JPH10176528A - Method for operating internal combustion engine - Google Patents

Method for operating internal combustion engine

Info

Publication number
JPH10176528A
JPH10176528A JP8338271A JP33827196A JPH10176528A JP H10176528 A JPH10176528 A JP H10176528A JP 8338271 A JP8338271 A JP 8338271A JP 33827196 A JP33827196 A JP 33827196A JP H10176528 A JPH10176528 A JP H10176528A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8338271A
Other languages
Japanese (ja)
Inventor
Kazuhisa Okamoto
和久 岡本
Toru Matsui
徹 松井
Masaki Hondo
正樹 本道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP8338271A priority Critical patent/JPH10176528A/en
Publication of JPH10176528A publication Critical patent/JPH10176528A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the NOx storage and reduction catalyst purifying performance for a long time in an internal combustion engine, which is provided with a NOx storage and reduction catalyst in an exhaust system thereof so as to clean the exhaust gas. SOLUTION: This internal combustion engine is provided with an air-fuel ratio control device (a pipeline 51 and a fuel gas flow control valve 52 or the like) in an intake system thereof so as to alternately changeover the rich operating condition and the lean operating condition on the basis of the signal from an ECU, while at the time of switching from the lean operating condition to the rich operating condition, a part of the exhaust gas is led in through a pipeline 53 and an exhaust gas flow control valve 54 or the like so as to control the generation of knocking and temperature rise of the exhaust gas. This method is especially effective in an internal combustion engine such as a gas engine for cogeneration, of which load operation is conditioned to be operated at 100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の運転方法
に関し、特に、排気系統にNOx 吸蔵還元触媒を設けて
排気ガスの浄化を行うようにした内燃機関において、該
NOx 吸蔵還元触媒の浄化性能を長期間にわたって維持
できるようにした内燃機関の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation method of an internal combustion engine, and more particularly to a purification performance of an NOx storage reduction catalyst in an internal combustion engine provided with a NOx storage reduction catalyst in an exhaust system for purifying exhaust gas. And an operation method of the internal combustion engine that can maintain the pressure for a long period of time.

【0002】[0002]

【従来の技術】内燃機関の排気ガス中の窒素参加物(N
Ox )を除去するための方法及び装置は多く提案されて
おり、その一つに、いわゆるNOx 吸蔵還元触媒を排気
系統に備えるものがある。NOx 吸蔵還元触媒とは、例
えばアルミナを担体とし、この担体上に例えばカリウム
K、ナトリウムNa、リチウムLi、セシウムCsのよ
うなアルカリ金属、バリウムBa、カルシウムCaのよ
うなアルカリ土類、ランタンLa、イットリウムYのよ
うな希土類等から選ばれた少なくとも一つと、白金Pt
のような貴金属とが担持された吸収剤を持つものであ
り、流入する排気ガスの空気比がリーンの場合にはNO
x を吸収し、酸素濃度が低下するとNOx を放出する機
能、すなわち、NOx の吸蔵と還元による放出の機能を
備えたものである。
2. Description of the Related Art Nitrogen particles (N) in the exhaust gas of an internal combustion engine
Many methods and apparatuses for removing Ox) have been proposed, one of which includes a so-called NOx storage reduction catalyst in an exhaust system. The NOx storage reduction catalyst includes, for example, alumina as a carrier, and on this carrier, for example, potassium K, sodium Na, lithium Li, an alkali metal such as cesium Cs, barium Ba, an alkaline earth such as calcium Ca, lanthanum La, At least one selected from rare earth elements such as yttrium Y and platinum Pt
If the air ratio of the inflowing exhaust gas is lean, NO
It has a function of absorbing NO and releasing NOx when the oxygen concentration decreases, that is, a function of releasing NOx by storage and reduction.

【0003】吸収剤のNOx 吸収量には制限があり、長
時間リーン排気ガス中で使用された場合、徐々に吸収剤
が飽和してNOx の吸収効率が低下する。そのためにN
Ox吸蔵還元触媒を内燃機関の排気ガス浄化に用いる場
合には、一定時間リーン排気ガス雰囲気においた後、次
に、理論空燃比もしくはそれ以上のリッチ空燃比の排気
ガス雰囲気(すなわち、酸素濃度が低下した雰囲気)に
吸収剤を曝し、NOxの還元除去を行うようにしてい
る。還元除去の際には、三元触媒と同様の触媒作用が起
こり、排気ガス中のNOx も同時に還元除去される。排
気ガスをリーン状態及びリッチ状態に切り換えることに
より、吸収(リーン)、放出、還元(リッチ)が繰り返
され、高いNOx 浄化性能を得ることができる。
[0003] The amount of NOx absorbed by the absorbent is limited, and when used in lean exhaust gas for a long time, the absorbent gradually saturates and the NOx absorption efficiency decreases. N for that
When the Ox storage reduction catalyst is used for purifying the exhaust gas of an internal combustion engine, after leaving it in a lean exhaust gas atmosphere for a certain period of time, then an exhaust gas atmosphere having a stoichiometric air-fuel ratio or a rich air-fuel ratio higher than that (that is, an oxygen concentration of The absorbent is exposed to a (reduced atmosphere) to reduce and remove NOx. At the time of reduction and removal, a catalytic action similar to that of the three-way catalyst occurs, and NOx in the exhaust gas is also reduced and removed at the same time. By switching the exhaust gas between the lean state and the rich state, absorption (lean), release, and reduction (rich) are repeated, and high NOx purification performance can be obtained.

