JP2002332829A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JP2002332829A
JP2002332829A JP2001141453A JP2001141453A JP2002332829A JP 2002332829 A JP2002332829 A JP 2002332829A JP 2001141453 A JP2001141453 A JP 2001141453A JP 2001141453 A JP2001141453 A JP 2001141453A JP 2002332829 A JP2002332829 A JP 2002332829A
Authority
JP
Japan
Prior art keywords
internal combustion
reduction catalyst
combustion engine
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001141453A
Other languages
Japanese (ja)
Inventor
昌吾 ▲松▼林
Shogo Matsubayashi
Toru Nakazono
徹 中園
Hiroichi Sasaki
博一 佐々木
Kouta Yokoyama
晃太 横山
Toru Matsui
徹 松井
Masaki Hondo
正樹 本道
Yoshihito Taniguchi
圭仁 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yanmar Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yanmar Diesel Engine Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Yanmar Diesel Engine Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001141453A priority Critical patent/JP2002332829A/en
Publication of JP2002332829A publication Critical patent/JP2002332829A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, capable of detecting an accurate engine load, calculating the SOX amount contained in the exhaust gas, determining an SOX poisoning amount of an NOX storage- reduction catalyst, and suitably discriminating the regeneration timing of the NOX storage-reduction catalyst. SOLUTION: This exhaust emission control device comprises the NOX storage- reduction catalyst in an exhaust passage, in the internal combustion engine, an engine load calculating means for calculating engine load, based on upstream-side pressure and downstream-side pressure of a compressor, driven by the internal combustion engine in a refrigeration cycle for circulating and supplying refrigerant to the compressor, an engine speed detecting means, an air-fuel ratio control means, and a calculation means for calculating the exhaust gas amount, from the engine load, the engine speed, and the air-fuel ratio. The exhaust emission control device estimates an SOX toxic amount of the NOX storage-reduction catalyst, due to the passing of a predetermined amount of exhaust gas which pass through the NOX storage-reduction catalyst, and regenerates the NOX storage-reduction catalyst when the estimated SOX poisoning amount reaches the predetermined amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気通路にNO
吸蔵還元触媒を備えた内燃機関の排気浄化装置に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to an exhaust passage having NO X
The present invention relates to an exhaust gas purification device for an internal combustion engine having a storage reduction catalyst.

【0002】[0002]

【従来の技術】従来のNO吸蔵還元触媒を備えた内燃
機関の排気浄化装置では、機関負荷はスロットルの開度
から求めていた。すなわち、スロットル開度が大きいと
機関負荷は大きく、逆に開度が小さいと機関負荷は小さ
いと判定していた。しかし、スロットルは大気圧の変動
に影響されるため、必ずしも正確な機関負荷を検出する
ことができるとは限らない。
2. Description of the Related Art In an exhaust gas purifying apparatus for an internal combustion engine provided with a conventional NO X storage reduction catalyst, the engine load is determined from the throttle opening. That is, it has been determined that the engine load is large when the throttle opening is large, and that the engine load is small when the throttle opening is small. However, since the throttle is affected by fluctuations in the atmospheric pressure, it is not always possible to accurately detect the engine load.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明では、よ
り正確な機関負荷を検出し、排気ガス量を正確に算出し
てNO吸蔵還元触媒のSO被毒量を求め、NO
蔵還元触媒の再生時期を適切に判断することができる内
燃機関の排気浄化装置を提供することを課題としてい
る。
In the [0006] Therefore, the present invention, to detect a more accurate engine load, determine the SO X poisoning amount of the NO X occluding and reducing catalyst to accurately calculate the amount of exhaust gas, the NO X storage reduction It is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine, which can appropriately determine the catalyst regeneration time.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、請求項1の発明では、内燃機関の排気通路にNO
吸蔵還元触媒を設け、前記内燃機関により駆動されるコ
ンプレッサに冷媒を循環供給する冷凍サイクルにおける
前記コンプレッサの上流側の圧力と下流側の圧力とから
機関負荷を算出する機関負荷算出手段と、機関回転数検
出手段及び空燃比制御手段とを備え、機関負荷,機関回
転数及び空燃比から排気ガス量を算出する算出手段を備
え、所定量の排気ガスがNO吸蔵還元触媒を通過する
ことにより前記NO吸蔵還元触媒のSO被毒量を推
定し、前記推定したSO被毒量が所定量に達したらN
吸蔵還元触媒の再生を行うようにした。請求項2の
発明では請求項1の発明において、NO吸蔵還元触媒
の温度から再生速度を推定し、NO吸蔵還元触媒の温
度が高くなるほど再生時間を短く設定するようにした。
請求項3の発明では請求項2の発明において、NO
蔵還元触媒の温度から再生速度を推定し、再生時間と前
記再生速度とから再生総量を推定する推定手段を備え
た。運転条件が変動する場合にも対応可である。請求項
4の発明では、請求項2又は3の発明において、点火時
期を変更することによりNO吸蔵還元触媒の温度を制
御するようにした。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, NO X is provided in an exhaust passage of an internal combustion engine.
An engine load calculating means for providing an occlusion reduction catalyst and calculating an engine load from a pressure on an upstream side and a pressure on a downstream side of the compressor in a refrigeration cycle for circulating a refrigerant to a compressor driven by the internal combustion engine; a number detection means and the air-fuel ratio control means, the engine load, comprising a calculating means for calculating an exhaust gas quantity from the engine speed and the air-fuel ratio, said by a predetermined amount of exhaust gas passes through the the NO X storage reduction catalyst The SO X poisoning amount of the NO X storage reduction catalyst is estimated, and when the estimated SO X poisoning amount reaches a predetermined amount, N
O X it was to carry out the regeneration of the storage-reduction catalyst. In the invention of claim 2 in the invention of claim 1, it estimates the regeneration speed from the temperature of the NO X occluding and reducing catalyst, and as the temperature of the NO X occluding and reducing catalyst becomes enough to set short reproduction time high.
According to a third aspect of the present invention, in the second aspect, there is provided an estimating means for estimating the regeneration speed from the temperature of the NO X storage reduction catalyst and estimating the total regeneration amount from the regeneration time and the regeneration speed. It is possible to cope with the case where the operating conditions fluctuate. According to a fourth aspect of the present invention, in the second or third aspect, the temperature of the NO X storage reduction catalyst is controlled by changing the ignition timing.

