw material gas flowed was 5izHs, and the flow rate was 5oscc.
x (standard cc per m1nuts),
The pressure inside the vacuum chamber is kept quite low by fully opening the main valve, approximately 300mTorr to 400mTorr.
It was set within the range of r.

印加した高周波電力は、19.110の実験では80w
The applied high frequency power was 80W in the experiment of 19.110.
.

111、@12(7)実験テ1t120W、 ソLテ1
13,114+7)実験では181)Wで、成膜時間は
4分とした。
111, @12 (7) Experimental Te1t120W, SoL Te1
13,114+7) In the experiment, 181)W was used and the film forming time was 4 minutes.

この実験結果から分かることは、従来例の装置構成でも
、成る程度の電力値までは印加電力を増強する程、成膜
速度が上がって行くが、 Illにおける120w印加
時と113のtsow印加時の比較から分かるように、
成る電力値を越えると急激に成膜速度が低下するという
ことである。
What can be seen from this experimental result is that even with the conventional device configuration, the film formation rate increases as the applied power is increased up to a certain power value, but As can be seen from the comparison,
This means that when the power value exceeds this value, the film formation rate rapidly decreases.

換言すれば、従来構成のままでは異常プラズマ放電を生
起せずにプラズマCVDを行なえる電力(11の上限は
それ程高くはなく、この上限値を越えると急激に諸特性
も低下するということである。
In other words, the upper limit of the power (11) that can perform plasma CVD without causing abnormal plasma discharge with the conventional configuration is not so high, and if this upper limit is exceeded, various characteristics will deteriorate rapidly. .

実際上、この実験例(II )の奇数番号実験のように
、原料ガスの流量が比較的多い割にはチャンバ内の圧力
が低い条件下では、従来装置構成においては、高エネル
ギのプラズマ柱が両電極の間だけでは持ちこたえられな
くなり、第8図(^)に示すような異常モード、即ちチ
ャンバ内壁面への寄生放電が発生して腰くだけになった
ような現象が生じ易いと言われていたが、この実験例は
まさしくそれを証明したものとなっている。
In fact, under conditions where the pressure inside the chamber is low despite the relatively large flow rate of the source gas, as in the odd-numbered experiments in Experimental Example (II), the high-energy plasma column is It is said that the space between the two electrodes alone cannot hold up, and an abnormal mode as shown in Figure 8 (^), that is, a phenomenon in which a parasitic discharge occurs on the inner wall of the chamber and the chamber becomes unstable, is likely to occur. However, this experimental example proves exactly that.

一方で、本発明の構成を採用した装置では、電力が増し
、成膜速度が従来の限界を越えて上がる程、諸特性も良
好になるという極めて望ましい結果になっている。
On the other hand, in the apparatus employing the configuration of the present invention, as the power increases and the film formation rate increases beyond the conventional limit, the various properties become better, which is an extremely desirable result.

・14の実験例では成膜速度は?OA /secを越え
、しかも電気的特性も向上している。これは上記従来例
に関する考察からすれば、先に実験例(I)に即して述
べたと同様に、本発明構成によってプラズマを予定の空
間領域内に閉じ込めることができ、供給電力を有効に使
えるようになったがための効果と考えざるを得ない。
・What is the deposition rate in experiment example 14? It exceeds OA/sec and has improved electrical characteristics. Considering the above-mentioned conventional example, this is because the configuration of the present invention allows the plasma to be confined within a predetermined spatial region, and the supplied power can be used effectively, as described above in connection with Experimental Example (I). I have no choice but to think that this is due to the fact that it has become like this.

こうした事実はまた、補強的に第2図に示す膜厚分布曲
線上での比較からも納得できる。
This fact can also be confirmed from the comparison on the film thickness distribution curve shown in FIG. 2 for reinforcement.