【0004】内燃機関の運転中に、排気ガス雰囲気をリ
ーン状態とリッチ状態に切り換える方法として、内燃機
関の吸気系統に空燃比制御装置を設け、空燃比制御によ
り理論空燃比以上の運転状態(リッチ状態)とリーン空
燃比運転状態(リーン状態)とに交互に切り換えて運転
する方法と、リーン状態で運転される内燃機関に対し
て、切り替え自在な2系統の排気系統を設け、一定期間
毎に経路を切り換えるようにすると共に、NOx を吸収
した側の触媒上流から還元剤(還元ガス)を供給する方
法が提案されている(特開平8−19728号公報、特
開平8−86213号公報参照)。
As a method of switching the exhaust gas atmosphere between a lean state and a rich state during the operation of the internal combustion engine, an air-fuel ratio control device is provided in an intake system of the internal combustion engine, and an air-fuel ratio control is performed to obtain an operating state (rich or higher) that is equal to or higher than the stoichiometric air-fuel ratio. State) and a lean air-fuel ratio operating state (lean state) alternately, and a switchable two-system exhaust system is provided for the internal combustion engine operated in the lean state. A method has been proposed in which the path is switched and a reducing agent (reducing gas) is supplied from the upstream of the catalyst on the side where NOx is absorbed (see JP-A-8-19728 and JP-A-8-86213). .

【0005】[0005]

【発明が解決しようとする課題】排気系統を2系統と
し、一定期間毎に排気経路を切り換え、かつ、NOx を
吸収した側の触媒上流から還元剤(還元ガス)を供給す
る方法は、触媒を2系統用意する必要があるためスペー
スの増大やコストの増加という問題が生じ、さらに、還
元剤を別途用意するためにランニングコストが増大す
る。
The exhaust system is divided into two systems, the exhaust path is switched at regular intervals, and a reducing agent (reducing gas) is supplied from the upstream side of the catalyst on the side where NOx is absorbed. Since two systems need to be prepared, there arises a problem of an increase in space and an increase in cost, and a running cost increases because a reducing agent is separately prepared.

【0006】一方、空燃比制御装置により空燃比をリッ
チ状態とリーン状態とに交互に切り換えて連続運転する
方法は次のような不都合を伴う。すなわち、内燃機関の
燃焼状態をリーン状態からリッチ状態へ切り替えると、
通常、ノッキングが発生する。自動車用内燃機関のよう
に、ほとんどの場合に部分負荷で運転を行うものにおい
ては、例えば点火時期を遅角させる等によりノッキング
には容易に対処可能であり、例えノッキングが発生した
としても、部分負荷運転であるが故に、機関に与える損
傷も少ない。従って、自動車用内燃機関においては、排
気系統にNOx吸蔵還元触媒を設け、内燃機関の空燃比
制御装置により空燃比をリッチ状態とリーン状態とに交
互に切り換えることにより、長期間にわたる排気ガスの
浄化を行うようにすることは格別の問題を提起しない。
また、格別のコスト増加も伴わない。
On the other hand, the method of continuously operating the air-fuel ratio by switching the air-fuel ratio between a rich state and a lean state by the air-fuel ratio control device involves the following disadvantages. That is, when the combustion state of the internal combustion engine is switched from the lean state to the rich state,
Usually, knocking occurs. In most cases, such as an internal combustion engine for an automobile, which operates with a partial load, knocking can be easily dealt with by, for example, retarding the ignition timing, and even if knocking occurs, partial knocking can be performed. Due to the load operation, there is little damage to the engine. Therefore, in an internal combustion engine for an automobile, a NOx storage reduction catalyst is provided in an exhaust system, and the air-fuel ratio is alternately switched between a rich state and a lean state by an air-fuel ratio control device of the internal combustion engine, thereby purifying exhaust gas over a long period of time. Doing so raises no particular problem.
Also, there is no particular cost increase.

【0007】しかし、コージェネレーションに用いられ
る定置型内燃機関のように、常時定負荷(100%負
荷)で、かつ長時間にわたり連続運転することを前提と
している機関の場合、運転中にノッキングが発生するこ
とは、100%負荷での運転状態であるが故に機関に与
える衝撃は大きく、機関に損傷を引き起こす。また、点
火時期を遅角させてノッキングを抑えようとすると、排
気温度の上昇を招き、高い排気温度は機関の損傷の一因
となる。従って、機関の耐久性を確保するために、この
種の内燃機関においては、ノッキングの発生は極力抑え
なければならない。
However, in the case of an engine such as a stationary internal combustion engine used for cogeneration which is assumed to be constantly operated at a constant load (100% load) and continuously operated for a long time, knocking occurs during operation. This means that the engine is operated at 100% load, so that the impact given to the engine is large, causing damage to the engine. Further, when the ignition timing is retarded to suppress knocking, the exhaust gas temperature rises, and the high exhaust gas temperature causes damage to the engine. Therefore, in order to secure the durability of the engine, knocking must be minimized in this type of internal combustion engine.