【0005】[0005]

【発明の実施の形態】(請求項1の発明の実施例)図1
は、請求項1〜4の発明を実施した内燃機関100の系
統略図である。内燃機関100では、ミキサ11で生成
された混合気が内燃機関本体1に供給され、図示しない
燃焼室で燃焼を行い、排気ガスが排気管13(排気通
路)を介して排出される。排気管13の途中にはNO
吸蔵還元触媒14が設けてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment of the Invention) FIG.
1 is a system schematic diagram of an internal combustion engine 100 embodying the invention of claims 1 to 4. In the internal combustion engine 100, the air-fuel mixture generated by the mixer 11 is supplied to the internal combustion engine main body 1, burns in a combustion chamber (not shown), and exhaust gas is discharged through an exhaust pipe 13 (exhaust passage). NO X in the middle of the exhaust pipe 13
An occlusion reduction catalyst 14 is provided.

【0006】内燃機関本体1は、ベルト15を介して圧
縮機7(コンプレッサ)を駆動する。圧縮機7には途中
に凝縮器30,膨張弁32及び蒸発器31を備え冷凍サ
イクル50を形成する配管33が設けてある。冷凍サイ
クル50内を冷媒(図示せず)が循環する。
The internal combustion engine body 1 drives a compressor 7 (compressor) via a belt 15. The compressor 7 is provided with a pipe 33 that includes a condenser 30, an expansion valve 32, and an evaporator 31 and forms a refrigeration cycle 50 in the middle. A refrigerant (not shown) circulates in the refrigeration cycle 50.

【0007】図1に示すように圧縮機7の上流側の配管
33には圧力センサ4が設けてあり、また、下流側には
圧力センサ5が設けてある。圧力センサ4,5は、それ
ぞれ信号線21,22を介してCPU2へ検出信号を伝
達できるようになっている。
As shown in FIG. 1, a pressure sensor 4 is provided on a pipe 33 on the upstream side of the compressor 7, and a pressure sensor 5 is provided on a downstream side. The pressure sensors 4 and 5 can transmit detection signals to the CPU 2 via signal lines 21 and 22, respectively.

【0008】CPU2は、圧力センサ4,5から入力さ
れた検出信号に基づき、式(1)により機関負荷Peを
算出する。
The CPU 2 calculates the engine load Pe by the equation (1) based on the detection signals input from the pressure sensors 4 and 5.

