JPS6196128A - Method of controlling intake of diesel engine with supercharger provided with intercooler - Google Patents

Method of controlling intake of diesel engine with supercharger provided with intercooler

Info

Publication number
JPS6196128A
JPS6196128A JP59215670A JP21567084A JPS6196128A JP S6196128 A JPS6196128 A JP S6196128A JP 59215670 A JP59215670 A JP 59215670A JP 21567084 A JP21567084 A JP 21567084A JP S6196128 A JPS6196128 A JP S6196128A
Authority
JP
Japan
Prior art keywords
intake
intake air
heat exchanger
intercooler
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59215670A
Other languages
Japanese (ja)
Inventor
Takahiro Toyoda
豊田 恭大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59215670A priority Critical patent/JPS6196128A/en
Publication of JPS6196128A publication Critical patent/JPS6196128A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To prevent an intercooler from intake cooling due to a heat exchanger and burning quality from degradation due to overcooling of intake by changing over an intake path even in warming up an engine when deceleration running is continuously carried out. CONSTITUTION:Intake introduced from an air cleaner 6 is pressurized by a supercharger 4 and introduced into an intake manifold 2 through a heat exchanger 7 of inter cooler and an intake path 8. In tie intake path 8 is provided a bypass path 9 for bypassing the heat exchanger 7 and both paths 8, 9 are changed over by a change-over valve 10. Then, the respective signals of an intake temperature sensor 14, rotational frequency sensor 15 and accelerator position sensor 16b are supplied to the input of a control computer 13. And when deceleration running is continuously carried out over a predetermined time determined by intake temperature, and actuator 12 is driven to change over the change-over valve 10 and pass intake through the bypass path 9 without passing through the heat each anger 7 for preventing the intake from overcooling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インタークーラを備えた過給機付ディーゼル
エンジンにおいて、吸気を過剰に冷却しないための吸気
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake air control method for preventing excessive cooling of intake air in a supercharged diesel engine equipped with an intercooler.

〔従来の技術〕[Conventional technology]

従来、吸気を過剰に冷却しないための31置として、暖
槻運松時にはインタークーラの熱交換器に吸気を通過さ
せず、吸気通路を+l+71替九バイパス通路を通過さ
せて暖慨運忙時の吸気の冷却を防止する装置が、実開昭
57−53028で提案されている。上記の読直は暖機
運転を良好に行うことを目的としており、エンノンが暖
機状態が冷却状態かによってのみ吸気通路の切替が行な
われている。しかし、ディーゼルエンジンが暖機状態で
あっても、長降板走什時の如く、減速運転が長時間にわ
たって連続して行われた時には燃焼室の壁面温度が低下
し、特に減速運転時には燃料カットが行われるディーゼ
ルエンジンに於ては、減速運転が長時間にわたって連続
して行われると、燃焼室の壁面温度が著しく低下する。
Conventionally, in order to prevent the intake air from being excessively cooled, the intake air was not allowed to pass through the heat exchanger of the intercooler during the warm-up period, and the intake passage was passed through the +l+71 alternative bypass passage. A device for preventing cooling of intake air has been proposed in Japanese Utility Model Application No. 57-53028. The purpose of the above rereading is to perform a good warm-up operation, and the intake passage is switched only depending on whether the Ennon is in a warm-up state or a cooling state. However, even if the diesel engine is warmed up, when deceleration operation is performed continuously for a long time, such as during long descents, the wall temperature of the combustion chamber decreases, and especially during deceleration operation, fuel cut occurs. In a diesel engine, if deceleration operation is performed continuously for a long period of time, the wall temperature of the combustion chamber will drop significantly.

このため減速運転が長時間にわたって連続して行われた
直後に軽負荷運転あるいはアイドル運転が行われると、
燃焼室の壁面温度が低下しているのでディーゼルエンジ
ンの燃焼状態が悪化し、不完全燃焼成いは失火によって
!IP気が人中のHC,Coの如き未燃焼成分が増大し
、また白煙が発生する虞れがある。
Therefore, if light load operation or idling operation is performed immediately after continuous deceleration operation for a long time,
As the wall temperature of the combustion chamber decreases, the combustion condition of the diesel engine deteriorates, resulting in incomplete combustion due to misfire! There is a risk that unburned components such as HC and Co in the IP air will increase and white smoke will be generated.

