JPS63255374A - Production of electrophotographic sensitive body - Google Patents

Production of electrophotographic sensitive body

Info

Publication number
JPS63255374A
JPS63255374A JP8777387A JP8777387A JPS63255374A JP S63255374 A JPS63255374 A JP S63255374A JP 8777387 A JP8777387 A JP 8777387A JP 8777387 A JP8777387 A JP 8777387A JP S63255374 A JPS63255374 A JP S63255374A
Authority
JP
Japan
Prior art keywords
film
manufacturing
electron cyclotron
cyclotron resonance
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8777387A
Other languages
Japanese (ja)
Inventor
Yukihisa Tamura
幸久 田村
Toyoki Kazama
風間 豊喜
Yukio Takano
幸雄 高野
Koichi Aizawa
宏一 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8777387A priority Critical patent/JPS63255374A/en
Publication of JPS63255374A publication Critical patent/JPS63255374A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form high quality films for electrophotographic sensitive bodies at high speed when Si films are formed on the surfaces of base bodies with gaseous starting material such as silane and electron cyclotron resonance sources, by arranging the resonance sources each having a rectangular prism- shaped resonance chamber around the base bodies. CONSTITUTION:When photosensitive layers of Si as a photoconductive material are formed on the surfaces of base bodies with gaseous starting material such as SiH4 or Si2H6 and electron cyclotron resonance (ECR) sources to produce electrophotographic sensitive bodies, resonators 13 as the ECR sources are arranged around a cylindrical film forming vessel 11 within a range of >=30 deg. on both sides of a perpendicular plane along the central axis of the vessel 11. Microwaves are introduced into the resonators 13 from the inlets 17 and the gaseous stating material such as SiH4 is fed from introduction pipes 20 through distribution pipes 21. The gaseous SiH4 is excited by the microwaves and enters the vessel 11 through connection holes 19. High quality films for the sensitive bodies are formed on the base bodies on shafts 12 at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素−シリコン化合物を母材とした光導電性
材料からなる感光層を有する電子写真用感光体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrophotographic photoreceptor having a photosensitive layer made of a photoconductive material using a hydrogen-silicon compound as a base material.

〔従来の技術〕[Conventional technology]

静電式複写機あるいはプリンタ等には、カールソン方式
に代表される電子写真方式用の感光体材料として、従来
からSe、Se/Te、As、Ses 、CdS、Zn
O等の無機系光導電材料と、PVK−TNF等の有機系
材料とが使用されてきた。これらの各種の材料は、それ
ぞれ感光体としての特徴を有しているが、耐剛性に欠け
る、感度が不十分である。さらに毒性がある等の欠点が
あり、必ずしも感光体に要求される特性を十分満足して
いるとはいい難い。
Electrostatic copying machines and printers have traditionally used Se, Se/Te, As, Ses, CdS, and Zn as photoreceptor materials for electrophotographic methods such as the Carlson method.
Inorganic photoconductive materials such as O and organic materials such as PVK-TNF have been used. These various materials each have characteristics as a photoreceptor, but they lack rigidity and sensitivity. Furthermore, it has drawbacks such as toxicity, and it cannot be said that it fully satisfies the characteristics required of a photoreceptor.

これに対してアモルファスシリコン(a−3i:系の材
料は、耐剛性、耐熱性に優れ、特に環境汚染に対する影
響の少ないことから一部製品化されてきている。a−S
i系感光体は特性的には従来の感光体を凌駕する点が多
いものの、コスト的にははるかに高いのが現状である。
In contrast, amorphous silicon (a-3i) materials have been commercialized in part because they have excellent rigidity and heat resistance, and have little impact on environmental pollution.a-S
Although i-type photoreceptors have many characteristics superior to conventional photoreceptors, they are currently much more expensive.

このことは、従来からa−3t悪感光の製造方法として
知られているグロー放電、スパッタリング、光CVD等
の各種の方式において、大量生産や多品種少量生産に合
った量産方式が確立されていないことを示している。
This means that a mass production method suitable for mass production or high-mix low-volume production has not been established for the various methods conventionally known as methods for producing A-3T photosensitive materials, such as glow discharge, sputtering, and photo-CVD. It is shown that.