【数1】 ここで、Pは圧縮機7の上流側圧力、Pは圧縮機7
の下流側圧力、Cは係数、kは冷媒比熱比である。
(Equation 1) Here, P 1 is the upstream pressure of the compressor 7, and P 2 is the compressor 7
, C is a coefficient, and k is a specific heat ratio of the refrigerant.

【0009】ミキサ11には配管19を介して空気が供
給される。また、ミキサ11には燃料タンク9から途中
に空燃比制御弁10を備えた配管20を介して燃料が供
給される。
Air is supplied to the mixer 11 through a pipe 19. Fuel is supplied to the mixer 11 from the fuel tank 9 via a pipe 20 provided with an air-fuel ratio control valve 10 in the middle.

【0010】ミキサ11内の混合気の空燃比は、空燃比
制御弁10の開度を調整することにより変更可能であ
る。たとえば、開度を大きくすると燃料が多量に供給さ
れるので空燃比は小さくなり、逆に開度を小さくすると
空燃比は大きくなる。空燃比制御弁10の開度は、CP
U2から伝達される信号(指令)により変更可能となっ
ている。
The air-fuel ratio of the air-fuel mixture in the mixer 11 can be changed by adjusting the opening of the air-fuel ratio control valve 10. For example, when the opening is increased, a large amount of fuel is supplied, so that the air-fuel ratio is reduced. Conversely, when the opening is reduced, the air-fuel ratio is increased. The opening of the air-fuel ratio control valve 10 is CP
It can be changed by a signal (command) transmitted from U2.

【0011】内燃機関本体1には、機関回転数検出装置
3が設けてあり、機関回転数検出装置3により検出され
た検出信号は、信号線23を介してCPU2に伝達され
るようになっている。
The internal combustion engine body 1 is provided with an engine speed detecting device 3, and a detection signal detected by the engine speed detecting device 3 is transmitted to the CPU 2 via a signal line 23. I have.

【0012】内燃機関100が通常運転を行っていると
きには、空燃比λはリーン(希薄)に設定されており、
したがって、空燃比制御弁10の開度は小さくなるよう
に設定されている。空燃比λの値はCPU2が把握して
おり、また、機関回転数と機関負荷から燃料流量をCP
U2が算出する。
When the internal combustion engine 100 is operating normally, the air-fuel ratio λ is set to lean (lean).
Therefore, the opening of the air-fuel ratio control valve 10 is set to be small. The value of the air-fuel ratio λ is known by the CPU 2, and the fuel flow rate is determined based on the engine speed and the engine load.
U2 is calculated.

【0013】機関回転数,機関負荷及び空燃比のいずれ
が変化しても燃料流量は変化する。排気ガス中には、燃
料流量に比例した微量硫黄成分(SO)が含まれてお
り、NO吸蔵還元触媒14に流入する硫黄成分は、す
べてNO吸蔵還元触媒14内に蓄積されるものと仮定
する。硫黄成分がNO吸蔵還元触媒14内に蓄積され
ると、NOの吸蔵可能容量が小さくなり、触媒として
の機能が低下してしまう。
[0013] The fuel flow rate changes regardless of the engine speed, the engine load, or the air-fuel ratio. Ones in the exhaust gas, the fuel flow rate proportional to trace sulfur component (SO X) includes a sulfur component flowing into the NO X storage reduction catalyst 14, which are all accumulated in the the NO X storage reduction catalyst 14 Assume that When the sulfur component is accumulated in the NO X storage reduction catalyst 14, the NO X storage capacity is reduced, and the function as a catalyst is reduced.

【0014】燃料流量が解れば、NO吸蔵還元触媒1
4の硫黄成分による被毒量も算出することができる。こ
の被毒量が予め設定した所定量に達すると、NO吸蔵
還元触媒14の再生を行うようにする。つまり、CPU
2から空燃比制御弁10に信号が伝達され、空燃比制御
弁10の開度を大きくして空燃比λをλ=1.0(理論
空燃比)よりわずかにリッチ側に設定し、また、排気温
度は600℃以上に設定するのが望ましく、この条件下
で所定の時間運転を行う。
When the fuel flow rate is known, the NO X storage reduction catalyst 1
The amount of poisoning by the sulfur component of No. 4 can also be calculated. When this poisoning amount reaches a predetermined amount set in advance, the NO X storage reduction catalyst 14 is regenerated. That is, CPU
2, a signal is transmitted to the air-fuel ratio control valve 10, the opening degree of the air-fuel ratio control valve 10 is increased, and the air-fuel ratio λ is set slightly richer than λ = 1.0 (the stoichiometric air-fuel ratio). The exhaust temperature is desirably set to 600 ° C. or higher, and the operation is performed for a predetermined time under these conditions.