パイレックス管を用いなかった従来装置では、実験番号
歯13においてnovの高周波電力を掛けた時、それま
でのIll、19の各実験例の場合と異なり、電極中心
に近い程、成膜速度が大きく低下している。これは、本
来ならば、低下するにしても逆の結果になっていなけれ
ばならない。
With the conventional device that did not use a Pyrex tube, when a high frequency power of nov was applied in experiment number 13, unlike in the previous experimental examples Ill and 19, the closer to the center of the electrode, the faster the film formation rate was. It is declining. Originally, this should have been the opposite result, even if it were to decline.

従って、この状態では、電極中心部に近くなる程、プラ
ズマのエネルギが低下しており、第8図(^)に示した
モードでの異常プラズマ放電が生起していると考えられ
る。
Therefore, in this state, the energy of the plasma decreases as it gets closer to the center of the electrode, and it is considered that an abnormal plasma discharge occurs in the mode shown in FIG. 8(^).

対して本発明構成による装置の場合は、実験番号114
による+SOW印加時でも、電極の中心部に近い程、成
膜速度が高いという、正常なプラズマ放電時に生ずる現
象がそのまま生起している。即ち正常なプラズマ放電が
保証されていることが分かる。
On the other hand, in the case of the device according to the present invention, experiment number 114
Even when +SOW is applied, the phenomenon that occurs during normal plasma discharge, in which the film formation rate is higher closer to the center of the electrode, still occurs. That is, it can be seen that normal plasma discharge is guaranteed.

枠           □ 実験例(m) □この実
験例(m)は、本積末尾の第3表に対応するが、基板温
度は全ての実験番号@15〜120において一律に30
0℃とした。
Frame □ Experimental example (m) □This experimental example (m) corresponds to Table 3 at the end of this article, but the substrate temperature was uniformly set to 30°C for all experiment numbers @15 to 120.
The temperature was 0°C.

また、本発明に関する絶縁物性の障壁部材10としては
、いづれの偶数実験番号における実験でも、長さL =
 50s+■、内径R= 220腸層、従って電極周縁
部との隙間d = 10+wmとなる石英管を用いた。
Furthermore, the insulating barrier member 10 according to the present invention has a length L =
A quartz tube with an inner diameter R of 220 intestinal layers and a gap d with the electrode periphery d = 10+wm was used.

1ニー 流した原料ガスはSi)+4で、その流量は少なji−
卯μ5ccx (スタンダードec per m1nu
te)とし、−圧チャンバ内の圧力は概ね1,00(1
++Tarrにした。−一印加した高周波電力は、実験
番号・15,816の実験テlOW、 81?、118
)実験では20111.ソしテ8111,120の実験
では40wとし、成膜時間は15分とした。
The raw material gas flowed for 1 knee is Si)+4, and the flow rate is small ji-
Rabbitμ5ccx (standard ec per m1nu
te), and the pressure in the -pressure chamber is approximately 1,00 (1
I set it to ++Tarr. -The applied high frequency power is the experiment number 15,816, 81? , 118
) 20111 in the experiment. In the experiments using Soshite 8111 and 120, the power was 40 W and the film forming time was 15 minutes.

また膜厚分布という観点からその結果を第3図に示した
Further, the results from the viewpoint of film thickness distribution are shown in FIG.

石英管を用いない従来装置では、印加高周波電力が40
wとなった所で、特に中心から5cmの位置における膜
厚分布が周方同各位置で大きく変動していることが分か
る。これは第8図(B)に示したように、局部的にプラ
ズマ発光種の濃度が著しく異なる異常プラズマ放電モー
ドが生起した結果と考えられる。
In a conventional device that does not use a quartz tube, the applied high-frequency power is 40
At the point w, it can be seen that the film thickness distribution, especially at a position 5 cm from the center, varies greatly at each position in the circumference. This is considered to be the result of the occurrence of an abnormal plasma discharge mode in which the concentration of plasma emitting species locally differs significantly, as shown in FIG. 8(B).

これに対して、本発明装置を用いた場合には。On the other hand, when the device of the present invention is used.