【0008】換言すれば、コージェネレーションに用い
られる内燃機関のように100%負荷運転を前提とする
内燃機関において、排気ガス浄化のためにNOx 吸蔵還
元触媒を用い、かつ、吸収剤からのNOx の還元を空燃
比制御装置による空燃比のリッチ状態とリーン状態との
切り換えによって行うことは事実上不可能であり、その
ために、NOx 吸蔵還元触媒の使用自体が実用化されて
いない。
[0008] In other words, in an internal combustion engine such as an internal combustion engine used for cogeneration which is premised on 100% load operation, a NOx storage reduction catalyst is used for purifying exhaust gas, and NOx reduction from the absorbent is performed. It is practically impossible to perform the reduction by switching the air-fuel ratio between the rich state and the lean state by the air-fuel ratio control device. Therefore, the use itself of the NOx storage reduction catalyst has not been put to practical use.

【0009】また、部分負荷運転を前提とする内燃機関
において、排気ガス浄化のためにNOx 吸蔵還元触媒を
用い、吸収剤からのNOx の還元を空燃比制御装置によ
る空燃比のリッチ状態とリーン状態との切り換えによっ
て行う場合であっても、運転の都合により、100%負
荷での運転を継続せざるを得ないような場合に、前記と
同様の機関の損傷という問題を生起する。
Further, in an internal combustion engine premised on partial load operation, a NOx storage reduction catalyst is used for purifying exhaust gas, and the reduction of NOx from the absorbent is performed by an air-fuel ratio control device using an air-fuel ratio rich state and a lean state. However, even if the operation is performed by switching, the operation at 100% load must be continued for the sake of operation, causing the same problem of engine damage as described above.

【0010】本発明の目的は、排気系統にNOx 吸蔵還
元触媒を設けて排気ガスの浄化を行うようにした内燃機
関における上記の不都合を解消した運転方法を提供する
ことにあり、より具体的には、内燃機関まわりのスペー
スの増加もコストの増大も招かず、また、高負荷運転時
に機関に損傷を生じるさせることなく、NOx 吸蔵還元
触媒を用いて排気ガスの浄化を行うことを可能とした内
燃機関の運転方法を提供することにある。
[0010] An object of the present invention is to provide an operating method which eliminates the above-mentioned disadvantages in an internal combustion engine in which an exhaust system is provided with a NOx storage reduction catalyst to purify exhaust gas. Has made it possible to purify exhaust gas using a NOx storage reduction catalyst without causing an increase in space around an internal combustion engine or an increase in cost, and without causing damage to the engine during high-load operation. An object of the present invention is to provide a method for operating an internal combustion engine.

【0011】[0011]

【課題を解決するための手段】上記の課題は、本発明に
よれば、排気系統にNOx 吸蔵還元触媒を設けて排気ガ
スの浄化を行うようにした内燃機関の運転方法におい
て、吸気系統に空燃比制御装置を設けて理論空燃比以上
の運転状態とリーン空燃比運転状態とに交互に切り換え
るようにすると共に、リーン空燃比運転状態から理論空
燃比以上の運転状態への切り替え時に、吸気系統に排気
ガスの一部を導入することによって達成される(請求項
1)。
According to the present invention, there is provided a method of operating an internal combustion engine in which an exhaust system is provided with a NOx storage reduction catalyst to purify exhaust gas. A fuel ratio control device is provided to alternately switch between an operating state above the stoichiometric air-fuel ratio and a lean air-fuel ratio operating state, and at the time of switching from the lean air-fuel ratio operating state to an operating state above the stoichiometric air-fuel ratio, the intake system This is achieved by introducing a part of the exhaust gas (claim 1).

【0012】好ましい態様において、内燃機関として過
給機を併設したものを用い、混合気は該過給機のコンプ
レッサを介して機関供給され、排気ガスは該過給機のタ
ービンを介して排出されるようになっており、NOx 吸
蔵還元触媒は該過給機のタービン以降の排気系統に設け
られていることを特徴とする(請求項2)。さらに好ま
しくは、前記の運転方法において、排気ガスの一部は該
過給機のタービンの上流における排気系統から取り出さ
れ、該過給機のコンプレッサの上流側において吸気系統
に導入されるようにされる(請求項3)。
In a preferred embodiment, an internal combustion engine equipped with a supercharger is used, the air-fuel mixture is supplied to the engine through a compressor of the supercharger, and the exhaust gas is discharged through a turbine of the supercharger. The NOx storage reduction catalyst is provided in an exhaust system after the turbine of the supercharger (claim 2). More preferably, in the above operating method, a part of the exhaust gas is taken out of an exhaust system upstream of a turbine of the supercharger, and is introduced into an intake system upstream of a compressor of the supercharger. (Claim 3).

