JPS63163859A - Manufacture of electrophotographic sensitive body - Google Patents

Manufacture of electrophotographic sensitive body

Info

Publication number
JPS63163859A
JPS63163859A JP31240786A JP31240786A JPS63163859A JP S63163859 A JPS63163859 A JP S63163859A JP 31240786 A JP31240786 A JP 31240786A JP 31240786 A JP31240786 A JP 31240786A JP S63163859 A JPS63163859 A JP S63163859A
Authority
JP
Japan
Prior art keywords
film
substrate
source
gas
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31240786A
Other languages
Japanese (ja)
Inventor
Toyoki Kazama
風間 豊喜
Yukio Takano
幸雄 高野
Yukihisa Tamura
幸久 田村
Koichi Aizawa
宏一 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31240786A priority Critical patent/JPS63163859A/en
Publication of JPS63163859A publication Critical patent/JPS63163859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Abstract

PURPOSE:To enhance surface quality by setting a substrate on a shaft arranged revolvably and rotatably in a film forming vessel and exciting a source gas with an electron cyclotron resonance source arranged around the substrate to form a film on the substrate. CONSTITUTION:The requirements of the electron cyclotron resonance source (ECR) are satisfied by adjusting the current to be fed to a magnetic coil, microwaves are introduced through a microwave introduction inlet 16, a gas containing the silicon, i.e., the source gas for forming the film is introduced through a source gas introduction tube 19, such as monosilane or disilane, is fed. The source gas is guided from the tube 19 through distributing tubes 20 into resonators 13, excited there with the microwaves, and brought into the film forming vessel 11 to form a silicon film on the substrate setted on the shaft 12, thus permitting film forming speed to be enhanced by feeding the source gas directly into the resonators 13, and consequently, the surface quality of a photosensitive body to be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素−シリコン化合物を母材とした光導電性
材料からなる感光層を有する電子写真用感光体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrophotographic photoreceptor having a photosensitive layer made of a photoconductive material using a hydrogen-silicon compound as a base material.

〔従来の技術〕[Conventional technology]

静電式複写機あるいはプリンタ等には、カールソン方式
に代表される電子写真方式用の感光体材料として、従来
からS e 、  S e / T e 、 A s 
2 Se3 、CdS、ZnO等の無機系光導電材料と
、PVK−TNF等の有機系材料とが使用されてきた。
Electrostatic copying machines, printers, etc. have traditionally used S e , S e / T e , A s as photoreceptor materials for electrophotographic methods such as the Carlson method.
Inorganic photoconductive materials such as 2Se3, CdS, and ZnO and organic materials such as PVK-TNF have been used.

これらの各種の材料は、それぞれ感光体としての特徴を
有しているが、耐剛性に欠ける、感度が不十分である、
さらに毒性がある等の欠点があり、必ずしも感光体に要
求される特性を十分満足しているとはいい難い。
These various materials each have characteristics as a photoreceptor, but they lack rigidity, have insufficient sensitivity, etc.
Furthermore, it has drawbacks such as toxicity, and it cannot be said that it fully satisfies the characteristics required of a photoreceptor.

これに対してアモルファスシリコン(a−5t)系の材
料は、耐剛性、耐熱性に優れ、特に環境汚染に対する影
響の少ないことから一部製品化されてきているm a 
 S k系感光体は特性的には従来の感光体を凌駕する
点が多いものの、コスト的にははるかに高いのが現状で
ある。このことは、従来からa−St感光体の製造方法
として知られているグロー放電、スパッタリング、光C
VD等の各種の方式において、大量生産や多品種少量生
産に合った量産方式が確立されていないことを示してい
る。
In contrast, amorphous silicon (A-5T)-based materials have been commercialized in part because they have excellent rigidity and heat resistance, and have little impact on environmental pollution.
Although S k photoreceptors have many characteristics superior to conventional photoreceptors, they are currently much more expensive. This is because glow discharge, sputtering, and photoC
This shows that a mass production method suitable for mass production or high-mix, low-volume production has not been established for various methods such as VD.