このような膜厚分布の大きな不均一性も伴うことなく、
印加高周波電力を101.20w、40M、というよう
に増大する程、dt膜速度が向上する素直な結果が得ら
れている。これは結局、本発明により1石英管内部の予
定空間領域内にプラズマを閉じ込めることができ、異常
プラズマ放電を防ぎ得たことを示している。勿論、従来
例に比し、電気的特性に関しても問題ない。
Without this large non-uniformity of film thickness distribution,
A straightforward result was obtained in which the dt film speed improved as the applied high frequency power increased to 101.20 W and 40 M. This shows that the present invention was able to confine plasma within a predetermined spatial region inside the quartz tube and prevent abnormal plasma discharge. Of course, compared to the conventional example, there are no problems with regard to electrical characteristics.

以上、各実験例に就き詳記したが1本発明装置により作
成される膜は、こうした実験例におけるアモルファス・
シリコン膜に限定されるものではない0本発明のプラズ
マ閉じ込めという原理から顕かなように、従来の容量結
合型プラズマCVD装置を用いて作成していたもの、乃
至作成できる筈のものならば、なべて本発明の改良によ
る恩恵を受けることができる。
Each experimental example has been described in detail above, but the film produced by the apparatus of the present invention is amorphous in these experimental examples.
It is not limited to silicon films.As is clear from the principle of plasma confinement of the present invention, any material that has been or should be able to be created using a conventional capacitively coupled plasma CVD device can be used. can benefit from the improvements of the present invention.

更に、絶縁物性障壁部材10の径や長さ、縦横各所面形
状、及び両電極との位置的関係等も、予定空間領域の大
きさをどの程度にするとか、組込む装置の電極形状や寸
法如何等々、各種の要因に応じて任意設計的に変更して
差支えない。
Furthermore, the diameter and length of the insulating material barrier member 10, the vertical and horizontal surface shapes, and the positional relationship with both electrodes are determined by the size of the planned spatial area, the electrode shape and dimensions of the device to be incorporated, etc. etc., may be arbitrarily changed depending on various factors.

第4図から第6図まではそうした改変例の幾つかを簡単
に示している。
Figures 4 through 6 briefly illustrate some of these modifications.

第4図(A)から(C)までは、長さLが異なるために
、電極3.3の一方或いは双方の周縁部との間で形成さ
れる隙間dが寸法や向きを変えた場合を示している。
Figures 4 (A) to (C) show the case where the dimension and direction of the gap d formed between the peripheral edge of one or both of the electrodes 3.3 is changed because the length L is different. It shows.

第4図(D)、(E)は障壁部材10が一方の電極の周
縁部に直接に接しており、従って他方の電極との間での
み、原料ガス流t「の抜は穴を形成している場合を示し
ている。
In FIGS. 4(D) and (E), the barrier member 10 is in direct contact with the peripheral edge of one of the electrodes, and therefore a hole is formed for the raw material gas flow t' only between it and the other electrode. Indicates when

第4図(、F)に示した場合は、最早、これまで述べて
きた横方向に寸法の採ることのできる隙間dという概念
は消え、障壁部材lO中の周方向全周に亘る、或いは周
方向一部に形成されたポートPが形成されたものとなっ
ている。これは障壁部材10を上下二つのものから構成
し、その一つづつを両電極3.3の一方宛に固定した結
果と見ることもできる。
In the case shown in FIG. 4 (, F), the concept of a gap d whose dimension can be taken in the lateral direction, which has been described so far, disappears, and the gap d extends over the entire circumferential direction of the barrier member IO, or A port P is formed in a portion of the direction. This can be seen as a result of the barrier member 10 being composed of two parts, an upper and a lower part, and one of which is fixed to one of the electrodes 3.3.

第4図CG)に示した改変例では、障壁部材lOの上下
両端は完全に各電極面に密着しており、従って既述した
概念での隙間dは零である。そのため、lK料ガス流f
rの抜は穴は、電極部分に専用のポートPとして形成さ
れている。
In the modified example shown in FIG. 4 CG), both the upper and lower ends of the barrier member 10 are in complete contact with each electrode surface, so the gap d in the concept described above is zero. Therefore, the lK feed gas flow f
The hole r is formed as a dedicated port P in the electrode portion.