コスト低減のために必要な条件は、成膜速度の向上と、
量産方式であるが、成膜速度を上げるためには、シラン
(siH4)、ジシラン(Si。
The conditions necessary for reducing costs are increasing the deposition rate,
Although it is a mass production method, in order to increase the film formation speed, silane (siH4) and disilane (Si.

H&)等の原料ガスの励起種密度をあげる必要がある。It is necessary to increase the density of excited species in the raw material gas such as H&).

このためには従来から使用されてきている直流から無線
周波までの周波数を用いたグロー放電のほかに、更に周
波数の高いマイクロ波を用いた成膜法も試みられており
、更にマイクロ波に磁場を付加した電子サイクロトロン
共鳴源(ECR)法もある。しかしこれらの方法も、成
膜速度、量産方式の点では多くの問題点を持っている。
For this purpose, in addition to glow discharge using frequencies ranging from direct current to radio frequencies, which have been conventionally used, film-forming methods using microwaves with even higher frequencies have also been attempted. There is also an electron cyclotron resonance source (ECR) method that adds . However, these methods also have many problems in terms of film formation speed and mass production system.

第7図はEAR成膜装置の原理図を示すもので、プラズ
マ室1はマイクロ波導入部2)ガス導入部3、磁気コイ
ル4、出口5を有し、このプラズマ室1に接続された成
膜室6は、原料ガス導入部7、基板ホルダー8、排気口
9を備えている。プラズマ室lのマイクロ波導入部2よ
り例えば2.45 GHzのマイクロ波が導入され、ガ
ス導入部3より励起ガスであるH、、N、、希ガス等が
導入され、ECR条件を満たす状態で放電を行わせる。
FIG. 7 shows a principle diagram of an EAR film forming apparatus, in which a plasma chamber 1 has a microwave introduction section 2) a gas introduction section 3, a magnetic coil 4, and an outlet 5. The film chamber 6 includes a raw material gas introduction section 7, a substrate holder 8, and an exhaust port 9. A microwave of, for example, 2.45 GHz is introduced from the microwave introduction part 2 of the plasma chamber L, and excited gases such as H, N, rare gas, etc. are introduced from the gas introduction part 3, and the ECR conditions are satisfied. Let the discharge occur.

この場合マイクロ波の周波数が2.45GH2であれば
ECR条件を満たす磁束密度875gaussである。
In this case, if the microwave frequency is 2.45 GH2, the magnetic flux density is 875 gauss, which satisfies the ECR conditions.

成膜室6は排気口9に接続された排気ポンプで排気され
、原料ガス導入部7より成膜原料ガスの5iHaが導か
れる。この原料ガスはプラズマ室1で励起された励起ガ
スと接触して活性状態となり、基板ホルダー8上への成
膜が進行する。
The film forming chamber 6 is evacuated by an exhaust pump connected to an exhaust port 9, and 5iHa of the film forming raw material gas is introduced from the raw material gas inlet 7. This raw material gas comes into contact with the excited gas excited in the plasma chamber 1 and becomes active, so that film formation on the substrate holder 8 progresses.

基板は必要に応じ100〜300℃に加熱される。The substrate is heated to 100 to 300°C if necessary.

なお上述の例ではプラズマ室lに磁場を印加するため電
磁石を使用しているが、永久磁石を用いてもよい。
Note that in the above example, an electromagnet is used to apply a magnetic field to the plasma chamber l, but a permanent magnet may also be used.

以上述べた成膜方法には次のような欠点がある。The film forming method described above has the following drawbacks.

第一に、ECR法のプラズマ室は、放電を発生しやす(
するために、特定の一つ或いは複数の定圧波が生じるよ
うに設計される。したがって、プラズマ室の寸法を感光
体の量産に適するように1〜2mまでも大きくとること
は困難であり、成膜面積の拡張性に欠けている。
First, the plasma chamber of the ECR method is prone to generating electrical discharge (
In order to do this, one or more specific constant pressure waves are designed to occur. Therefore, it is difficult to increase the size of the plasma chamber to 1 to 2 m so as to be suitable for mass production of photoreceptors, and there is a lack of expandability in the film forming area.