【0015】これにより、NO吸蔵還元触媒14に付
着(被毒)していた硫黄成分は除去され、NO吸蔵還
元触媒14のNO吸蔵容量を硫黄成分による被毒前の
容量に戻すことができる。
[0015] Thus, NO attached to X occluding and reducing catalyst 14 sulfur component was (poisoned) is removed, to return the NO X storage capacity of the NO X occluding and reducing catalyst 14 to the capacity before sulfur poisoning component Can be.

【0016】図2は、内燃機関100が吸蔵運転を行っ
ている際において、内燃機関100の機関負荷・機関回
転数及び空燃比から算出した燃料流量とNO吸蔵還元
触媒14の被毒速度及び硫黄成分による被毒量の経時変
化の一例を示すグラフである。
FIG. 2 shows the fuel flow rate calculated from the engine load / engine speed and the air-fuel ratio of the internal combustion engine 100 and the poisoning speed and the poisoning speed of the NO X storage reduction catalyst 14 when the internal combustion engine 100 is performing the storage operation. It is a graph which shows an example of a temporal change of the poisoning amount by a sulfur component.

【0017】図2のグラフに示すように、時刻tから
時刻tの間で燃料流量が低下すると、排気ガス中に含
まれるSOの総量が減少するので、NO吸蔵還元触
媒14の被毒速度は遅くなり、この間におけるSO
毒量はあまり増加していない。しかし、時刻tを過ぎ
て燃料流量が時刻t以前よりも増加すると時刻t
前よりも排気ガスに含まれるSOの総量が増加して被
毒速度も速まり、その結果、SO被毒量も増加してい
ることがわかる。
As shown in the graph of FIG. 2, the fuel flow rate decreases between the time t 6 of time t 7, since the total amount of SO X contained in the exhaust gas is decreased, of the NO X occluding and reducing catalyst 14 The poisoning rate is slow, and the SO X poisoning amount during this period has not increased much. However, when the fuel flow rate after time t 7 is increased than the time t 6 before than the time t 6 before been an increase in the total amount of SO X contained in the exhaust gas poisoning speed Hayamari, resulting, SO X It can be seen that the poisoning amount has also increased.

【0018】(請求項2,3の発明の実施例)図3は、
NO吸蔵還元触媒14の再生速度と温度の関係を示す
グラフである。また、図4は、機関負荷と機関回転数の
高低による排気ガスの温度分布を示すグラフである。さ
らに、図5は、NO吸蔵還元触媒14を再生させる運
転を行っている際において、内燃機関100の機関負荷
・機関回転数から推定した触媒温度とNO吸蔵還元触
媒14の再生速度及び硫黄成分による被毒量の経時変化
を示すグラフである。
(Embodiments of Claims 2 and 3) FIG.
5 is a graph showing the relationship between the regeneration speed of the NO X storage reduction catalyst 14 and the temperature. FIG. 4 is a graph showing the temperature distribution of the exhaust gas depending on the level of the engine load and the engine speed. Further, FIG. 5, the NO X storage in time of reduction catalysts 14 effects operation for reproducing the playback speed and sulfur of the catalyst temperature and the NO X storage reduction catalyst 14 estimated from the engine load and the engine speed of the internal combustion engine 100 It is a graph which shows the time-dependent change of the poisoning amount by a component.

【0019】図3に示すように再生速度は温度が上昇す
るほど速くなる(逆に温度が低下すると遅くなる)。機
関負荷・機関回転数が低下すると、排気ガスの温度が低
下するため、NO吸蔵還元触媒14の温度も低下す
る。
As shown in FIG. 3, the reproduction speed increases as the temperature rises (conversely, it decreases as the temperature decreases). When the engine load / engine speed decreases, the temperature of the exhaust gas decreases, so that the temperature of the NO X storage reduction catalyst 14 also decreases.