第4図(H)、(1)の場合は、障壁部材lOの内径乃
至横方向断面内面幅Rが電極3の径乃至断面幅Wよりも
小さくなった場合で、同図(1)では長さLもかなり短
くなっている。
In the cases of FIGS. 4(H) and (1), the inner diameter or lateral cross-sectional inner width R of the barrier member IO is smaller than the diameter or cross-sectional width W of the electrode 3; L is also considerably shorter.

勿論、電極形状が非円形、例えば矩形等である場合には
、障壁部材10の断面形状も必要によっては矩形にして
良い、逆に第4図CG)〜(1)等の場合には、矩形電
極であってもあえて円筒状の#壁部材10を使用し、意
図的にプラズマの予定発生領域を円筒状空間に変えるこ
ともできる。
Of course, if the electrode shape is non-circular, for example, rectangular, the cross-sectional shape of the barrier member 10 may also be rectangular if necessary.On the other hand, in the cases of FIG. Even if it is an electrode, a cylindrical #wall member 10 may be used to intentionally change the intended plasma generation area to a cylindrical space.

また、例えば第4図中の幾つかの組合せから構成された
かのように、断面を採る位置毎にその形状が異なってい
るような障壁部材構成としても良い。
Alternatively, the barrier member may have a configuration in which its shape differs depending on the position where the cross section is taken, for example, as if it were configured from several combinations shown in FIG. 4.

特に基板搬送式、即ち9膜の自動連続成長装ことしての
プラズマCVD装置に本発明を適用する場合には、基板
を出し入れしたり、その搬送機構を通す開口部分が必要
であるから、当然、縦断面形状等は要所、要所で異なっ
てくる。
In particular, when the present invention is applied to a plasma CVD apparatus of a substrate transport type, that is, an automatic continuous growth apparatus for nine films, an opening is required for loading and unloading the substrate and for passing the transport mechanism. The vertical cross-sectional shape etc. differ depending on the key points.

例えば第5図(A)に示すように、平面から見ると電極
3(この場合、矩形)を均等に囲うような形状の矩形横
断面の障壁部材10が設けられていても、電極の一辺に
平行な一断面5B−58を見ると障壁部材10の長さL
が十分長く、矢印ft方向に搬送される基板7も高さ位
置的に当該障壁部材IO内に完全に収まっているように
見えるのに対し、上記断面線と直交する断面線5G−5
Cに沿って見ると、搬送方向rtに基板7の抜ける開口
部分ptが形成されるように、障壁部材10のその部分
の高さが低くなっている等という形状も考えられる。
For example, as shown in FIG. 5(A), even if a barrier member 10 with a rectangular cross section is provided that uniformly surrounds the electrode 3 (in this case, rectangular) when viewed from the top, one side of the electrode Looking at the parallel cross section 5B-58, the length L of the barrier member 10 is
is sufficiently long and the substrate 7 conveyed in the direction of the arrow ft also appears to be completely contained within the barrier member IO in terms of height position.
When viewed along C, it is also possible to consider a shape in which the height of that part of the barrier member 10 is reduced so that an opening part pt through which the substrate 7 passes is formed in the transport direction rt.

また、第6図に示すように、複列自動連続成長装置、即
ち中央の電極3を共通電極とし、これを挟んで対向する
二つの電極3.3があり、一つの減圧チャンバ2内に二
つの基板7.7の成膜部分を有するプラズマCVD装置
等に対しても、一対の障壁部材10.10を適当な形状
、適当な配置で使用することにより、本発明の適用が可
能である。
In addition, as shown in FIG. 6, there is a double-row automatic continuous growth apparatus, that is, the center electrode 3 is used as a common electrode, and there are two electrodes 3.3 facing each other with this in between. The present invention can also be applied to a plasma CVD apparatus or the like having a film forming portion of two substrates 7.7 by using the pair of barrier members 10.10 in an appropriate shape and appropriate arrangement.