さらに、インタークーラを備えたディーゼルエンジンに
おいては、吸気冷却作用が加わるため、減速運転時には
燃焼室の壁面温度がさらに低下し、上述のような燃焼状
態の悪化を招きやすいという問題、?!、がある。
Furthermore, in a diesel engine equipped with an intercooler, since an intake air cooling effect is added, the wall temperature of the combustion chamber further decreases during deceleration operation, which tends to lead to the deterioration of the combustion state as described above. ! There is.

〔発明が解決しようとする問題、α〕[Problem that the invention seeks to solve, α]

本発明は、上述の問題点をM消せんとするものであり、
エンジンが暖機状態であっても、連続して減速運転され
た場合には、吸気通路を切替え、インタークーラの熱交
換器で吸気が冷却されないようにして、吸気の過冷却に
よる燃焼室壁面温度の低下を防ぎ、燃焼性の悪化と、徘
〃ス中の未燃焼成分の増大及び白煙の発生を防止するこ
とがでさるインタークーラを備えた過給機付ディーゼル
エンジンの吸気制御方法を提供することを目的とする。
The present invention aims to eliminate the above-mentioned problems,
Even when the engine is warmed up, if the engine is continuously operated at a reduced speed, the intake passage is switched to prevent the intake air from being cooled by the intercooler's heat exchanger. Provided is an intake air control method for a supercharged diesel engine equipped with an intercooler that prevents a decrease in combustibility, an increase in unburned components in the air, and the generation of white smoke. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明では、過給機からインタークーラの熱交
換器を経由してエンジンに至る吸気通路に加えて、過給
機から上記熱交換器を経由せず直接にエンノンに至るバ
イパス通路を有し、上記吸気通路と上記バイパス通路と
を切替える切替弁を備えたディーゼルエンジンの吸気制
御方法であって、吸気温度から算出される所定時間以上
にわたって、連続して減速運転がなされた場合に、吸気
が上記バイパス通路を通過するように上記切替弁を制御
することを特徴とするインタークーラを備えた過給機付
ディーゼルエンジンの吸気制御方法が提供される。
Therefore, in the present invention, in addition to an intake passage from the supercharger to the engine via the intercooler heat exchanger, there is also a bypass passage from the supercharger to the ennon directly without going through the heat exchanger. The intake air control method for a diesel engine is provided with a switching valve that switches between the intake passage and the bypass passage, and the intake air Provided is an intake control method for a supercharged diesel engine equipped with an intercooler, characterized in that the switching valve is controlled so that the switching valve passes through the bypass passage.

〔実施例〕〔Example〕

本発明の実施例について、図面に従って具体的に説明す
る。第1図に本発明を適用したディーゼルエンジンの構
成を慎式的に示す、第1図においテ、11!テイーゼル
エンジン、2は吸気マニホールド、3は排気マニホール
ド、4は過給機、5は排気管である。エアクリーナ6か
ら導入された吸気が過給へ4で加圧され、インタークー
ラの熱交換器7を経由して吸気マニホールド2に導かれ
る吸気通路8に加えて、熱交換器7を経由しないバイパ
ス通路9を有し、上記吸気通路8と上記バイパス通路9
とを切替える切替弁10を備えている。
Embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 schematically shows the configuration of a diesel engine to which the present invention is applied. The tasel engine includes an intake manifold 2, an exhaust manifold 3, a supercharger 4, and an exhaust pipe 5. In addition to the intake passage 8 where the intake air introduced from the air cleaner 6 is pressurized to the supercharger 4 and guided to the intake manifold 2 via the heat exchanger 7 of the intercooler, there is also a bypass passage that does not pass through the heat exchanger 7. 9, the intake passage 8 and the bypass passage 9.
It is equipped with a switching valve 10 that switches between the two.

切替弁10は、リンク11によりアクチュエータ12に
結合されている。アクチュエータ12はリニアソレノイ
ドからなり、制御コンピュータ13によって制御される
。制御コンピュータ13には、エアクリーナ6に取付ら
れた吸気温センサ14の信号(T)、エンジン1の回転
数を検出する回転数センサ15の信号(N)、それにア
クセルの操作位置を検出するアクセルボノシ2ンセンサ
16の信号<a>が入力される。制御コンピュータ13
は、上記の入力信号に基さ、ディーゼルエンジンが減速
運転されているか否かを判別し、減速運転が、吸気温度
で決められる所定時間以上にわたって連続してなされた
場合には、アクチュエータ12を駆動して切替弁10を
fJJ替え、吸気が熱交換器7を通らずバイパス通路9
を通るようにして吸気の過冷却を防ぐ。
The switching valve 10 is coupled to an actuator 12 by a link 11. Actuator 12 consists of a linear solenoid and is controlled by control computer 13. The control computer 13 includes a signal (T) from an intake air temperature sensor 14 attached to the air cleaner 6, a signal (N) from a rotational speed sensor 15 that detects the rotational speed of the engine 1, and an accelerator pedal 2 that detects the operating position of the accelerator. The signal <a> of the sensor 16 is input. Control computer 13
determines whether or not the diesel engine is in deceleration operation based on the above input signal, and drives the actuator 12 if deceleration operation has been performed continuously for a predetermined time period determined by the intake air temperature. Then, the switching valve 10 is changed to fJJ, so that the intake air does not pass through the heat exchanger 7 and instead passes through the bypass passage 9.
to prevent overcooling of the intake air.