【0020】したがって図5の時刻tから時刻t
間において、機関負荷・機関回転数が低下したことによ
り触媒温度(排気ガス温度)が下がり、NO吸蔵還元
触媒14の再生速度も低下し、また、再生量(硫黄成分
の減少量)が横ばいになっている(つまり、NO吸蔵
還元触媒14の温度低下により再生が進まず、被毒量が
ほとんど変化していない)のがわかる。
[0020] Thus, in between time t 8 in Figure 5 at time t 9, the catalyst temperature (exhaust gas temperature) is lowered by the engine load and the engine speed drops, it drops playback speed of the NO X occluding and reducing catalyst 14 and, also, regeneration amount (decrease amount of the sulfur component) is leveled off (i.e., nO X occluding and reducing catalyst 14 does not proceed reproduced by a temperature drop of, poisoning amount changes little) of the apparent .

【0021】よって、内燃機関100の運転状態(機関
負荷・機関回転数)が変動することにより再生速度が変
化し、NO吸蔵還元触媒14から硫黄成分を完全に除
去するのに必要な時間(再生時間)が変動することがわ
かる。
[0021] Thus, the operating state of the internal combustion engine 100 (engine load and engine speed) reproduction speed is changed by the variation, NO X occluding and reducing catalyst 14 time required to completely eliminate the sulfur components from ( (Reproduction time) fluctuates.

【0022】そこで、予め機関負荷・機関回転数の変動
により再生速度がどの程度影響を受けるかを調査してお
き、調査結果からマップを作成する。内燃機関100の
再生運転中に機関負荷と機関回転数が変動するにつれ
て、このマップから再生速度を求め、再生量の積算値を
CPU2により算出し、この積算値が被毒量に達した時
点で再生運転を中止し、通常の運転に切り替えるように
する。
Therefore, the extent to which the regeneration speed is affected by variations in engine load and engine speed is investigated in advance, and a map is created from the survey results. As the engine load and the engine speed fluctuate during the regeneration operation of the internal combustion engine 100, the regeneration speed is obtained from this map, the integrated value of the regeneration amount is calculated by the CPU 2, and when the integrated value reaches the poisoning amount, Stop regeneration operation and switch to normal operation.

【0023】(請求項4の発明の実施例)図6は、排気
ガスの温度と点火時期の関係を示すグラフである。図6
からわかるように、点火時期が遅くなるほど排気ガス温
度が高くなる。機関負荷や機関回転数が低下すると排気
温度も低下するが、点火時期を遅らせることにより排気
温度を上昇させることができる。
FIG. 6 is a graph showing the relationship between the temperature of the exhaust gas and the ignition timing. FIG.
As can be seen from FIG. 5, the exhaust gas temperature becomes higher as the ignition timing becomes later. When the engine load and the engine speed decrease, the exhaust temperature also decreases. However, the exhaust temperature can be increased by delaying the ignition timing.

【0024】よって、機関負荷や機関回転数が低下した
際においても、点火時期を遅らせることにより再生に必
要なNO吸蔵還元触媒14の温度を確保することがで
きる。
[0024] Therefore, even when the engine load and the engine speed is decreased, it is possible to ensure the temperature of the NO X occluding and reducing catalyst 14 required for reproduction by delaying the ignition timing.

【0025】[0025]

【発明の効果】請求項1の発明によると、冷凍サイクル
50における配管33の圧縮機7(コンプレッサ)の上
流側及び下流側にそれぞれ圧力センサ4,5を設置し、
圧力センサ4,5で検出した圧力P,Pにより式
(1)から機関負荷Peを算出するようにしたので、従
来のようにスロットル開度から求めるよりも正確に機関
負荷Peを算出することができる。
According to the first aspect of the present invention, the pressure sensors 4 and 5 are installed on the pipe 33 in the refrigeration cycle 50 on the upstream and downstream sides of the compressor 7 (compressor), respectively.
Since the engine load Pe is calculated from the equation (1) based on the pressures P 1 and P 2 detected by the pressure sensors 4 and 5, the engine load Pe is calculated more accurately than is obtained from the throttle opening as in the conventional case. be able to.

【0026】したがって、機関負荷を正確に算出するこ
とができることにより燃料流量を正確に算出することが
でき、NO吸蔵還元触媒14の硫黄被毒量を正確に把
握することができる。
[0026] Thus, it is possible to accurately calculate the fuel flow rate by being able to accurately calculate the engine load, the sulfur poisoning amount of the NO X occluding and reducing catalyst 14 can be accurately grasped.