【0013】すなわち、本発明は、内燃機関の燃焼にお
いて、他の燃焼条件が同じであれば、図4に示すよう
に、混合気中に排気ガスを導入することにより、燃焼排
気ガスの温度は低下し、その低下率は排気ガスの混入量
に比例する現象、及び、図5に示すように、混合気中に
排気ガスを導入することにより、ノッキング発生限界出
力(正味平均有効圧力;BMEP)が高くなり、ノツキ
ングの発生は実質的に抑制される現象を、排気系統にN
Ox 吸蔵還元触媒を用いる内燃機関の排気ガス浄化シス
テムに有効に活用しようとするものであり、リーン状態
の排気ガス雰囲気下に曝されることによってNOx を吸
収し飽和した吸収剤を、理論空燃比以上のリッチ状態の
排気ガスに曝すことによってNOx の還元除去を行う場
合に、運転状態の切り替えを吸気系統に設けた空燃比制
御装置により行うと共に、リーン状態からリッチ状態へ
の切り替え時に、吸気経路の混合気中に排気ガスを導入
するようにしたものである。
That is, according to the present invention, when other combustion conditions are the same in the combustion of an internal combustion engine, the temperature of the combustion exhaust gas is reduced by introducing the exhaust gas into the air-fuel mixture as shown in FIG. The rate of decrease is proportional to the amount of exhaust gas mixed, and, as shown in FIG. 5, by introducing exhaust gas into the air-fuel mixture, the knocking generation limit output (net average effective pressure; BMEP) And the occurrence of knocking is substantially suppressed.
It is intended to be effectively used in an exhaust gas purification system of an internal combustion engine using an Ox storage reduction catalyst, and an absorbent saturated by absorbing NOx by being exposed to a lean exhaust gas atmosphere is converted to a stoichiometric air-fuel ratio. When reducing and removing NOx by exposure to the above-described rich exhaust gas, the operating state is switched by the air-fuel ratio control device provided in the intake system, and the intake path is switched when the lean state is switched to the rich state. The exhaust gas is introduced into the air-fuel mixture.

【0014】気筒内に排気ガスを混入した混合気が吸入
され燃焼することにより、ノッキングの発生は抑制さ
れ、かつ排気ガス温度が過度に上昇するのも回避され
る。そのために、部分負荷運転時のみでなく、100負
荷運転時において空燃比制御装置による燃焼状態の切り
替えを行っても、リーン状態からリッチ状態への切り替
え時にノッキングの発生は抑えられ、排気ガス温度も過
度に上昇しない。そのために、機械的不規則振動による
機器の破損や高温による熱劣化を抑えることができ、内
燃機関の寿命は長期化する。
[0014] By causing the air-fuel mixture mixed with the exhaust gas to be sucked into the cylinder and burning, the occurrence of knocking is suppressed, and the excessive rise in the exhaust gas temperature is also avoided. Therefore, even when the combustion state is switched by the air-fuel ratio control device not only at the time of the partial load operation but also at the time of the 100 load operation, the occurrence of knocking is suppressed at the time of switching from the lean state to the rich state, and the exhaust gas temperature is also reduced. Do not rise excessively. Therefore, damage to the device due to mechanical irregular vibration and thermal deterioration due to high temperature can be suppressed, and the life of the internal combustion engine is prolonged.

【0015】本発明による内燃機関の運転方法は、自動
車用内燃機関のように通常部分負荷運転される内燃機関
へも適用可能であるが、100%負荷での連続長時間運
転が条件とされるコージェネレーション用の内燃機関の
運転方法として特に有効であり、従来実施されなかった
NOx 吸蔵還元触媒を用いての排気ガスの浄化をコージ
ェネレーション用の内燃機関において行うことを可能と
する。
The method for operating an internal combustion engine according to the present invention can be applied to an internal combustion engine which is normally operated under a partial load, such as an internal combustion engine for an automobile, provided that a continuous long-time operation at 100% load is required. It is particularly effective as a method of operating an internal combustion engine for cogeneration, and makes it possible to purify exhaust gas using a NOx storage reduction catalyst, which has not been implemented conventionally, in an internal combustion engine for cogeneration.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施の形態に説明する。図1は、第1の実施の形
態であり、過給機10を持つガスエンジン20に本発明
の運転方法を実施する場合の例である。この例におい
て、燃料であるガスGと空気Aとはガスミキサー1によ
り所要の空気比に混合され、過給機10のコンプレッサ
11により加圧され、吸気バルブ21を通りガスエンジ
ン20のシリンダー22内に吸気される。コンプレッサ
11からシリンダー22までの経路には、通常のよう
に、インタークーラー2、スロットル3が設けられる。
上記の経路が本発明でいう吸気系統を構成するものであ
り、この経路は従来知られた内燃機関の他の吸気系統で
あってもよい。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a first embodiment, in which an operation method of the present invention is applied to a gas engine 20 having a supercharger 10. In this example, gas G and air A, which are fuels, are mixed to a required air ratio by the gas mixer 1, pressurized by the compressor 11 of the supercharger 10, passed through the intake valve 21 and in the cylinder 22 of the gas engine 20. It is sucked in. The intercooler 2 and the throttle 3 are provided on the path from the compressor 11 to the cylinder 22 as usual.
The above-mentioned path constitutes the intake system referred to in the present invention, and this path may be another intake system of a conventionally known internal combustion engine.

【0017】排気ガスは排気バルブ23から過給機10
に入り、そこでダービン12を駆動した後、排気経路の
途中に設けられた触媒室30を通過して外気に放出され
る。触媒室30にはNOx 吸蔵還元触媒が収容されてい
る。排気経路における前記触媒室30の上流位置には、
排気ガスの状態を検出するためのセンサ類(酸素セン
サ、温度センサ等)4が設けられており、その情報はE
CU(エンジンコントロールユニット)に送られる。こ
の排気系統も従来知られたものであっよく、これに限ら
れない。ECUも従来公知のものである。
The exhaust gas is supplied from the exhaust valve 23 to the supercharger 10.
After driving the Durbin 12 there, it is discharged to the outside air through a catalyst chamber 30 provided in the middle of the exhaust path. The catalyst chamber 30 contains a NOx storage reduction catalyst. At an upstream position of the catalyst chamber 30 in the exhaust path,
Sensors (oxygen sensor, temperature sensor, etc.) 4 for detecting the state of the exhaust gas are provided.
It is sent to the CU (engine control unit). This exhaust system may be a conventionally known one, and is not limited to this. The ECU is also conventionally known.