コスト低減のために必要な条件は、成膜速度の向上と量
産方式であるが、成膜速度を上げるためには、シラン(
S tH4) 、ジシラ7 (S i2 HG)等の原
料ガスの励起種密度をあげる必要がある。
The necessary conditions for cost reduction are an increase in film formation speed and a mass production system, but in order to increase the film formation speed, silane (
It is necessary to increase the density of excited species in the raw material gas such as S tH4) and disila7 (S i2 HG).

このためには従来から使用されてきている直流から無線
周波までの周波数を用いたグロー放電のほかに、更に周
波数の高いマイクロ波を用いた成膜法も試みられており
、更にマイクロ波に磁場を付加した電子サイクロトロン
共鳴源(E CR)法もある。しかしこれらの方法も、
成膜速度、量産方式の点では多くの問題点を持っている
For this purpose, in addition to glow discharge using frequencies ranging from direct current to radio frequencies, which have been conventionally used, film-forming methods using microwaves with even higher frequencies have also been attempted. There is also an electron cyclotron resonance source (ECR) method that adds . However, these methods also
There are many problems in terms of film formation speed and mass production method.

第5図はECR成膜装置の原理図を示すもので、プラズ
マ室1はマイクロ波導入部2)ガス導入部3、磁気コイ
ル4、出口5を有し、このプラズマ室1に接続された成
膜室6は、原料ガス導入部7、基板ホルダー8、排気口
9を備えている。プラズマ室1のマイクロ波導入部2よ
り例えば2.45 GHzのマイクロ波が導入され、ガ
ス導入部3より励起ガスであるN2 、 N2 、希ガ
ス等が導入され、ECR条件を満たす状態で放電を行わ
せる。この場合マイクロ波の周波数が2.45 G H
zであればECR条件を満たす磁束密度は875gau
ssである。成膜室6は排気口9に接続された排気ポン
プで排気され、原料ガス導入部7より成膜原料ガスのS
iH4が導かれる。この原料ガスはプラズマ室1で励起
された励起ガスと接触して活性状態となり、基板ホルダ
ー8上への成膜が進行する。
FIG. 5 shows a principle diagram of an ECR film forming apparatus. A plasma chamber 1 has a microwave introduction section 2) a gas introduction section 3, a magnetic coil 4, and an outlet 5. The film chamber 6 includes a raw material gas introduction section 7, a substrate holder 8, and an exhaust port 9. A microwave of 2.45 GHz, for example, is introduced from the microwave introduction part 2 of the plasma chamber 1, and excited gases such as N2, N2, rare gas, etc. are introduced from the gas introduction part 3, and discharge is started in a state that satisfies the ECR conditions. Let it happen. In this case, the microwave frequency is 2.45 GH
If z, the magnetic flux density that satisfies the ECR condition is 875gau
It is ss. The film forming chamber 6 is evacuated by an exhaust pump connected to an exhaust port 9, and S of the film forming raw material gas is supplied from the raw material gas inlet 7.
iH4 is introduced. This raw material gas comes into contact with the excited gas excited in the plasma chamber 1 and becomes active, so that film formation on the substrate holder 8 progresses.

基板は必要に応じ100〜300℃に加熱される。The substrate is heated to 100 to 300°C if necessary.

以上述べた成膜方法には次のような欠点がある。The film forming method described above has the following drawbacks.

第一に、原料ガスが直接プラズマに曝されていないため
に間接励起となり、効率がよくない、すなわち、成膜速
度がプラズマ密度の上昇から期待されるほどには高くな
らず、高々lOμm / h rであり、通常のグロー
放電の最高値と同等である。
First, since the raw material gas is not directly exposed to the plasma, it is indirectly excited, and the efficiency is poor. In other words, the deposition rate is not as high as expected from the increase in plasma density, and is at most 10μm/h. r, which is equivalent to the maximum value of a normal glow discharge.