例えば、tjS−6図(A)に示されるように、基板7
の進行方向に対面して見ると、各成膜部分を覆う適当な
高さに一対のllIM4部材to、toがあるように見
え、第6図(A)の6B−88線に沿う断面である同図
CB)に示されるように、基板の搬送方向に沿って見る
と、当該基板搬送路の全長に沿って障壁部材10がある
ように見える、というような構成にすることができる。
For example, as shown in tjS-6 figure (A), the substrate 7
When viewed facing the direction of movement, it appears that there is a pair of IM4 members to, to at an appropriate height covering each film-formed portion, and this is a cross section taken along line 6B-88 in Fig. 6(A). As shown in FIG. CB), when viewed along the substrate transport direction, it can be configured such that the barrier member 10 appears to exist along the entire length of the substrate transport path.

尚、一般には基板表面近傍における原料ガスの乱流は避
けた方が望ましいので、障壁部材の形状、特に原料ガス
流の抜ける隙間dとかボー)Pの位置や大きさ、断面形
状を勘案するときには、この点に就いても配慮した方が
良い。
In general, it is desirable to avoid turbulent flow of the raw material gas near the substrate surface, so when considering the shape of the barrier member, especially the position, size, and cross-sectional shape of the gap (d) and bow (P) through which the raw material gas flow passes, , it is better to give consideration to this point.

以上、本発明の実施例に就き詳記したが、本発明の効果
の項に移る前に、先の各実験例CI)〜(m)の各々の
実験結果を表す第1〜3表を次の二頁に挙げておく。
The examples of the present invention have been described in detail above, but before moving on to the effects of the present invention, Tables 1 to 3 showing the experimental results of each of the previous experimental examples CI) to (m) are shown below. I will list them on page 2.

一度−U −1−」し−に 一1−≦Ll二 〈発明の効果〉 本発明によれば、プラズマを予定の空間領域に閉じ込め
ることにより各種のプラズマの異常モードの発生を防ぐ
ことができる。
Once -U-1-'' and then 1-≦Ll2 <Effects of the Invention> According to the present invention, by confining plasma in a predetermined spatial region, it is possible to prevent the occurrence of various abnormal modes of plasma. .

そのため、従来は印加不能であった大電力も印加可能と
なり、極めて高速な成膜速度も得ることができる。
Therefore, it becomes possible to apply a large amount of power, which was previously impossible to apply, and it is also possible to obtain an extremely high film formation rate.

また、結果として、印加される高周波電力を有効に使う
ことができるようになるため、成膜速度を増加したにも
拘らず、+151質をも改善し得るという極めて望まし
い結果を得ることもできる。
Furthermore, as a result, the applied high-frequency power can be used effectively, so even though the film formation rate has been increased, it is also possible to obtain the extremely desirable result of improving the +151 quality.

いづれも、従来のこの種容量結合型のプラズマCVD装
置からは予□想し得ない顕著なる効果である。
All of these are remarkable effects that cannot be expected from conventional capacitively coupled plasma CVD apparatuses of this type.

更に、*+a速度を向上できるということは、この種産
業分野においては極めて大きな意義を持つ、生産性が大
きく向上できるため、極めて高価なプラズマCVD装置
やその周辺設備の原価消却上、有利になるばかりでなく
、人件費やユーティリティ関係のランニング・コストの
低減化に太きく ’、4: ’i、できるからである。
Furthermore, being able to improve *+a speed is extremely significant in this type of industrial field, as productivity can be greatly improved, which is advantageous in reducing the cost of extremely expensive plasma CVD equipment and its peripheral equipment. Not only that, but it can also significantly reduce labor costs and utility-related running costs.

勿論、本1!I+により作成された膜を用いる各種製品
の大量生産効果による低廉化にも寄与し得る。
Of course, book 1! It can also contribute to lower costs due to the mass production effect of various products using films made by I+.