第二に、原料ガスが直接プラズマに曝されていないため
に間接励起となり、効率がよくない、すなわち、成膜速
度がプラズマ密度の上昇から期待されるほどには高くな
らず、高々10IIm/hrであり、通常のグロー放電
の最高値と同等である。
Second, since the raw material gas is not directly exposed to the plasma, it is indirectly excited, and the efficiency is not good. In other words, the deposition rate is not as high as expected from the increase in plasma density, and is at most 10 IIm/hr. , which is equivalent to the maximum value of a normal glow discharge.

第三に、グロー放電、スパッタリング、マイクロ波等の
成膜方式も、感光体としての多くの要求品質を無視すれ
ば20am/hr以上の高速成膜も可能であるが、実際
にはこのような高速成膜を行うと膜質が一様でなくなり
、膜の突起に代表される異常成長部が発生しやすくなり
、画像上の欠陥が増大する。このことはECR法の場合
も同様′であり、適切な条件の設定がなければ品質上で
問題が生じる。
Thirdly, film forming methods such as glow discharge, sputtering, and microwave can also be used to form films at high speeds of 20 am/hr or more if many quality requirements for photoreceptors are ignored; When high-speed film formation is performed, the film quality becomes non-uniform, and abnormal growth areas such as film protrusions are likely to occur, increasing defects on images. The same is true for the ECR method, and unless appropriate conditions are set, quality problems will occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述のような従来の成膜法の持つ欠点に鑑み
、水素−シリコンを母材とする光導電材料からなる感光
層を有する感光体を高速、高品質で製造する方法を提供
することを目的とする。
In view of the drawbacks of conventional film forming methods as described above, the present invention provides a method for manufacturing a photoreceptor having a photosensitive layer made of a photoconductive material with hydrogen-silicon as a base material at high speed and with high quality. The purpose is to

C問題点を解決するための手段〕 この目的は本発明によれば、直方体状の共振室を有する
電子サイクロトロン共鳴源を使用して感光層を形成する
ことにより達成される。
Means for Solving Problem C] According to the invention, this object is achieved by forming the photosensitive layer using an electron cyclotron resonance source with a rectangular parallelepiped-shaped resonant chamber.

〔作用〕[Effect]

本発明においては、基体は直方体状の共振室を有し密に
配列された電子サイクロトロン共鳴源に対向し、この電
子サイクロトロン共鳴源で直接励起された成膜原料ガス
に曝されて成膜が行われる。
In the present invention, the substrate has a rectangular parallelepiped resonance chamber and faces a densely arranged electron cyclotron resonance source, and is exposed to a film-forming source gas that is directly excited by the electron cyclotron resonance source to form a film. be exposed.

(実施例〕 次に本発明の実施例を図面について説明する。(Example〕 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明方法に使用される成膜炉の構造を概略的
に示すもので、円筒状の成膜容器11内には複数のシャ
フト12が配置され、これらのシャフト12は例えば長
さ2000■、直径80am程度の大きさに選ばれ、矢
印に示すように自転、公転できるようになっており、そ
の中にはヒータ等の加熱手段が設けられ、外側には円筒
状のアルミニウム基体が装着されている。
FIG. 1 schematically shows the structure of a film forming furnace used in the method of the present invention. A plurality of shafts 12 are arranged in a cylindrical film forming container 11, and these shafts 12 have a length, for example. It was selected to have a size of approximately 2000 mm and a diameter of 80 am, and is able to rotate and revolve as shown by the arrow.A heating means such as a heater is installed inside it, and a cylindrical aluminum base is installed on the outside. It is installed.

成膜容器11の炉壁の周辺にはECR源である共振器1
3が複数個取り付けられており、各共振器13にはマイ
クロ波の供給路である導波管14が接続されている。各
共振器13は直方体状の共振室を持っている。なお図に
は示していないが、成膜容器11には成膜用原料ガスを
排気するための排気ポンプが取り付けられている。
A resonator 1 serving as an ECR source is installed around the furnace wall of the film forming container 11.
A plurality of resonators 3 are attached, and each resonator 13 is connected to a waveguide 14 which is a microwave supply path. Each resonator 13 has a rectangular parallelepiped-shaped resonance chamber. Although not shown in the figure, an exhaust pump for exhausting the film-forming source gas is attached to the film-forming container 11.