第二に、ECR法のプラズマ室は、放電を発生しやすく
するために、特定の一つ或いは複数の定圧波が生じるよ
うに設計される。したがって、プラズマ室の寸法を感光
体の量産に適するように1〜2mまでも大きくとること
は困難であり、成膜面積の拡張性に欠けている。
Second, the plasma chamber of the ECR method is designed to generate one or more specific constant pressure waves to facilitate the generation of electrical discharge. Therefore, it is difficult to increase the size of the plasma chamber to 1 to 2 m so as to be suitable for mass production of photoreceptors, and there is a lack of expandability in the film forming area.

第三に、グロー放電、スパッタリング、マイクロ波等の
成膜方式も、感光体としての多くの要求品質を無視すれ
ば20μm/hr以上の高速成膜も可能であるが、実際
にはこのような高速成膜を行うと膜質が一様でなくなり
、膜の突起に代表される異常成長部が発生しやすくなり
、画像上の欠陥が増大する。このことはECR法の場合
も同様であり、通切な条件の設定がなければ品質上で問
題が生じる。
Third, film formation methods such as glow discharge, sputtering, and microwaves can also achieve high speed film formation of 20 μm/hr or more if many quality requirements for photoreceptors are ignored; When high-speed film formation is performed, the film quality becomes non-uniform, and abnormal growth areas such as film protrusions are likely to occur, increasing defects on images. This is the same in the case of the ECR method, and if consistent conditions are not set, quality problems will occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述のような従来の成膜法の持つ欠点に鑑み
、水素−シリコンを母材とする光導電材料からなる感光
層を有する感光体を高速、高品質で製造する方法を提供
することを目的とする。
In view of the drawbacks of conventional film forming methods as described above, the present invention provides a method for manufacturing a photoreceptor having a photosensitive layer made of a photoconductive material with hydrogen-silicon as a base material at high speed and with high quality. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この目的は本発明によれば、成膜容器内に自公転可能に
配置したシャフト上に基体を設置し、この基体の周囲に
配置した電子サイクロトロン共鳴源により原料ガスを励
起して基体上に成膜を行うことにより達成される。
According to the present invention, this purpose is achieved by installing a substrate on a shaft that is rotatably arranged in a film-forming container, and exciting source gas with an electron cyclotron resonance source placed around the substrate to form a film on the substrate. This is achieved by performing a membrane.

〔作用〕[Effect]

本発明においては、基体は電子サイクロトロン共鳴源に
対向し、電子サイクロトロン共鳴源で直接励起された成
膜原料ガスに曝されて成膜が行われる。
In the present invention, the substrate faces an electron cyclotron resonance source and is exposed to a film-forming source gas directly excited by the electron cyclotron resonance source to form a film.

〔実施例〕〔Example〕

次に本発明の実施例を図面について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明方法に使用される成膜炉の構造を概略的
に示すもので、円筒状の成膜容器11内には複数のシャ
フト12が配置され、これらのシャフト12は例えば長
さ2000m、直径80wn程度の大きさに選ばれ、矢
印に示すように自転、公転できるようになっており、そ
の中にはヒータ等の加熱手段が設けられ、外側には円筒
状のアルミニウム基体が装着されている。
FIG. 1 schematically shows the structure of a film forming furnace used in the method of the present invention. A plurality of shafts 12 are arranged in a cylindrical film forming container 11, and these shafts 12 have a length, for example. It was chosen to be 2000 m long and about 80 wn in diameter, and is able to rotate and revolve as shown by the arrow.Heating means such as a heater are installed inside, and a cylindrical aluminum base is attached to the outside. has been done.