【0027】請求項2の発明では、NO吸蔵還元触媒
14の温度から再生速度を推定し、NO吸蔵還元触媒
14の温度が高くなるほど再生時間が短くなるようにし
たので、NO吸蔵還元触媒14の再生を必要最小限に
抑えることができ、内燃機関100の運転全体での熱効
率を向上させることができる。
[0027] In the second aspect of the present invention estimates the playback speed from the temperature of the NO X occluding and reducing catalyst 14, since the higher the playback time temperature increases of the NO X occluding and reducing catalyst 14 is set to be shorter, the NO X storage reduction The regeneration of the catalyst 14 can be suppressed to a necessary minimum, and the thermal efficiency in the entire operation of the internal combustion engine 100 can be improved.

【0028】請求項3の発明では、NO吸蔵還元触媒
14の再生速度と再生時間とから再生総量を推定するよ
うにしたので、機関負荷や機関回転数が変動しても、再
生の積算値を正確に推定することができ、再生運転時間
を最小限に抑えることができる。
According to the third aspect of the present invention, since the total regeneration amount is estimated from the regeneration speed and the regeneration time of the NO X storage reduction catalyst 14, even if the engine load or the engine speed fluctuates, the integrated value of the regeneration is obtained. Can be accurately estimated, and the regeneration operation time can be minimized.

【0029】請求項4の発明では、機関負荷や機関回転
数が低くNO吸蔵還元触媒14の温度が再生に必要な
最低温度を下回っても、点火時期を遅らせることにより
最低温度を確保することができ、再生に必要な時間を短
縮することができる。
[0029] In the invention of claim 4, even lower than the temperature of the NO X occluding and reducing catalyst 14 low engine load and engine speed a minimum temperature required for regeneration, to ensure a minimum temperature by retarding the ignition timing And the time required for reproduction can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1〜4の発明を実施した内燃機関の系
統略図である。
FIG. 1 is a system schematic diagram of an internal combustion engine embodying the invention of claims 1 to 4.

【図2】 吸蔵運転を行っている際において、内燃機関
の機関負荷・機関回転数及び空燃比から算出した燃料流
量とNO吸蔵還元触媒の被毒速度及び硫黄成分による
被毒量の経時変化の一例を示すグラフである。
FIG. 2 shows changes over time in the fuel flow rate calculated from the engine load / engine speed and the air-fuel ratio of the internal combustion engine, the poisoning rate of the NO X storage reduction catalyst, and the poisoning amount due to the sulfur component during the storage operation. 5 is a graph showing an example of the above.

【図3】 NO吸蔵還元触媒の再生速度と温度の関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the regeneration speed of the NO X storage reduction catalyst and the temperature.

【図4】 機関負荷と機関回転数の高低による排気ガス
の温度分布を示すグラフである。
FIG. 4 is a graph showing the temperature distribution of exhaust gas depending on the engine load and the engine speed.

【図5】 NO吸蔵還元触媒を再生させる運転を行っ
ている際において、機関負荷,機関回転数より算出した
触媒温度と、NO吸蔵還元触媒の再生速度及び硫黄成
分による被毒量の経時変化の一例を示すグラフである。
[5] In when performing an operation for reproducing the NO X storage reduction catalyst, the engine load, the catalyst temperature calculated from the engine speed, the NO X storage reduction playback speed and time of the poisoning amount of the sulfur component of the catalyst It is a graph which shows an example of a change.

【図6】 排気ガスの温度と点火時期の関係を示すグラ
フである。
FIG. 6 is a graph showing a relationship between exhaust gas temperature and ignition timing.

【符号の説明】[Explanation of symbols]