尚、以上詳記した本発明の原理から顕かなように、本発
明を適用することにより作成される膜やそのための原料
ガス等には限定はない。
Incidentally, as is clear from the principle of the present invention described in detail above, there are no limitations on the film produced by applying the present invention or the raw material gas therefor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の容量結合型プラズマCVD装置の基本
的一実施例の概略構成図、第2図は実験例(n)におけ
る従来装置によった場合と本発明装置によった場合の膜
厚分布の相違を表す特性曲線図、第3図は実験例(m)
における上記第2図と同様の特性曲線図、第4図、第5
図、第6図は、夫々、本発明装置に用いる障壁部材の形
状及び配置関係の改変例の説゛明図、第7図は従来の容
量結合型プラズマCVD装置の基本的な概略構成図、第
8図は各種異常プラズマ発生モードの説明図、である。 図中、2は減圧チャンバ、3は放電電極、4はヒータ、
6は高周波Tr!、源、7は基板、9は排気ポート、1
0は絶縁物性障壁部材、Wは電極断面幅乃至径、Hは電
極間距離、Rは障壁部材断面幅乃至径、Lは障壁部材高
さ乃至電極間に跨る方向の長さ、dは電極周縁部と障壁
部材内壁面との為す隙間、 frは原料ガス1. ft
は基板搬送方向、である。 指定代理人    工業技術院 第3図 1           x−−−’r’r<iソ  
5cx4 イiaL、         高周波電力(
W)      面周及電力(W)第41 筒5図 第6図 第T図 手 続 補 正 書(1幻 昭和601年λ 月 Z 日 1事件の表示 昭和59年特許願第J/75gg号 2発明の名称 容量結合型プラズマO’VD装置 東京都千代田区霞か関1丁目3番1号 +14  工  業  技  術  院  長  等々
力    達4指定代理人 6 補正の内容 明細書第13頁第1/行の「350°Cとした。」の次
に、別紙のとおり挿入する。 この石英管を保持するために第1A図に示すように、高
周波電源が接続された電極側のシールド板jにひさしを
設け、このひさしに載せた石英管をシールド板のひさし
と共に上下することによってヒータが埋込まれている電
極と石英管との距離を調節する構成とした。
FIG. 1 is a schematic configuration diagram of a basic embodiment of the capacitively coupled plasma CVD apparatus of the present invention, and FIG. 2 is a diagram showing the film formation in the case of the conventional apparatus and the apparatus of the present invention in Experimental Example (n). Characteristic curve diagram showing differences in thickness distribution, Figure 3 is an experimental example (m)
Characteristic curve diagrams similar to the above-mentioned FIG. 2, FIG. 4, and FIG.
6 are explanatory diagrams of modified examples of the shape and arrangement of barrier members used in the apparatus of the present invention, and FIG. 7 is a basic schematic configuration diagram of a conventional capacitively coupled plasma CVD apparatus. FIG. 8 is an explanatory diagram of various abnormal plasma generation modes. In the figure, 2 is a decompression chamber, 3 is a discharge electrode, 4 is a heater,
6 is a high frequency Tr! , source, 7 is the board, 9 is the exhaust port, 1
0 is the insulating barrier member, W is the cross-sectional width or diameter of the electrode, H is the distance between the electrodes, R is the cross-sectional width or diameter of the barrier member, L is the height of the barrier member or the length in the direction spanning between the electrodes, and d is the electrode periphery. The gap formed between the part and the inner wall surface of the barrier member, fr is the raw material gas 1. ft.
is the substrate transport direction. Designated agent Agency of Industrial Science and Technology Figure 3 1 x---'r'r<i so
5cx4 IiaL, high frequency power (
W) Surface circumference and power (W) No. 41 Tube 5 Figure 6 Figure T Procedure Amendment (1 phantom 1986 λ Month Z day 1 Indication of incident 1988 Patent Application No. J/75gg No. 2 Name of the invention Capacitively coupled plasma O'VD device 1-3-1 Kasumikaseki, Chiyoda-ku, Tokyo +14 Institute of Industrial Science Director Tatsu Todoroki 4 Designated agent 6 Statement of contents of amendment Page 13, Line 1 Next to "350°C", insert it as shown in the attached sheet. In order to hold this quartz tube, as shown in Figure 1A, put an eaves over the shield plate j on the electrode side connected to the high frequency power source. The distance between the electrode in which the heater is embedded and the quartz tube is adjusted by moving the quartz tube placed on the eaves up and down together with the eaves of the shield plate.