成膜容器11の炉壁の周辺にはECR源である共振51
3が複数個取り付けられており、各共振器13にはマイ
クロ波の供給路である導波管14が接続されている。な
お図には示していないが、成膜容器11には成膜用原料
ガスを排気するための排気ポンプが取り付けられている
。共振器13は第2図に詳細に示すように、周囲に磁気
コイル15が配置され、マイクロ波導入口16には大気
を遮断するためのシール窓17があり、成膜容器接続口
18付近には原料ガス導入管19とガス分配管20とが
設けられており、内部にプラズマ室21を形成する。
A resonance 51, which is an ECR source, is located around the furnace wall of the film forming container 11.
A plurality of resonators 3 are attached, and each resonator 13 is connected to a waveguide 14 which is a microwave supply path. Although not shown in the figure, an exhaust pump for exhausting the film-forming source gas is attached to the film-forming container 11. As shown in detail in FIG. 2, the resonator 13 is surrounded by a magnetic coil 15, the microwave inlet 16 has a seal window 17 for blocking the atmosphere, and the vicinity of the deposition container connection port 18 has a seal window 17. A source gas introduction pipe 19 and a gas distribution pipe 20 are provided, and a plasma chamber 21 is formed inside.

成膜を行うには、磁気コイルに供給する電流を調節して
ECRの条件を満たす値にし、マイクロ波導入口16よ
りマイクロ波を導き、原料ガス導入管19より成膜用の
原料ガスであるシリコンを含むガス、例えばモノシラン
(SiH2)、ジシラン(Si2Hg)等を供給すると
、原料ガスはガス分配管20より共振器13内に導かれ
、そこでマイクロ波により励起され、成膜容器11内に
入りシャフト12上の基体にシリコンの膜が形成される
。この場合、ECR源である共振器13内に直接原料ガ
スを供給することによって成膜速度が飛目的に向上する
ものである。すなわち、従来の方法によれば、共振器1
3には水素、希ガス(ハロゲンガス)等のガスを供給す
るガス導入管22のみがあり、成膜用の原料ガスは成膜
炉中に供給するものである。いま例えばガス導入管から
H2ガスを30cc供給し、成膜炉内にs i H4を
20cc供給し、マイクロ波周波数2.45GH2)マ
イクロ波電力400W、基板温度180℃、ガス圧5m
Torrの条件で成膜したときの成膜速度は7μm/h
rであった。これに対し同一条件でSiH4の供給だけ
を原料ガス導入管19から行い、ガス導入管22からの
ガス供給を行わなかったときの成膜速度は15μm/h
rに達した。
To form a film, the current supplied to the magnetic coil is adjusted to a value that satisfies the ECR conditions, microwaves are introduced from the microwave inlet 16, and silicon, which is the material gas for film formation, is introduced from the material gas introduction pipe 19. When a gas containing gas such as monosilane (SiH2), disilane (Si2Hg), etc. is supplied, the raw material gas is guided from the gas distribution pipe 20 into the resonator 13, where it is excited by microwaves, enters the film forming container 11, and passes through the shaft. A silicon film is formed on the substrate 12. In this case, by directly supplying the raw material gas into the resonator 13, which is the ECR source, the film forming rate can be significantly improved. That is, according to the conventional method, the resonator 1
3 has only a gas introduction pipe 22 for supplying gases such as hydrogen and rare gas (halogen gas), and raw material gas for film formation is supplied into the film formation furnace. For example, 30 cc of H2 gas is supplied from the gas introduction pipe, 20 cc of s i H4 is supplied into the film forming furnace, microwave frequency is 2.45 GH2) microwave power is 400 W, substrate temperature is 180°C, and gas pressure is 5 m.
The deposition rate when deposited under Torr conditions is 7 μm/h.
It was r. On the other hand, under the same conditions, when only SiH4 was supplied from the source gas introduction pipe 19 and no gas was supplied from the gas introduction pipe 22, the film formation rate was 15 μm/h.
reached r.