以上の制御思想を実行する制御コンピュータ13内での
実際の処理について、t52図の70−チャートに従い
説明する。
The actual processing within the control computer 13 that executes the above control idea will be explained according to the 70-chart in the t52 diagram.

第2図に示された70−チャートは、吸気通路を切替え
る吸気制御ルーチンであり、このルーチンは一定時間毎
に、たとえば0.2 秒毎に割り込み処理される6割り
込み処理200が開始されると、ステップ201にて、
暖機運転が完了したか否かを調べ、暖機運転が完了して
いれば、ステップ202に進み、完了してなければステ
ップ207に進む。
The 70-chart shown in FIG. 2 is an intake control routine for switching the intake passage, and this routine starts when a 6-interrupt process 200 is started, which is executed at regular intervals, for example, every 0.2 seconds. , at step 201,
It is checked whether or not the warm-up operation has been completed. If the warm-up operation has been completed, the process proceeds to step 202; if not, the process proceeds to step 207.

ステップ202は暖a運転完了時に実行され。Step 202 is executed when the warm-up operation is completed.

ディーゼルエンジン1が減速運11!されでいるか否か
の判別が行われる。減速運転の判別はエンジン回転WL
Nとアクセルペダルの踏込み量aとにより行われ、アク
セルペダルの踏込みが解除されていることが7クセルポ
ノシタンセンサ16によって検出され且ディーゼルエン
ジン1の回転数が所定値以上であることが回転数センサ
15によって検出されている時には減速運転時と判別さ
れ、この時にはステップ203へ進み、これに対し上述
の如き判別条件が満たされない時、即ち減速運転以外の
通常運転時にはステップ208に進む。
Diesel engine 1 has deceleration luck 11! A determination is made as to whether the Deceleration operation is determined by engine rotation WL
N and the amount of depression a of the accelerator pedal, and when the 7xel pneumatic sensor 16 detects that the accelerator pedal is released and the rotation speed of the diesel engine 1 is above a predetermined value, the rotation is determined. When it is detected by the multi-sensor 15, it is determined that deceleration operation is in progress, and in this case, the process proceeds to step 203. On the other hand, when the above-mentioned discrimination conditions are not satisfied, that is, in normal operation other than deceleration operation, the process proceeds to step 208.

ステップ203は減速運転時に実行され、このステップ
203に於ては、減速運転時間カウンタのカウント値C
を一つアップカウントすることが行われる。減速運転時
には、一定時間毎の割込処理毎に必ずステップ203が
実行されるため、カウント値Cは減速運転時間に対応し
ている。ステップ203の次はステップ204に進む。
Step 203 is executed during deceleration operation, and in this step 203, the count value C of the deceleration operation time counter is
is counted up by one. During deceleration operation, step 203 is always executed for each interrupt process at a fixed time interval, so the count value C corresponds to the deceleration operation time. After step 203, the process proceeds to step 204.

ステップ204に於ては、吸気温センサ14の検出温度
(T)を読み込む1次いでステップ205に於いて、検
出された吸気温(T)から限界カウント値aSε丁を算
出する。限界カウント値C3lETは、減速運転時にイ
ンタークーラの熱交換器7を経由して吸気しながら連続
運転がでさる許容継続時間に対応しており、つまり減速
運転時にqvP弁10にてバイパス通路9に切替えるま
での時間に対応しており、限界カウント値C”SETと
吸気fiTとは第3図に示すような関係を有している。
In step 204, the temperature (T) detected by the intake temperature sensor 14 is read.In step 205, a limit count value aSε is calculated from the detected intake temperature (T). The limit count value C3lET corresponds to the permissible duration of continuous operation during deceleration operation while taking in air via the heat exchanger 7 of the intercooler. This corresponds to the time until switching, and the limit count value C''SET and intake fiT have a relationship as shown in FIG.