Claims (1)

【特許請求の範囲】  減圧チャンバ内に対向配置した一対の電極間に原料ガ
スを導入し、該一対の電極間に印加する高周波電力によ
り原料ガスをプラズマ化し、該プラズマ雰囲気中に置い
た基板上に薄膜を堆積させる容量結合型プラズマCVD
装置であって、 上記一対の電極間に跨る空間領域内において、上記プラ
ズマを発生させるべき予定空間領域を囲み、該予定空間
領域内に上記プラズマを閉じ込める絶縁物性の障壁部材
を設けたことを特徴とする容量結合型プラズマCVD装
置。
[Claims] A source gas is introduced between a pair of electrodes placed oppositely in a reduced pressure chamber, the source gas is turned into plasma by high frequency power applied between the pair of electrodes, and a substrate placed in the plasma atmosphere is placed on the substrate. capacitively coupled plasma CVD to deposit thin films on
The apparatus is characterized in that an insulating barrier member is provided in a spatial region extending between the pair of electrodes, surrounding a predetermined spatial region in which the plasma is to be generated, and confining the plasma within the predetermined spatial region. Capacitively coupled plasma CVD equipment.
JP59217568A 1984-10-17 1984-10-17 Capacity coupling type plasma chemical vapor deposition device Pending JPS6196724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217568A JPS6196724A (en) 1984-10-17 1984-10-17 Capacity coupling type plasma chemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217568A JPS6196724A (en) 1984-10-17 1984-10-17 Capacity coupling type plasma chemical vapor deposition device

Publications (1)

Publication Number Publication Date
JPS6196724A true JPS6196724A (en) 1986-05-15

Family

ID=16706302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217568A Pending JPS6196724A (en) 1984-10-17 1984-10-17 Capacity coupling type plasma chemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPS6196724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125430A (en) * 1988-11-04 1990-05-14 Toshiba Corp Apparatus for manufacturing semiconductor
JPH02127030U (en) * 1989-03-30 1990-10-19
US5391252A (en) * 1992-12-08 1995-02-21 Hughes Aircraft Company Plasma pressure control assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896729A (en) * 1981-12-03 1983-06-08 Seiko Epson Corp Glow discharge device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896729A (en) * 1981-12-03 1983-06-08 Seiko Epson Corp Glow discharge device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125430A (en) * 1988-11-04 1990-05-14 Toshiba Corp Apparatus for manufacturing semiconductor
JPH02127030U (en) * 1989-03-30 1990-10-19
US5391252A (en) * 1992-12-08 1995-02-21 Hughes Aircraft Company Plasma pressure control assembly

Similar Documents

Publication Publication Date Title
JP3332700B2 (en) Method and apparatus for forming deposited film
US20050000430A1 (en) Showerhead assembly and apparatus for manufacturing semiconductor device having the same
US5130170A (en) Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation
US5330578A (en) Plasma treatment apparatus
US6065425A (en) Plasma process apparatus and plasma process method
US9165748B2 (en) Plasma CVD method
JPH07316824A (en) Vapor-phase reactor
KR20020004935A (en) Inner-electrode plasma processing apparatus and method of plasma processing
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JPH04247879A (en) Method and device for continuously forming large-area functional deposited film by microwave plasma cvd method
JPH11243062A (en) Method and device for plasma cvd
JPS6196724A (en) Capacity coupling type plasma chemical vapor deposition device
JP3145536B2 (en) Catalytic CVD equipment
JPH0576171B2 (en)
US5558719A (en) Plasma processing apparatus
US5272360A (en) Thin film transistor having enhance stability in electrical characteristics
JP2590534B2 (en) Thin film formation method
JP2801498B2 (en) Thin film manufacturing equipment
JPH0714774A (en) Method and device for forming functional deposition film continuously
JP2001279456A (en) Deposited film treating system and method for it
JPH11111622A (en) Plasma chemical vapor deposition apparatus
JPS63940B2 (en)
JPS63255374A (en) Production of electrophotographic sensitive body
JPS6086277A (en) Formation of deposited film by discharge
JP2021048161A (en) Substrate holder and film depositing apparatus