第2図、第3図は成膜容器の軸方向に見たECR源の配
置状態を示すもので、第2図の例では成膜容器11の軸
方向および円周方向にそれぞれ平行してECR源の共振
器13が配置されているのに対し、第3図の例では成膜
容器の軸方向には平行し、円周方向には交互に配置され
ており基体上の成膜分布の均一性をより高めることがで
きる。
FIGS. 2 and 3 show the arrangement of the ECR sources when viewed in the axial direction of the film-forming container 11. In the example of FIG. While the source resonators 13 are arranged, in the example shown in Fig. 3, they are arranged parallel to the axial direction of the film-forming container and alternately in the circumferential direction, ensuring uniform film-forming distribution on the substrate. You can improve your sexuality.

いずれの配置状態においても、各ECR源の共振器13
の共振室が直方体に形成されているため、ECR源を密
に配列することができ、均一で大面積の成膜を行うこと
ができる。なお図で15は駆動・排気系である。
In either arrangement, the resonator 13 of each ECR source
Since the resonance chamber is formed in the shape of a rectangular parallelepiped, the ECR sources can be arranged densely, and a uniform film can be formed over a large area. In the figure, numeral 15 is a drive/exhaust system.

第4図はECR源の詳細を示すもので、共振器13は周
囲に磁気コイル16が配置され、マイクロ波導入口17
には大気を遮断するためのシール窓1日があり、成膜容
器接続口19付近には原料ガス導入管とガス分配管21
とが設けられており、内部プラズマ室22を形成する。
FIG. 4 shows details of the ECR source, in which a resonator 13 is surrounded by a magnetic coil 16, and a microwave inlet 17.
There is a seal window to block the atmosphere, and there is a raw material gas introduction pipe and a gas distribution pipe 21 near the film forming container connection port 19.
are provided, forming an internal plasma chamber 22.

ECR[としての共振器13は、第1図に示すように成
膜容器11の中心を通る垂直線から所定の角度θ以内に
配置しないようにすると、ECR源の内部またはその近
傍に生成した膜が基体を取り付けたシャフト12に落下
することがなくなり、感光体の表面品質が向上する。角
度θは約30゜が通しtいる。
If the resonator 13 as an ECR is not placed within a predetermined angle θ from a vertical line passing through the center of the film forming container 11 as shown in FIG. This prevents the particles from falling onto the shaft 12 to which the substrate is attached, and the surface quality of the photoreceptor is improved. The angle θ is approximately 30°.

次に上述の成膜炉を使用して成膜を行う方法について説
明する。
Next, a method for forming a film using the above film forming furnace will be described.