限界カウント値C3ETは、記憶素子に記mされたデー
タを吸気温Tから検索し、補間演算することにより算出
される。
The limit count value C3ET is calculated by searching the data m recorded in the storage element from the intake air temperature T and performing an interpolation calculation.

次いでステップ206に於て、減速運転時間カウント値
Cが上記限界カウント値C3ETより大きいか否かの判
別が行なわれる。C≧C3ETである時には、許容継続
時間以上にわたって連続して減速運転されているため、
ステップ207に進み、ステップ207において7クチ
エエータ12を駆動して切IFか10を6バイパス通1
139に切替える。C≧C3ETでない時は、減速運転
時間が許容継a運松時間内であるため、ステップ209
に進み、切替弁10を熱交換器7を経由する吸気通路に
切替える。
Next, in step 206, it is determined whether the deceleration operation time count value C is greater than the limit count value C3ET. When C≧C3ET, the deceleration operation is continued for longer than the allowable duration time, so
Proceed to step 207, and in step 207, drive the 7 cutter 12 to switch off the IF or 10 to 6 bypass passages 1
Switch to 139. When C≧C3ET is not satisfied, the deceleration operation time is within the allowable joint aunmatsu time, so step 209
Then, the switching valve 10 is switched to the intake passage via the heat exchanger 7.

減速運転以外の通常運転時には、ステップ208に進む
、ステップ208においては減速時間カウンタのカウン
ト値Cを0にリセットし、次にステップ209に進み、
切替弁10を通常の熱交換器7を経由する吸気通路に切
替え、割込処理ルーチンを終了する。
During normal operation other than deceleration operation, the process proceeds to step 208. In step 208, the count value C of the deceleration time counter is reset to 0, and then the process proceeds to step 209.
The switching valve 10 is switched to the normal intake passage via the heat exchanger 7, and the interrupt processing routine is ended.

上述の如t’70−チャートによる割込処理ルーチンが
一定時間毎に実行されることにより、減速運転が所定時
間以上連続してなされた場合は、吸気通路がバイパス通
路9に切替えられ、吸気が熱交換き7で過冷却されるこ
とを防ぐ。
As described above, the interrupt processing routine based on the t'70-chart is executed at regular intervals, so that if deceleration operation continues for a predetermined period of time or more, the intake passage is switched to the bypass passage 9, and the intake air is The heat exchanger 7 prevents supercooling.

減速運転時にいきなり吸気通路を切替えることをせず、
吸気温度から算出される所定時間以上連続して減速運転
された時に始めて吸気通路を切替えるようにしたため、
切替弁10の切替頻度を最小限に押えることができ、運
転時に頻繁な吸気通路の切替がないため、吸気通路の切
替が実用可能となった。
Do not suddenly switch the intake passage during deceleration operation,
The intake passage is switched only when the engine has been operated at deceleration continuously for a predetermined period of time calculated from the intake air temperature.
Since the switching frequency of the switching valve 10 can be kept to a minimum and there is no frequent switching of the intake passage during operation, switching of the intake passage becomes practical.

上述した大施例に於ては、吸気温度の検出が過給前のエ
フクリーナの位置で行なったため、吸気温度の変動が暖
るやかであり、制御がしやすい利豆を有する。
In the above-mentioned large embodiment, since the intake air temperature is detected at the position of the E-cleaner before supercharging, the intake air temperature fluctuates slowly and has the advantage of being easy to control.

吸気温度の検出位置を、過給機の後、さらにはインター
クーラの熱交換器の後とし、過給後の給ス温度を検出す
ることにより、減速運転時に吸気通路を切替えるまでの
上記許容継続時間が、エンジンの燃焼室の壁面温度低下
に、より−M正確に対応した許容継続時間に設定するこ
とができる。
By setting the intake air temperature detection position after the turbocharger and further after the intercooler heat exchanger and detecting the feed temperature after supercharging, the above permissible continuation is achieved until the intake passage is switched during deceleration operation. The time can be set to an allowable duration that corresponds more accurately to the wall temperature drop of the combustion chamber of the engine.