1 内燃機関本体 2 CPU(推定手段) 3 機関回転数検出装置 4,5 圧力センサ 7 圧縮機(コンプレッサ) 9 燃料タンク 10 空燃比制御弁(空燃比制御手段) 11 ミキサ 13 排気管(排気通路) 14 NO吸蔵還元触媒 30 凝縮器 31 蒸発器 32 膨張弁 33 配管 50 冷凍サイクル 100 内燃機関REFERENCE SIGNS LIST 1 internal combustion engine main body 2 CPU (estimating means) 3 engine speed detecting device 4, 5 pressure sensor 7 compressor (compressor) 9 fuel tank 10 air-fuel ratio control valve (air-fuel ratio control means) 11 mixer 13 exhaust pipe (exhaust passage) 14 NO X storage reduction catalyst 30 Condenser 31 Evaporator 32 Expansion valve 33 Piping 50 Refrigeration cycle 100 Internal combustion engine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 330 F02D 41/04 330C 45/00 314 45/00 314Z F02P 5/15 F02P 5/15 B (71)出願人 000221834 東邦瓦斯株式会社 愛知県名古屋市熱田区桜田町19番18号 (72)発明者 ▲松▼林 昌吾 大阪府大阪市北区茶屋町1番32号 ヤンマ ーディーゼル株式会社内 (72)発明者 中園 徹 大阪府大阪市北区茶屋町1番32号 ヤンマ ーディーゼル株式会社内 (72)発明者 佐々木 博一 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 横山 晃太 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 松井 徹 東京都港区海岸1丁目5番20号 東京瓦斯 株式会社内 (72)発明者 本道 正樹 東京都港区海岸1丁目5番20号 東京瓦斯 株式会社内 (72)発明者 谷口 圭仁 愛知県名古屋市熱田区桜田町19番18号 東 邦瓦斯株式会社内 Fターム(参考) 3G022 DA02 GA05 GA17 3G084 AA06 BA09 BA17 DA10 FA18 FA33 3G091 AA06 AB06 BA11 CB02 CB05 DA01 DA02 EA01 EA04 FC01 3G301 HA01 JA25 LB00 MA01 PE01Z PF11Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/04 330 F02D 41/04 330C 45/00 314 45/00 314Z F02P 5/15 F02P 5/15 B (71) Applicant 000221834 Toho Gas Co., Ltd. 19-18 Sakurada-cho, Atsuta-ku, Nagoya-shi, Aichi (72) Inventor 72) Inventor Toru Nakazono 1-32 Chaya-cho, Kita-ku, Osaka-shi, Osaka Inside Yanmar Diesel Co., Ltd. (72) Inventor Hirokazu Sasaki 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka (72) Inventor Kota Yokoyama 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture Inside Osaka Gas Co., Ltd. (72) Inventor Toru Matsui Minato-ku, Tokyo 1-5-20 Kishi Tokyo Gas Co., Ltd. (72) Inventor Masaki Honmichi 1-5-20 Coast, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Yoshihito Taniguchi Sakurada, Atsuta-ku, Nagoya City, Aichi Prefecture Town No.19-18 Toho Gas Co., Ltd.F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路にNO吸蔵還元触
媒を設け、前記内燃機関により駆動されるコンプレッサ
に冷媒を循環供給する冷凍サイクルにおける前記コンプ
レッサの上流側の圧力と下流側の圧力とから機関負荷を
算出する機関負荷算出手段と、機関回転数検出手段及び
空燃比制御手段とを設け、 機関負荷,機関回転数及び空燃比から排気ガス量を算出
する算出手段を設け、所定量の排気ガスがNO吸蔵還
元触媒を通過することにより前記NO吸蔵還元触媒の
SO被毒量を推定し、 前記推定したSO被毒量が所定量に達したらNO
蔵還元触媒の再生を行うことを特徴とする内燃機関の排
気浄化装置。
1. A provided the NO X storage reduction catalyst in an exhaust passage of an internal combustion engine, from the upstream pressure and downstream pressure of the compressor in the circulation supplying the refrigeration cycle refrigerant to the compressor driven by the internal combustion engine An engine load calculating means for calculating an engine load; an engine speed detecting means and an air-fuel ratio control means; a calculating means for calculating an exhaust gas amount from the engine load, the engine speed and the air-fuel ratio; gas and SO X poisoning amount of the the NO X storage reduction catalyst is estimated by passing through the the NO X storage reduction catalyst, SO X poisoning amount that the estimated regeneration of the NO X occluding and reducing catalyst reaches a predetermined amount An exhaust gas purifying apparatus for an internal combustion engine, characterized in that it is performed.
【請求項2】 NO吸蔵還元触媒の温度から再生速度
を推定し、NO吸蔵還元触媒の温度が高くなるほど再
生時間を短く設定する請求項1に記載の内燃機関の排気
浄化装置。
Wherein the NO X storage reduction temperature from estimating the playback speed of the catalyst, the exhaust gas purification system of an internal combustion engine according to claim 1 in which the temperature of the NO X occluding and reducing catalyst becomes enough to set short reproduction time high.
【請求項3】 NO吸蔵還元触媒の温度から再生速度
を推定し、再生時間と前記再生速度とから再生総量を推
定する推定手段を備えた請求項2に記載の内燃機関の排
気浄化装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, further comprising estimating means for estimating the regeneration speed from the temperature of the NO X storage reduction catalyst and estimating the total regeneration amount from the regeneration time and the regeneration speed.
【請求項4】 点火時期を変更することによりNO
蔵還元触媒の温度を制御する請求項2又は3に記載の内
燃機関の排気浄化装置。
4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein the temperature of the NO X storage reduction catalyst is controlled by changing the ignition timing.
JP2001141453A 2001-05-11 2001-05-11 Exhaust emission control device of internal combustion engine Pending JP2002332829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141453A JP2002332829A (en) 2001-05-11 2001-05-11 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141453A JP2002332829A (en) 2001-05-11 2001-05-11 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002332829A true JP2002332829A (en) 2002-11-22