成膜を行うには、磁気コイルに供給する電流をりlj!
ffしてECRの条件を満たす値にし、マイクロ波導入
口17よりマイクロ波を導き、原料ガス導入管20より
成膜用の原料ガスであるシリコンを含むガス、例えばモ
ノシラン(SiH4)、ジシラン(StgH4)等を供
給すると、原料ガスはガス分配管21より共振器13内
に導かれ、そこでマイクロ波により励起され、成膜容器
ll内に入りシャフト12上の基体にシリコンの膜が形
成される。この場合、ECR源である共振器13内に直
接原料ガスを供給することによって成膜速度が飛躍的に
向上するものである。すなわち、従来の方法によれば、
共振器13.には水素、希ガス(ハロゲンガス)等のガ
スを供給するガス導入管23のみがあり、成膜用の原料
ガスは成膜炉中に供給するものである。いま例えばガス
導入管からH2ガスを30cc供給し、成膜炉内にSi
H,を20cc供給し、マイクロ波周波数2.45GH
z、マイクロ波電力400W、基板温度180°C1ガ
ス圧5mTorrの条件で成膜したときの成膜速度7μ
m/hrであった。これに対し同一条件でS i Ha
の供給だけを原料ガス導入管20から行い、ガス導入管
23からのガス供給を行わなかったときの成膜速度は1
5μm / h rに達シタ。
In order to form a film, the current supplied to the magnetic coil is determined by lj!
ff to a value that satisfies the ECR conditions, microwaves are introduced from the microwave inlet 17, and a gas containing silicon, which is a raw material gas for film formation, such as monosilane (SiH4), disilane (StgH4), is introduced from the raw material gas introduction pipe 20. When the source gas is supplied, the source gas is guided into the resonator 13 through the gas distribution pipe 21, excited by microwaves there, and enters the film forming container 11 to form a silicon film on the substrate on the shaft 12. In this case, by directly supplying the source gas into the resonator 13, which is the ECR source, the film formation rate can be dramatically improved. That is, according to the conventional method,
Resonator 13. There is only a gas introduction pipe 23 for supplying gas such as hydrogen and rare gas (halogen gas), and raw material gas for film formation is supplied into the film formation furnace. Now, for example, 30cc of H2 gas is supplied from the gas introduction pipe, and Si is deposited in the film forming furnace.
Supply 20cc of H, microwave frequency 2.45GH
z, film formation speed 7μ when film was formed under the conditions of microwave power 400W, substrate temperature 180°C, gas pressure 5mTorr
m/hr. On the other hand, under the same conditions, S i Ha
When only the gas is supplied from the raw material gas introduction pipe 20 and the gas is not supplied from the gas introduction pipe 23, the film forming rate is 1.
It reached 5μm/hr.

感光体の表面品質を上げる上で成膜時のガス圧は重要で
あり、100mTorr以上ではガス分子間の衝突確率
が多く、未分解の粉末が発生して表面品質が低下する。
The gas pressure during film formation is important in improving the surface quality of the photoreceptor, and at 100 mTorr or more, there is a high probability of collision between gas molecules, and undecomposed powder is generated, resulting in a decrease in surface quality.

また、ガス分子の衝突が少ない条件で成膜するためには
、基体とECR源との距離をガス分子の平均自由行程の
10倍以内とするのが好ましい。
Further, in order to form a film under conditions where collisions of gas molecules are small, it is preferable that the distance between the substrate and the ECR source be within 10 times the mean free path of the gas molecules.

第5図は本発明で使用する成膜炉の異なる例の側面図で
、第3図に示すような隣接して並べた複数のECR源の
列を、共振室の形状が細長い直方体である一体のECR
源24で置き換えたものであり、炉の周方向に配列され
たECR源24は、共振器の中に立つ定圧波の位相が長
手方向で互いに重なることがないように、長手方向の位
置をずらせて炉壁に設置されている。このようにするこ
とにより、簡単な構造で、均一性の高い大面積成膜を実
現することができる。なお15は駆動・排気系である。
FIG. 5 is a side view of a different example of the film-forming furnace used in the present invention, in which a plurality of ECR sources arranged adjacently as shown in FIG. ECR of
The ECR sources 24 arranged in the circumferential direction of the furnace are shifted in position in the longitudinal direction so that the phases of the constant pressure waves standing in the resonator do not overlap with each other in the longitudinal direction. It is installed on the furnace wall. By doing so, it is possible to form a film over a large area with high uniformity with a simple structure. Note that 15 is a drive/exhaust system.

第6図は本発明で使用する成膜炉のさらに異なる例の断
面図で、第5図に示す細長い直方体のECR源を成膜炉
の内部に配設したもので、成膜容器11の内部に、細長
い直方体状の共振室を有する共振器25がそれぞれ軸に
平行に、かつ周方向に複数列配置され、その内側に複数
のシャフト12が矢印で示すように自転、公転できるよ
うに配置されている。この成膜炉によっても、第5図の
例と同様に、簡単な構造で、均一性の高い大面積成膜を
行うことができる。
FIG. 6 is a sectional view of still another example of the film forming furnace used in the present invention, in which the elongated rectangular parallelepiped ECR source shown in FIG. A plurality of resonators 25 each having an elongated rectangular parallelepiped resonance chamber are arranged in a plurality of rows in parallel to the axis and circumferentially, and a plurality of shafts 12 are arranged inside the resonators 25 so as to be able to rotate and revolve as shown by arrows. ing. Also with this film forming furnace, as in the example shown in FIG. 5, it is possible to form a film over a large area with high uniformity with a simple structure.