インタークーラが水冷式インタークーラである場合に於
いては、吸気温を直接検出せず、水冷式熱交換器の冷却
水温を検出し、冷却水温から推定される吸気マニホール
ドでの吸気温から′I1.速運転時の上記許容継続時間
を算出して、吸気通路を切替える方法とすることがでさ
る。この方法は吸気マニホールドでの吸気温度をある程
度正確に推定算出できるにもかかわらず、検出する冷却
水温度の変動が比較的緩やかであるため、温度検出が比
較的容易であり制御がしやすい利点がある。
When the intercooler is a water-cooled intercooler, the intake air temperature is not directly detected, but the cooling water temperature of the water-cooled heat exchanger is detected, and 'I1 is calculated from the intake air temperature at the intake manifold estimated from the cooling water temperature. .. It is possible to calculate the above-mentioned allowable continuation time during high-speed operation and switch the intake passage. Although this method can estimate the intake air temperature at the intake manifold with some degree of accuracy, the fluctuations in the detected coolant temperature are relatively slow, so the advantage is that temperature detection is relatively easy and control is easy. be.

上述した実施例及びその他の方法では、いずれも吸気通
路を完全に切替えるものとして説明したが、切替弁の開
度を上記吸気温度及び減速運転のam時間−二基いて連
続的に制御することも可能であることはいうまでもない
In the embodiments and other methods described above, the intake passage is completely switched. However, the opening degree of the switching valve may be continuously controlled based on the above-mentioned intake air temperature and am time of deceleration operation. It goes without saying that it is possible.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明はエンノンが暖機状態であっ
ても、連続して減速運転された場合には、インタークー
ラの熱交換器で吸気が冷却されないようにしているから
、吸気の過冷却による燃焼室壁面の温度低下を防ぎ、燃
焼性の悪化を防止し、iI#ガス中の未燃焼成分の増大
あるいは白煙の発生を防止することができるという優れ
た効果がある。
As described above, the present invention prevents the intake air from being cooled by the heat exchanger of the intercooler even if the ennon is warmed up and is continuously operated at deceleration. It has the excellent effect of preventing a decrease in the temperature of the combustion chamber wall surface due to cooling, preventing deterioration of combustibility, and preventing an increase in unburned components in iI# gas or generation of white smoke.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、11′!1図は全体構
成図、第2図は作りJを説明する70−チャート、tt
S3図は吸気温と限界カウント値との特性図である。 1・・・ディーゼルエンジン、4・・・t4給R,6・
・・エアクリーナ、7・・・熱交換器、9・・バイパス
ilり路、10・・・aV弁、12・・・アクチェエー
タ、13・・・制御コンピータ、14・・・@気温セン
サ、15・・・回収数センサ、16・・・アクセルボッ
ジョンセンサ。 第1 口 第2 図
The drawing shows an embodiment of the invention, 11'! Figure 1 is an overall configuration diagram, Figure 2 is a 70-chart explaining the construction J, tt
Figure S3 is a characteristic diagram of intake air temperature and limit count value. 1...Diesel engine, 4...t4 feed R, 6...
... Air cleaner, 7... Heat exchanger, 9... Bypass il path, 10... aV valve, 12... Actuator, 13... Control computer, 14... @ temperature sensor, 15... ...Recovery number sensor, 16...Accelerator bossion sensor. 1st mouth 2nd figure

Claims (1)

【特許請求の範囲】 1 過給機からインタークーラの熱交換器を経由してエ
ンジンに至る吸気通路に加えて、過給機から上記熱交換
器を経由せず直接にエンジンに至るバイパス通路を有し
、上記吸気通路と上記バイパス通路とを切替える切替弁
を備えたディーゼルエンジンの吸気制御方法であって、 吸気温度から算出される所定時間以上にわたって、連続
して減速運転がなされた場合に、吸気が上記バイパス通
路を通過するように上記切替弁を制御することを特徴と
するインタークーラを備えた過給機付ディーゼルエンジ
ンの吸気制御方法。 2 前記吸気温度が、過給前の吸気温度であることを特
徴とする特許請求の範囲第1項記載のインタークーラを
備えた過給機付ディーゼルエンジンの吸気制御方法。 3 前記吸気温度が、過給後の吸気温度であることを特
徴とする特許請求の範囲第1項記載のインタークーラを
備えた過給機付ディーゼルエンジンの吸気制御方法。 4 前記インタークーラの熱交換器が水冷式熱交換器で
あって、前記吸気温度が、上記水冷式熱交換器の冷却水
温から算出された吸気温度であることを特徴とする特許
請求の範囲第1項記載のインタークーラを備えた過給機
付ディーゼルエンジンの吸気制御方法。
[Scope of Claims] 1. In addition to an intake passage from the supercharger to the engine via the heat exchanger of the intercooler, a bypass passage from the supercharger to the engine directly without passing through the heat exchanger is provided. and a switching valve for switching between the intake passage and the bypass passage, the method comprising: a switching valve for switching between the intake passage and the bypass passage; An intake air control method for a supercharged diesel engine equipped with an intercooler, characterized in that the switching valve is controlled so that intake air passes through the bypass passage. 2. The intake air control method for a supercharged diesel engine equipped with an intercooler according to claim 1, wherein the intake air temperature is an intake air temperature before supercharging. 3. The intake air control method for a supercharged diesel engine equipped with an intercooler according to claim 1, wherein the intake air temperature is an intake air temperature after supercharging. 4 The heat exchanger of the intercooler is a water-cooled heat exchanger, and the intake air temperature is an intake air temperature calculated from the cooling water temperature of the water-cooled heat exchanger. An intake air control method for a supercharged diesel engine equipped with an intercooler according to item 1.
JP59215670A 1984-10-15 1984-10-15 Method of controlling intake of diesel engine with supercharger provided with intercooler Pending JPS6196128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215670A JPS6196128A (en) 1984-10-15 1984-10-15 Method of controlling intake of diesel engine with supercharger provided with intercooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215670A JPS6196128A (en) 1984-10-15 1984-10-15 Method of controlling intake of diesel engine with supercharger provided with intercooler