ECR源としての共振器13は、第1図に示すように成
膜容器11の中心を通る垂直線から所定の角度θ以内に
配置しないようにすると、ECR源の内部またはその近
傍に生成した膜が基体を取り付けたシャフト12に落下
することがなくなり、感光体の表面品質が向上する。角
度θは約30゜が通している。
If the resonator 13 as an ECR source is not placed within a predetermined angle θ from a vertical line passing through the center of the film forming container 11 as shown in FIG. This prevents the particles from falling onto the shaft 12 to which the substrate is attached, and the surface quality of the photoreceptor is improved. The angle θ is approximately 30°.

第3図、第4図は成膜容器の軸方向に見たECR源の配
置伏態を示し、第3図の例では成膜容器11の軸方向お
よび円周方向にそれぞれ平行してECR源13が配置さ
れているのに対し、第4図の例では成膜容器の軸方向に
は平行し、円周方向には交互に配置されており基体上の
成膜分布の均一性をより良好に確保することができる。
3 and 4 show the arrangement of the ECR sources as seen in the axial direction of the film forming container 11. In the example of FIG. 13 are arranged, whereas in the example shown in Fig. 4, they are arranged parallel to the axial direction of the film-forming container and alternately in the circumferential direction, which improves the uniformity of the film-forming distribution on the substrate. can be secured.

なお図で23は駆動・排気系である。In the figure, 23 is a drive/exhaust system.

なお第1図においてはECR源を成膜容器の炉壁の外側
に配置したものを示したが、炉壁内部に配置することも
できる。
Although FIG. 1 shows the ECR source disposed outside the furnace wall of the film-forming container, it can also be disposed inside the furnace wall.

感光体の表面品質を上げる上で成膜時のガス圧は重要で
あり、100mTorr以上ではガス分子間の衝突確率
が多く、未分解の粉末が発生して表面品質が低下する。
The gas pressure during film formation is important in improving the surface quality of the photoreceptor, and at 100 mTorr or more, there is a high probability of collision between gas molecules, and undecomposed powder is generated, resulting in a decrease in surface quality.

また、ガス分子の衝突が少ない条件で成膜するためには
、基体とECR源との距離をガス分子の平均自由行程の
10倍以内とするのが好ましい。
Further, in order to form a film under conditions where collisions of gas molecules are small, it is preferable that the distance between the substrate and the ECR source be within 10 times the mean free path of the gas molecules.

なお上述の例では原料ガスとして5iHqを使用したa
−3ill!ll!の製造について説明したが、aS’
 + −xCx (H)(0<x≦1) 、a−3i 
+ −yNy (H)(0<1≦4/3)、a−S++
  −zoz  (H)(0<z≦2)等の各種の非晶
質シリコン系の膜や、ポリシリコンを含む膜、a−Zn
Se、a−Zn○、aAs2Se3、a−S e / 
T e等の膜の製造にも本発明は有効である。
In addition, in the above example, 5iHq was used as the raw material gas.
-3ill! ll! We have explained the manufacturing of aS'
+ -xCx (H) (0<x≦1), a-3i
+ -yNy (H) (0<1≦4/3), a-S++
- Various amorphous silicon films such as (H) (0<z≦2), films containing polysilicon, a-Zn
Se, a-Zn○, aAs2Se3, a-S e /
The present invention is also effective for manufacturing films such as Te.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、成膜を行うべき基体の周囲に電子サイ
クロトロン共鳴源を適正に配置し、原料ガスを直接励起
するものであり、成膜速度が速く、表面品質に優れた感
光体を得ることができる。
According to the present invention, an electron cyclotron resonance source is properly arranged around the substrate on which a film is to be formed, and the raw material gas is directly excited, thereby obtaining a photoreceptor with a fast film formation rate and excellent surface quality. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の断面図、第
2図は本発明方法で使用する電子サイクロトロン共鳴源
の断面図、第3図、第4図は本発明方法で使用する電子
サイクロトロン共鳴源の配置状態の異なる例の側面図、
第5図は従来方法を実施するための装置の断面図である
。 11・・・成膜容器、 12・・・シャフト、 13共
振器(電子サイクロトロン共鳴源)、 19・・・原子
ガス導入管、 21・・・プラズマ室。 惰1図
FIG. 1 is a cross-sectional view of an apparatus for carrying out the method of the present invention, FIG. 2 is a cross-sectional view of an electron cyclotron resonance source used in the method of the present invention, and FIGS. Side views of examples of different arrangements of cyclotron resonance sources,
FIG. 5 is a sectional view of an apparatus for carrying out the conventional method. DESCRIPTION OF SYMBOLS 11... Film-forming container, 12... Shaft, 13 Resonator (electron cyclotron resonance source), 19... Atomic gas introduction tube, 21... Plasma chamber. Ina 1 diagram