なお上述の例では原料ガスとしてSiH,を使用したa
−3t膜の製造について説明したが、aSi+−x C
X  (1()  (0<X≦1)、a−3i+−y 
L  (H)(0<3F≦4/3 ) 、a−3i+−
wOx  ()i)(0<y≦2)等の各種の非晶質シ
リコン系の膜や、ポリシリコンを含む膜、a−3t−Z
nSe、a−ZnO1a−Ass Ses 、a−S 
e / T e等の膜の製造にも本発明は有効である。
In the above example, SiH was used as the raw material gas.
Although we have explained the production of -3t film, aSi+-x C
X (1() (0<X≦1), a-3i+-y
L (H) (0<3F≦4/3), a-3i+-
Various amorphous silicon films such as wOx ()i) (0<y≦2), films containing polysilicon, a-3t-Z
nSe, a-ZnO1a-Ass Ses, a-S
The present invention is also effective for manufacturing films such as e/Te.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、成膜を行うべき基体の周囲に直方体状
の共振室を有する電子サイクロトロン共鳴源を密に配置
し、原料ガスを直接励起するものであり、成膜速度が速
く、表面品質に優れた感光体を安定に大量生産すること
ができる。
According to the present invention, an electron cyclotron resonance source having a rectangular parallelepiped resonance chamber is densely arranged around the substrate on which a film is to be formed, and the raw material gas is directly excited. It is possible to stably mass-produce photoreceptors with excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の断面図、第
2図、第3図は本発明方法で使用する電子サイクロトロ
ン共鳴源の配置状態の異なる例の側面図、第4図は本発
明方法で使用する電子サイクロトロン共鳴源の断面図、
第5図、第6図は本発明方法で使用する電子サイクロト
ロン共鳴源の配置状態のさらに異なる例のそれぞれ側面
図、断面図、第7図は従来方法を実施するための装置の
断面図である。 11・・・成膜容器、 12・・・シャフト、 13゜
24.25・・・共振器(電子サイクロトロン共鳴源)
20・・・原子ガス導入管、 22・・・プラズマ室。 第1図 第2図 第3図
FIG. 1 is a cross-sectional view of an apparatus for carrying out the method of the present invention, FIGS. 2 and 3 are side views of examples of different arrangements of electron cyclotron resonance sources used in the method of the present invention, and FIG. A cross-sectional view of an electron cyclotron resonance source used in the invention method,
5 and 6 are side views and sectional views, respectively, of further different examples of the arrangement of the electron cyclotron resonance source used in the method of the present invention, and FIG. 7 is a sectional view of an apparatus for carrying out the conventional method. . 11... Film forming container, 12... Shaft, 13°24.25... Resonator (electron cyclotron resonance source)
20... Atomic gas introduction tube, 22... Plasma chamber. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)電子サイクロトロン共鳴プラズマを用いて感光層を
形成する電子写真用感光体の製造方法において、共振室
の形状が直方体の電子サイクロトロン共鳴源を使用する
ことを特徴とする電子写真用感光体の製造方法。 2)特許請求の範囲第1項記載の製造方法において、成
膜容器内に自公転可能に配置したシャフト上に基体を設
置し、この基体の周囲に配置した電子サイクロトロン共
鳴源により原料ガスを励起して基体上に成膜を行うこと
を特徴とする電子写真用感光体の製造方法。 3)特許請求の範囲第1項記載の製造方法において、電
子サイクロトロン共鳴源を水平に複数列配置したことを
特徴とする電子写真用感光体の製造方法。 4)特許請求の範囲第1項または第2項記載の製造方法
において、電子サイクロトロン共鳴源が成膜炉の中心を
通る垂直線から左右に30°より大きい角度範囲に配置
されていることを特徴とする電子写真用感光体の製造方
法。 5)特許請求の範囲第1項記載の製造方法において、成
膜ガス圧を100mTorr以下としたことを特徴とす
る電子写真用感光体の製造方法。 6)特許請求の範囲第1項記載の製造方法において、プ
ラズマ室に直接成膜原料ガスを供給したことを特徴とす
る電子写真用感光体の製造方法。
[Scope of Claims] 1) A method for manufacturing an electrophotographic photoreceptor in which a photosensitive layer is formed using electron cyclotron resonance plasma, characterized in that an electron cyclotron resonance source with a resonant chamber having a rectangular parallelepiped shape is used. A method for manufacturing a photographic photoreceptor. 2) In the manufacturing method described in claim 1, a base body is installed on a shaft that is arranged so as to be able to rotate around its axis in a film forming container, and a source gas is excited by an electron cyclotron resonance source that is arranged around this base body. 1. A method for producing an electrophotographic photoreceptor, the method comprising forming a film on a substrate. 3) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that a plurality of electron cyclotron resonance sources are arranged horizontally in a plurality of rows. 4) The manufacturing method according to claim 1 or 2, characterized in that the electron cyclotron resonance source is arranged in an angular range of more than 30 degrees to the left and right from a vertical line passing through the center of the film forming furnace. A method for manufacturing an electrophotographic photoreceptor. 5) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that the film forming gas pressure is 100 mTorr or less. 6) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that a film-forming raw material gas is directly supplied to the plasma chamber.
JP8777387A 1987-04-08 1987-04-08 Production of electrophotographic sensitive body Pending JPS63255374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8777387A JPS63255374A (en) 1987-04-08 1987-04-08 Production of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8777387A JPS63255374A (en) 1987-04-08 1987-04-08 Production of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63255374A true JPS63255374A (en) 1988-10-21