【0018】図示のように、吸気経路には、ガスミキサ
ー1をバイパスして燃料ガスを直接ガスミキサー1下流
の混合気中に供給する管路51が設けられ、該管路には
流量調整弁52が配置される。また、排気バルブ23か
ら過給機10に至る排気経路には分岐管路53が設けら
れ、該分岐管路53は過給機10の上流位置において前
記吸気経路に連接している。また、分岐管路53には流
量調整弁54が配置される。そして、双方の、54はE
CUからの信号により、その開度が制御される。
As shown in the drawing, a pipe line 51 for supplying fuel gas directly into the air-fuel mixture downstream of the gas mixer 1 by bypassing the gas mixer 1 is provided in the intake path. 52 are arranged. Further, a branch pipe 53 is provided in an exhaust path from the exhaust valve 23 to the supercharger 10, and the branch pipe 53 is connected to the intake path at a position upstream of the supercharger 10. A flow regulating valve 54 is disposed in the branch conduit 53. And 54 of both is E
The opening is controlled by a signal from the CU.

【0019】このガスエンジンをコージェネレーション
用の原動機として用いる場合を例として、以下、エンジ
ンの運転方法を説明する。コージェネレーション用の原
動機として用いられる場合に、ガスミキサー1により混
合気は理論空燃比よりもリーンな状態(空気過剰率λ=
1.5〜2.0程度)とされ、かつ、常時100%負荷
状態で24時間連続運転の状態におかれる。運転当初
は、ECUからの信号により、流量調整弁52、54は
閉じられており、リーン状態の排気ガスはタービン12
を駆動した後に、触媒室30に入り、そこでNOx はN
Ox 吸蔵還元触媒の吸収剤に吸収される。
The operation method of the gas engine will be described below, taking as an example the case where this gas engine is used as a prime mover for cogeneration. When used as a prime mover for cogeneration, the air-fuel mixture is leaner than the stoichiometric air-fuel ratio by the gas mixer 1 (excess air ratio λ =
1.5 to 2.0), and is continuously operated for 24 hours under a 100% load condition. At the beginning of the operation, the flow control valves 52 and 54 are closed by a signal from the ECU, and the lean exhaust gas is supplied to the turbine 12.
After driving, the catalyst enters the catalyst chamber 30, where NOx is N
It is absorbed by the absorbent of the Ox storage reduction catalyst.

【0020】その状態の運転を継続することにより、吸
収剤は次第に飽和状態となる。図示しないセンサーによ
り飽和の程度を検知し、あるいは、過去の経験から得ら
れる運転時間と飽和程度との関係テーブルに基づき、吸
収剤中のNOx を還元すべくリッチ運転状態に切り換え
る。この切り替えはECUからの信号により、管路51
に設けた流量調整弁52を開弁し、混合気の燃料ガス量
を多くすることにより行われる。該流量調整弁52の開
弁と同時に(あるいは、その直前に)、ECUから分岐
管路53に設けた流量調整弁54の開弁指令が出され
る。
By continuing the operation in that state, the absorbent gradually becomes saturated. The degree of saturation is detected by a sensor (not shown), or the state is switched to a rich operation state in order to reduce NOx in the absorbent based on a relation table between the operation time and the degree of saturation obtained from past experience. This switching is performed by a signal from the ECU in accordance with the pipeline 51.
This is carried out by opening the flow control valve 52 provided in the above to increase the fuel gas amount of the air-fuel mixture. At the same time as (or immediately before) the flow control valve 52 is opened, the ECU issues a command to open the flow control valve 54 provided in the branch conduit 53 from the ECU.

【0021】流量調整弁52の開弁によりリッチ運転状
態となり、排気ガスは低酸素状態(リッチ状態)で触媒
室30に流入する。それにより、NOx 吸蔵還元触媒の
吸収剤に吸収されたNOx は還元除去される。同時に、
排気ガス中のNOx も還元される。混合気はリッチ状態
であるものの、そこに排気ガスが導入されることによ
り、エンシンでのノッキングの発生は抑えられ、かつ、
排気ガスの温度も過度には上昇しない。
When the flow control valve 52 is opened, a rich operation state is established, and the exhaust gas flows into the catalyst chamber 30 in a low oxygen state (rich state). As a result, the NOx absorbed by the absorbent of the NOx storage reduction catalyst is reduced and removed. at the same time,
NOx in the exhaust gas is also reduced. Although the air-fuel mixture is in a rich state, the occurrence of knocking in the engine is suppressed by introducing exhaust gas there, and
The temperature of the exhaust gas also does not rise excessively.

【0022】その状態の運転を継続することにより、吸
収剤は次第に還元され元の状態に復帰する。図示しない
センサーにより復帰の程度を検知し、あるいは、過去の
経験から得られる運転時間と飽和程度との関係テーブル
に基づき、リッチ運転状態からリーン運転状態に切り替
える。この切り替えはECUからの信号により、管路5
1に設けた流量調整弁52を閉じ、混合気の燃料ガス量
を常態に戻すと共に、分岐管路53に設けた流量調整弁
54も閉じる。それにより、運転常態はスムースにリー
ン常態に切り替わる。以下、上記の運転状態の切り替え
を反復して行う。
By continuing the operation in that state, the absorbent is gradually reduced and returns to the original state. The degree of return is detected by a sensor (not shown), or the state is switched from the rich operation state to the lean operation state based on a relation table between the operation time and the saturation degree obtained from past experience. This switching is performed according to a signal from the ECU.
1 is closed, the fuel gas amount of the air-fuel mixture is returned to the normal state, and the flow adjustment valve 54 provided in the branch pipe 53 is also closed. Thereby, the driving normal state is smoothly switched to the lean normal state. Hereinafter, the above-described switching of the operation state is repeatedly performed.