Publications (1)

Publication Number Publication Date
JPS6196128A true JPS6196128A (en) 1986-05-14

Family

ID=16676221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215670A Pending JPS6196128A (en) 1984-10-15 1984-10-15 Method of controlling intake of diesel engine with supercharger provided with intercooler

Country Status (1)

Country Link
JP (1) JPS6196128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095581A (en) * 2001-06-15 2002-12-27 현대자동차주식회사 White smoke reduction device of diesel engine and control method thereof
KR20030027265A (en) * 2001-09-28 2003-04-07 현대자동차주식회사 Cooling device of intake air and control method thereof
JP2007285130A (en) * 2006-04-12 2007-11-01 Toyota Motor Corp Internal combustion engine
CN100412331C (en) * 2004-12-06 2008-08-20 奇瑞汽车股份有限公司 Diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095581A (en) * 2001-06-15 2002-12-27 현대자동차주식회사 White smoke reduction device of diesel engine and control method thereof
KR20030027265A (en) * 2001-09-28 2003-04-07 현대자동차주식회사 Cooling device of intake air and control method thereof
CN100412331C (en) * 2004-12-06 2008-08-20 奇瑞汽车股份有限公司 Diesel engine
JP2007285130A (en) * 2006-04-12 2007-11-01 Toyota Motor Corp Internal combustion engine

Similar Documents

Publication Publication Date Title
EP1515027A1 (en) Exhaust gas purification device and regeneration method thereof
JP4595521B2 (en) Exhaust gas purification device for internal combustion engine
JPH1054251A (en) Internal combustion engine controller
JPS6196128A (en) Method of controlling intake of diesel engine with supercharger provided with intercooler
JP2000161044A (en) Regeneration control device for particulate filter
JPH09256915A (en) Egr device for diesel engine with intercooler
JP2009209784A (en) Egr control device of engine with supercharger
JP6233492B1 (en) Exhaust purification device regeneration control device
JPS5828561A (en) Method of controlling internal combustion engine equipped with turbocharger, at deceleration
JP3371520B2 (en) Engine exhaust recirculation control device
JPH0617644B2 (en) Diesel patty quilt collecting member protection device
JP2006242170A (en) Exhaust emission control device of internal combustion engine
JP2962608B2 (en) Supercharging pressure control device for internal combustion engine with supercharger
JP2735870B2 (en) Engine fuel control device
JPH0614042Y2 (en) Deceleration control device for internal combustion engine with supercharger
JPS60178933A (en) Supercharging pressure control device for exhaust turbosupercharger
JPH10176528A (en) Method for operating internal combustion engine
JP2881789B2 (en) Exhaust gas recirculation control device
JP2920220B2 (en) Supercharging pressure control device for internal combustion engine with supercharger
JPH04358714A (en) Exhaust purifying device for engine
JPH05106455A (en) Supercharging pressure control device for internal combustion engine with supercharger
JPH0612237Y2 (en) Supercharging control device for supercharging device
JPS6260926A (en) Suction device for gasoline engine with turbo supercharger
JP2001132553A (en) Egr gas cooling device
JPH052813B2 (en)