Family

ID=13924296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8777387A Pending JPS63255374A (en) 1987-04-08 1987-04-08 Production of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63255374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450165A2 (en) * 1990-04-03 1991-10-09 Leybold Aktiengesellschaft Process and apparatus for coating upper surface reflecting mirrors
JP2011504206A (en) * 2007-10-16 2011-02-03 アッシュ・ウー・エフ Method for treating at least a portion of a surface using a separate source of electron cyclotron resonance plasma

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450165A2 (en) * 1990-04-03 1991-10-09 Leybold Aktiengesellschaft Process and apparatus for coating upper surface reflecting mirrors
US5378284A (en) * 1990-04-03 1995-01-03 Leybold Aktiengesellschaft Apparatus for coating substrates using a microwave ECR plasma source
JP2011504206A (en) * 2007-10-16 2011-02-03 アッシュ・ウー・エフ Method for treating at least a portion of a surface using a separate source of electron cyclotron resonance plasma

Similar Documents

Publication Publication Date Title
JPH0357190B2 (en)
JPH0510428B2 (en)
US6155201A (en) Plasma processing apparatus and plasma processing method
JPH0459390B2 (en)
US4913928A (en) Microwave plasma chemical vapor deposition apparatus with magnet on waveguide
US5582648A (en) Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
US5338580A (en) Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
US5558719A (en) Plasma processing apparatus
JPS63255374A (en) Production of electrophotographic sensitive body
JP3513206B2 (en) Method and apparatus for forming deposited film
JPH0633246A (en) Formation of deposited film and deposited film forming device
JPS63163859A (en) Manufacture of electrophotographic sensitive body
JPH01100275A (en) Functional deposit film-forming apparatus by microwave plasma cvd method
JP2609866B2 (en) Microwave plasma CVD equipment
JP3387616B2 (en) Plasma processing equipment
JP2768539B2 (en) Deposition film forming equipment
JPH04247877A (en) Deposited film forming device
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP2925291B2 (en) Deposition film forming equipment
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPH01222060A (en) Formation of thin film and photosensitive body
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS6267176A (en) Film forming device
JPS62146262A (en) Apparatus for producing electrophotographic sensitive body
JPH02129378A (en) Device for producing functional deposited film by microwave plasma cvd