【0023】上記の実施の形態では、排気ガスを抜き出
すための分岐管路53のポートを排気バルブ23から過
給機10に至る排気経路に設け、排気ガスの混合気への
導入ポートは過給機10のコンプレッサ11の直上流位
置に設けている。リーン状態からリッチ状態に切り換え
ると過剰空気量が減少するため、供給すべき混合気量が
減少する。通常は、これをスロットルバルブ3により給
気を絞ることにより対処するために損失が生じる。この
例にように、タービン12の手前から排気ガスを取り出
すことにより、タービンの仕事量が減り、コンプレッサ
11の仕事量が減るために、過給圧力を減少させること
ができ、スロットルによる損失を低減することが可能と
なる。
In the above embodiment, the port of the branch pipe 53 for extracting the exhaust gas is provided in the exhaust path from the exhaust valve 23 to the supercharger 10, and the port for introducing the exhaust gas into the air-fuel mixture is supercharged. It is provided immediately upstream of the compressor 11 of the machine 10. When the state is switched from the lean state to the rich state, the amount of excess air decreases, so the amount of air-fuel mixture to be supplied decreases. Usually, a loss occurs because this is dealt with by reducing the air supply by the throttle valve 3. As in this example, by extracting the exhaust gas before the turbine 12, the work of the turbine is reduced and the work of the compressor 11 is reduced, so that the supercharging pressure can be reduced and the loss due to the throttle is reduced. It is possible to do.

【0024】内燃機関におけるいわゆるウエストゲート
と同様の効果が達成され、タービン12の余分な仕事を
減少することも可能となる。また、過給圧力の減少によ
りスロットル損失は低減し、エンジンの熱効率低下を生
じさせないメリットももたらされる。
An effect similar to that of a so-called wastegate in an internal combustion engine is achieved, and the extra work of the turbine 12 can be reduced. Further, the throttle loss is reduced by the reduction of the supercharging pressure, and there is an advantage that the thermal efficiency of the engine is not reduced.

【0025】上記の実施の形態において、排気経路に設
けたセンサ類4からの種々の情報に基づき、例えば、管
路51に設けた流量調整弁52の開度を適宜制御して、
所要運転状態での空燃比制御を単独で行うことも当然に
可能である。また、排気ガスの取り出しポートと取り出
した排気ガスを吸気系統へ導入する導入ポートの位置は
上記の実施の形態に限るものではなく、高圧側から低圧
側に向かうことを条件に任意であってよい。
In the above embodiment, based on various information from the sensors 4 provided in the exhaust path, for example, the opening of the flow control valve 52 provided in the pipe 51 is appropriately controlled,
Naturally, it is also possible to independently perform the air-fuel ratio control in the required operation state. Further, the positions of the exhaust gas extraction port and the introduction port for introducing the extracted exhaust gas to the intake system are not limited to the above-described embodiment, and may be arbitrary provided that the exhaust gas is directed from the high pressure side to the low pressure side. .

【0026】図2は他の実施の形態を示しており、この
例においては、排気ガスの取り出しポートの位置は図1
のものと同じであるが、取り出した排気ガスを吸気系統
へ導入する導入ポートの位置がエンジンのスロットルバ
ルブ3の下流に設けてある。この場合には、図1の実施
の形態と比較して、レスポンスが向上する効果がもたら
される。
FIG. 2 shows another embodiment. In this example, the position of the exhaust gas extraction port is shown in FIG.
However, the position of the introduction port for introducing the extracted exhaust gas to the intake system is provided downstream of the throttle valve 3 of the engine. In this case, an effect that response is improved as compared with the embodiment of FIG. 1 is brought about.

【0027】図3はさらに他の実施の形態を示してお
り、この例においては、排気ガスの取り出しポートの位
置及び取り出した排気ガスを吸気系統へ導入する導入ポ
ートの位置は図1のものと同じであるが、空燃比をリー
ン状態からリッチ状態に変えるときに供給する燃料ガス
の導入位置が図1のもとのは異なっている。この例で
は、別途設けた燃料ガス用管路51aがスロットル3の
下流において吸気ポートに開放しており、該管路51a
に設けた流量制御弁52aがECUの指令により開閉す
るようになっている。この場合には、図1の実施の形態
と比較して、レスポンスや制御性が向上する効果がもた
らされる。
FIG. 3 shows still another embodiment. In this example, the position of the exhaust gas extraction port and the position of the introduction port for introducing the extracted exhaust gas into the intake system are the same as those in FIG. Although the same, the introduction position of the fuel gas supplied when changing the air-fuel ratio from the lean state to the rich state is different from that in FIG. In this example, a separately provided fuel gas pipe 51a is open to the intake port downstream of the throttle 3, and the pipe 51a
The flow control valve 52a provided in the apparatus is opened and closed according to a command from the ECU. In this case, an effect that response and controllability are improved as compared with the embodiment of FIG.