Family

ID=18987914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141453A Pending JP2002332829A (en) 2001-05-11 2001-05-11 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002332829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802722B1 (en) 2006-11-23 2008-02-12 현대자동차주식회사 Method for preventing uncontrolled burning of diesel catalyzed particulate filter
US8332121B2 (en) 2009-11-13 2012-12-11 Greendrive Pty. Ltd Methods for determining exhaust emissions and efficiency of a vehicle and a display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217474A (en) * 1994-01-28 1995-08-15 Toyota Motor Corp Emission control device for internal combustion engine
JPH10176528A (en) * 1996-12-18 1998-06-30 Tokyo Gas Co Ltd Method for operating internal combustion engine
JPH11170858A (en) * 1997-10-07 1999-06-29 Denso Corp Air conditioner for vehicle
JP2001003782A (en) * 1999-06-18 2001-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001020726A (en) * 1999-07-02 2001-01-23 Mitsubishi Motors Corp Emission control unit for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217474A (en) * 1994-01-28 1995-08-15 Toyota Motor Corp Emission control device for internal combustion engine
JPH10176528A (en) * 1996-12-18 1998-06-30 Tokyo Gas Co Ltd Method for operating internal combustion engine
JPH11170858A (en) * 1997-10-07 1999-06-29 Denso Corp Air conditioner for vehicle
JP2001003782A (en) * 1999-06-18 2001-01-09 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001020726A (en) * 1999-07-02 2001-01-23 Mitsubishi Motors Corp Emission control unit for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802722B1 (en) 2006-11-23 2008-02-12 현대자동차주식회사 Method for preventing uncontrolled burning of diesel catalyzed particulate filter
US8332121B2 (en) 2009-11-13 2012-12-11 Greendrive Pty. Ltd Methods for determining exhaust emissions and efficiency of a vehicle and a display
US8478501B1 (en) 2009-11-13 2013-07-02 Greendrive Pty, Ltd Methods for determining exhaust emissions and efficiency of a vehicle and a display

Similar Documents

Publication Publication Date Title
US6758039B2 (en) Exhaust gas cleaning system having particulate filter
US6769246B2 (en) Method and device for controlling an exhaust gas aftertreatment system
JP3858554B2 (en) Engine exhaust purification system
JP2000018023A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP4304527B2 (en) Exhaust gas purification device for internal combustion engine
JP2009203827A (en) Exhaust emission control device and emission control method of internal combustion engine
US7000385B2 (en) Exhaust gas purification apparatus and method for internal combustion engine
JP2003535256A (en) Exhaust gas purification system and method
JP4062765B2 (en) Failure detection device for air-fuel ratio detection device
EP3401522B1 (en) Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine
JP3613670B2 (en) Exhaust gas purification device for internal combustion engine
JP3739876B2 (en) Exhaust purification device
US6968682B1 (en) Method and device for controlling an internal combustion engine with an exhaust treatment system
JP2002332829A (en) Exhaust emission control device of internal combustion engine
JP2017129037A (en) Abnormality diagnosis device of nox occlusion reduction-type catalyst
JPH0893458A (en) Exhaust emission control device
JP2012211561A (en) Degradation determination device
JPH1089051A (en) Exhaust emission control device for internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JP2008519193A (en) Device for estimating the amount of particulates present in automobile particulate filters
JP2020094574A (en) Catalyst temperature estimation device and catalyst temperature estimation method
JP2005061335A (en) Failure diagnosis control device for intake air quantity detecting means for engine
JP3620680B2 (en) Exhaust gas purification device
JP2019094841A (en) Abnormality determination device
JP2004511713A (en) Method and apparatus for diagnosing the storage characteristics of a NOx storage catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629