Claims (1)

【特許請求の範囲】 1)成膜容器内に自公転可能に配置したシャフト上に基
体を設置し、この基体の周囲に配置した電子サイクロト
ロン共鳴源により原料ガスを励起して基体上に成膜を行
うことを特徴とする電子写真感光体の製造方法。 2)特許請求の範囲第1項記載の製造方法において、電
子サイクロトロン共鳴源を水平に複数列配置したことを
特徴とする電子写真感光体の製造方法。 3)特許請求の範囲第1項または第2項記載の製造方法
において、電子サイクロトロン共鳴源が成膜炉の中心を
通る垂直線から左右に30°より大きい角度範囲に配置
されていることを特徴とする電子写真感光体の製造方法
。 4)特許請求の範囲第1項記載の製造方法において、成
膜ガス圧を100mTorr以下としたことを特徴とす
る電子写真感光体の製造方法。
[Claims] 1) A substrate is placed on a shaft that is arranged in a film forming container so as to be able to rotate around its axis, and a source gas is excited by an electron cyclotron resonance source placed around the substrate to form a film on the substrate. A method for producing an electrophotographic photoreceptor, the method comprising: 2) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that a plurality of electron cyclotron resonance sources are arranged horizontally in a plurality of rows. 3) The manufacturing method according to claim 1 or 2, characterized in that the electron cyclotron resonance source is arranged in an angular range of more than 30° to the left and right from a vertical line passing through the center of the film-forming furnace. A method for manufacturing an electrophotographic photoreceptor. 4) A method for manufacturing an electrophotographic photoreceptor according to claim 1, characterized in that the film-forming gas pressure is 100 mTorr or less.
JP31240786A 1986-12-26 1986-12-26 Manufacture of electrophotographic sensitive body Pending JPS63163859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31240786A JPS63163859A (en) 1986-12-26 1986-12-26 Manufacture of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31240786A JPS63163859A (en) 1986-12-26 1986-12-26 Manufacture of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63163859A true JPS63163859A (en) 1988-07-07

Family

ID=18028860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31240786A Pending JPS63163859A (en) 1986-12-26 1986-12-26 Manufacture of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63163859A (en)

Similar Documents

Publication Publication Date Title
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
JPS6041047A (en) Formation of deposited film
JP2582553B2 (en) Functional deposition film forming apparatus by plasma CVD
JPH0510428B2 (en)
JPH0459390B2 (en)
US5582648A (en) Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
US4913928A (en) Microwave plasma chemical vapor deposition apparatus with magnet on waveguide
US5338580A (en) Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
JPS62222076A (en) Improved apparatus for amorphous silicon film
JPS63163859A (en) Manufacture of electrophotographic sensitive body
JPS63255374A (en) Production of electrophotographic sensitive body
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JP2768539B2 (en) Deposition film forming equipment
JP2609866B2 (en) Microwave plasma CVD equipment
JPH04247877A (en) Deposited film forming device
JP2554867B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS6042766A (en) Formation of deposited film
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPS62180074A (en) Formation of deposited film by plasma cvd method
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP3402952B2 (en) Method and apparatus for forming deposited film
JPS6230880A (en) Deposited film forming device by plasma cvd method
JPS63230880A (en) Device for forming functional deposited film by microwave plasma cvd method
JPH062153A (en) Deposited film forming method