【0028】特に図示しないが、排気ガスの取り出しポ
ートの位置を過給機10のコンプレッサ12より下流の
排気経路に設け、取り出した排気ガスの吸気系統への導
入ポートを過給機10のコンプレッサ11よりも上流位
置としてもよい。また、空燃比変更用の燃料ガスの供給
はシリンダー22内に直接行ってもよい。さらに、上記
ではガスエンジンを例にとり説明したが、ガソリンエン
ジンでも同様に適用可能である。
Although not particularly shown, the position of the exhaust gas take-out port is provided in the exhaust path downstream of the compressor 12 of the supercharger 10, and the introduction port of the taken-out exhaust gas to the intake system is provided at the compressor 11 of the supercharger 10. It may be located at a position more upstream than that. The supply of the fuel gas for changing the air-fuel ratio may be directly performed in the cylinder 22. Further, in the above description, a gas engine has been described as an example, but the present invention is similarly applicable to a gasoline engine.

【0029】[0029]

【発明の効果】本発明による運転方法を用いることによ
り、NOx 吸蔵還元触媒を用いた排気ガスの浄化を、ノ
ッキングの発生等による機関の損傷を生じることなく、
空燃比制御装置による理論空燃比以上の運転状態とリー
ン空燃比運転状態とを単に交互に切り換えるのみで、長
時間にわたり安定して行うことが可能となる。特に、本
発明はコージェネレーション用の内燃機関のように、1
00%負荷を前提として長時間連続運転される内燃機関
の排気ガス浄化に有効である。
By using the operating method according to the present invention, it is possible to purify exhaust gas using the NOx storage reduction catalyst without causing engine damage due to knocking or the like.
The operation can be stably performed over a long period of time simply by alternately switching the operation state of the air-fuel ratio control device equal to or higher than the stoichiometric air-fuel ratio and the lean air-fuel ratio operation state. In particular, the present invention is applied to one such as an internal combustion engine for cogeneration.
It is effective for exhaust gas purification of an internal combustion engine that is operated continuously for a long time on the assumption that the load is 00%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による内燃機関の運転方法の一実施の形
態を説明する図。
FIG. 1 is a diagram illustrating an embodiment of a method for operating an internal combustion engine according to the present invention.

【図2】本発明による内燃機関の運転方法の他の実施の
形態を説明する図。
FIG. 2 is a diagram illustrating another embodiment of the operating method of the internal combustion engine according to the present invention.

【図3】本発明による内燃機関の運転方法のつらに他の
実施の形態を説明する図。
FIG. 3 is a diagram illustrating another embodiment of the method of operating an internal combustion engine according to the present invention.

【図4】排気ガスの混合割合と排気ガス温度との関係を
示す図。
FIG. 4 is a diagram showing a relationship between a mixing ratio of exhaust gas and an exhaust gas temperature.

【図5】排気ガスの混合割合とノッキング発生限界出力
(正味平均有効圧力;BMEP)との関係を示す図。
FIG. 5 is a diagram showing a relationship between a mixing ratio of exhaust gas and a knocking occurrence limit output (net average effective pressure; BMEP).

【符号の説明】[Explanation of symbols]

10…過吸機、11…コンプレッサ、12…タービン、
20…内燃機関(ガスエンジン)、30…NOx 吸蔵還
元触媒を収容する触媒室、52…空燃比制御装置の一部
を構成する燃料ガス流量調整弁、54…排気ガス流量調
整弁、1…ガスミキサー、3…スロットル、A…空気、
G…ガス、ECU…エンジンコントロールユニット
10 ... absorber, 11 ... compressor, 12 ... turbine,
Reference Signs List 20: internal combustion engine (gas engine), 30: catalyst chamber for accommodating NOx storage reduction catalyst, 52: fuel gas flow control valve constituting a part of air-fuel ratio control device, 54: exhaust gas flow control valve, 1: gas Mixer, 3 ... throttle, A ... air,
G: Gas, ECU: Engine control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 37/00 302 F02M 21/02 311B F02M 21/02 ZAB 25/07 ZAB 311 550R 25/07 ZAB 570P 550 580B 570 B01D 53/36 ZAB 580 102H ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI F02B 37/00 302 F02M 21/02 311B F02M 21/02 ZAB 25/07 ZAB 311 550R 25/07 ZAB 570P 550 580B 570 B01D 53 / 36 ZAB 580 102H

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 排気系統にNOx 吸蔵還元触媒を設けて
排気ガスの浄化を行うようにした内燃機関の運転方法で
あって、吸気系統に空燃比制御装置を設けて理論空燃比
以上の運転状態とリーン空燃比運転状態とに交互に切り
換えるようにすると共に、リーン空燃比運転状態から理
論空燃比以上の運転状態への切り替え時に、吸気系統に
排気ガスの一部を導入することを特徴とする内燃機関の
運転方法。
1. An operating method for an internal combustion engine in which a NOx storage reduction catalyst is provided in an exhaust system to purify exhaust gas, and an air-fuel ratio control device is provided in an intake system to operate the engine at a stoichiometric air-fuel ratio or higher. And the lean air-fuel ratio operating state is alternately switched, and a part of the exhaust gas is introduced into the intake system when switching from the lean air-fuel ratio operating state to an operating state higher than the stoichiometric air-fuel ratio. Operating method of the internal combustion engine.
【請求項2】 請求項1記載の内燃機関の運転方法にお
いて、内燃機関として過給機を併設したものを用い、混
合気は該過給機のコンプレッサを介して供給され、排気
ガスは該過給機のタービンを介して排出されるようにな
っており、NOx 吸蔵還元触媒は該過給機のタービン以
降の排気系統に設けられていることを特徴とする内燃機
関の運転方法。
2. The method for operating an internal combustion engine according to claim 1, wherein the internal combustion engine is provided with a supercharger, the air-fuel mixture is supplied via a compressor of the supercharger, and the exhaust gas is supplied to the supercharger. A method for operating an internal combustion engine, wherein the exhaust gas is discharged via a turbine of a supercharger, and the NOx storage reduction catalyst is provided in an exhaust system after the turbine of the supercharger.
【請求項3】 請求項2記載の内燃機関の運転方法にお
いて、排気ガスの一部は該過給機のタービンの上流にお
ける排気系統から取り出され、該過給機のコンプレッサ
の上流側において吸気系統に導入されるようになってい
ることを特徴とする内燃機関の運転方法。
3. The method for operating an internal combustion engine according to claim 2, wherein a part of the exhaust gas is taken out of an exhaust system upstream of a turbine of the supercharger, and an intake system is upstream of a compressor of the supercharger. A method for operating an internal combustion engine, wherein the method is adapted to be introduced into a vehicle.
【請求項4】 内燃機関が発電用の内燃機関であること
を特徴とする請求項1ないし3いずれか記載の内燃機関
の運転方法。
4. The method according to claim 1, wherein the internal combustion engine is a power generation internal combustion engine.
【請求項5】 内燃機関がコージェネレーション用の内
燃機関であることを特徴とする請求項1ないし3いずれ
か記載の内燃機関の運転方法。
5. The method for operating an internal combustion engine according to claim 1, wherein the internal combustion engine is a cogeneration internal combustion engine.
JP8338271A 1996-12-18 1996-12-18 Method for operating internal combustion engine Pending JPH10176528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8338271A JPH10176528A (en) 1996-12-18 1996-12-18 Method for operating internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8338271A JPH10176528A (en) 1996-12-18 1996-12-18 Method for operating internal combustion engine

Publications (1)

Publication Number Publication Date
JPH10176528A true JPH10176528A (en) 1998-06-30

Family

ID=18316562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8338271A Pending JPH10176528A (en) 1996-12-18 1996-12-18 Method for operating internal combustion engine

Country Status (1)

Country Link
JP (1) JPH10176528A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783280A1 (en) * 1998-09-11 2000-03-17 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES IN AN EXHAUST LINE OF A DIESEL ENGINE
EP1211403A2 (en) * 2000-12-01 2002-06-05 Caterpillar Inc. Engine controller for an internal combustion engine
JP2002332829A (en) * 2001-05-11 2002-11-22 Yanmar Diesel Engine Co Ltd Exhaust emission control device of internal combustion engine
EP1191202B1 (en) * 2000-09-21 2005-04-13 Caterpillar Inc. Low pressure gaseous fuel system
DE102014016074B4 (en) 2013-11-29 2020-06-18 Keihin Corporation Electronically controlled throttle system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783280A1 (en) * 1998-09-11 2000-03-17 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES IN AN EXHAUST LINE OF A DIESEL ENGINE
EP1191202B1 (en) * 2000-09-21 2005-04-13 Caterpillar Inc. Low pressure gaseous fuel system
EP1211403A2 (en) * 2000-12-01 2002-06-05 Caterpillar Inc. Engine controller for an internal combustion engine
EP1211403A3 (en) * 2000-12-01 2004-01-07 Caterpillar Inc. Engine controller for an internal combustion engine
JP2002332829A (en) * 2001-05-11 2002-11-22 Yanmar Diesel Engine Co Ltd Exhaust emission control device of internal combustion engine
DE102014016074B4 (en) 2013-11-29 2020-06-18 Keihin Corporation Electronically controlled throttle system

Similar Documents

Publication Publication Date Title
JP3929296B2 (en) Internal combustion engine
US7963103B2 (en) Exhaust gas purification method and system
JP3613676B2 (en) Exhaust gas purification device for internal combustion engine
JP3508691B2 (en) Exhaust gas purification device for internal combustion engine
US6964157B2 (en) Exhaust emission control system and method for removal and storage of vehicle exhaust gas nitrogen oxides during cold operation
JPH10317946A (en) Exhaust emission control device
JP3358552B2 (en) Fuel injection control device for internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
KR100478073B1 (en) Exhaust gas purifying device for internal combustion engine
JP3462445B2 (en) Exhaust gas purification device
JPH10176528A (en) Method for operating internal combustion engine
JP4661013B2 (en) Internal combustion engine
JP4001019B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP3797046B2 (en) Diesel engine exhaust purification system
JP2002081311A (en) Exhaust emission control device for internal combustion engine
JP2001065333A (en) Exhaust emission control device for internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP2722985B2 (en) Exhaust gas purification device for internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP3496572B2 (en) Exhaust gas purification device for internal combustion engine
JP4496615B2 (en) Exhaust gas purification device for internal combustion engine
JP3633290B2 (en) Exhaust gas purification device for internal combustion engine
JP5379733B2 (en) Engine exhaust purification system
JP3896893B2 (en) Exhaust gas purification device for internal combustion engine
JP3552561B2 (en) Internal combustion engine with exhaust gas purification device